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Abstract

In classification problem, we assume that the samples
around the class boundary are more likely to be in-
correctly annotated than others, and propose boundary-
conditional class noise (BCN). Based on the BCN as-
sumption, we use unnormalized Gaussian and Laplace
distributions to directly model how class noise is gener-
ated, in symmetric and asymmetric cases. In addition,
we demonstrate that Logistic regression and Probit re-
gression can also be reinterpreted from this class noise
perspective, and compare them with the proposed mod-
els. The empirical study shows that, the proposed asym-
metric models overall outperform the benchmark lin-
ear models, and the asymmetric Laplace-noise model
achieves the best performance among all.

Introduction

Take handwritten digit recognition for example. During the
process of manual annotation (to obtain the labelled training
data), it is fairly easy to correctly annotate legible handwrit-
ten digits, whereas mistakes are often made on the ambigu-
ous ones. Therefore, given a set of annotated digits, it is
reasonable to assume that, the legible samples are often cor-
rectly labelled, whereas incorrect labels are more likely to
be attached to the ambiguous samples. Similar assumptions
can also be applied to many other real-world applications,
such as, speech recognition, spam filter, etc.

This assumption can be formalized in a more general
manner: We denote by y the observed corrupted label, and
by y! the unknown true label, in a classification problem.
Given a sample x, we assume that, p(y # y'|x) tends to be
low when x is far from the class boundary (like the legible
digits), and tends to become higher when x gets closer (like
the ambiguous digits). We call this type of noise boundary-
conditional class noise (abbreviated BCN).

Based on the BCN assumption, instead of modelling how
data is generated (i.e., p(x, y), as in generative learning), or
modelling conditional class probability directly (i.e., p(y|x),
as in discriminative learning), in this paper, we propose to
model how this boundary-conditional class noise is gener-
ated (i.e., p(y # yt|x)). More specifically, we assume that
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the class noise p(y # y'|x) is distributed as an unnormal-
ized Gaussian and an unnormalized Laplace centred at the
linear class boundary, and propose Gaussian-noise model
and Laplace-noise model respectively. These two models are
then further adapted to asymmetric cases.

Given this class noise perspective, we also reinterpret Lo-
gistic regression and Probit regression by using class noise
probability p(y® # y|x). These two models are also adapted
to asymmetric cases. Demonstrations are made to compare
Logistic regression and Probit regression with the proposed
class noise models.

Empirical study is conducted on synthetic data and real-
world UCI (Bache and Lichman 2013) data. The experimen-
tal results demonstrate that the asymmetric models overall
outperform the benchmark linear models (including Logis-
tic regression, Probit regression, and LinearSVM with L1
and L2 loss). In addition, the proposed asymmetric Laplace-
noise model achieves the best performance among all.

Related Work

Class noise has been extensively studied in machine learning
community. A recent comprehensive survey can be found
in (Frénay and Verleysen 2014). In general, researchers
use different strategies to solve the problem: Some aim to
identify and eliminate mislabelled samples, as in (Brod-
ley and Friedl 1999; Zhu, Wu, and Chen 2003); some
tend to obtain more data or re-weight samples to improve
data quality, as in (Sheng, Provost, and Ipeirotis 2008;
Rebbapragada and Brodley 2007); others make certain as-
sumptions on class noise and build noise-tolerant models,
as in (Angluin and Laird 1988; Dawid and Skene 1979;
Lawrence and Scholkopf 2001; Raykar et al. 2010; Natara-
jan, Dhillon, and Ravikumar 2013). Our work falls into the
last category.

More specifically, (Angluin and Laird 1988) proposed a
simple class noise framework random classification noise
(RCN), which has been commonly used thereafter. The
more flexible class-conditional class noise (CCN) frame-
work has also been extensively studied, as in (Lawrence and
Scholkopf 2001; Raykar et al. 2010; Natarajan, Dhillon, and
Ravikumar 2013). However, both of these two frameworks
only consider sample-independent class noise, which im-
poses a rigid constraint on real-world applications. In con-
trast, motivated by real-world observations, the boundary-



conditional class noise (BCN) proposed in this paper con-
siders sample-dependent class noise, which leads to more
realistic and flexible models. (See Section “Problem For-
malization” for the comparison based on the graphic model
representations.)

In addition, in most existing research, class noise is han-
dled in an additional procedure on top of generative or dis-
criminative models. In comparison, this paper aims to pro-
vide a novel perspective to (1) directly build discrimina-
tive models through modelling class noise distributions, and
(2) reinterpret existing discriminative models from the class
noise perspective.

Asymmetric distributions have also been studied previ-
ously, as in (Bennett 2003; Kato, Omachi, and Aso 2002).
But as far as we know, little work has been done to directly
model class noise with asymmetric distributions.

Assumption Verification

In this section, we verify the BCN assumption on a real-
world data set.

(Snow et al. 2008) conducted a series of human linguistic
annotation experiments on Amazon’s Mechanical Turk. The
purpose of these experiments is to compare the AMT non-
expert annotations with the gold standard labels provided by
experts. One annotation experiment is affective text anal-
ysis'. More specifically, each non-expert annotator is pre-
sented with a list of short headlines, and is asked to pro-
vide numeric ratings in the interval [—100, 100] to denote
the overall emotional valence. 100 headline samples are se-
lected, and 10 non-expert annotations are collected for each
of them. In addition, the gold standard labels for these 100
samples (also in the interval [—100, 100]) are also provided
for comparison. Note that, the provided numeric rating rep-
resents the degree of valence, where 100 and —100 indicate
strong positive and strong negative respectively.

In the class noise setting, we regard the non-expert anno-
tations as the corrupted labels, and the gold standard labels
as the true ones. As the emotional state (positive or negative
valence) is only reflected by the sign of the rating, we define
y = sign(non-expert annotation), y* = sign(gold standard label)
where sign(.) is the sign function, and the function values 1,
—1, and 0 represent positive, negative, and neutral valence
respectively. We further define the annotation noise rate for
a given headline as:

_ #annotations(y#y")

Noise_Rate = p(y # y'|headline) = Fannotations

We plot the annotation noise rate for each headline in Fig-
ure 1, and see how it changes with the gold standard label.
Note that, Gold Standard Label = 0 can be regarded as the
boundary to discriminate positive and negative valence.

We can see clearly from Figure 1 that, the annotation
noise rate peaks when the gold standard label is about 0
(i.e., at around boundary), and it decreases when the true
label goes up towards 100 or goes down towards —100 (i.e.,
gets far away from the boundary). This observation matches
our intuition that, the annotators are more likely to provide
the true label when the headline is either strongly positive

'The raw annotation data is provided at
//sites.google.com/site/nlpannotations/.
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BCN Assumption Verification on Affective Text Analysis
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Figure 1: BCN Assumption on Affective Text Analysis.

or strongly negative, while the incorrect labels are provided
more often when the headline leans to neural. More impor-
tantly, this real-world data set clearly verifies our BCN as-
sumption.

Problem Formalization

We consider only linear models for binary classification in
this paper. In the class noise setting, we denote by y the ob-
served (corrupted) label and by 7! the true (hidden) label,
where y, y' € {0, 1}. We denote by w the model parameter.
In the linear model case, the goal is to build a linear classi-
fication boundary w”x = 03, such that y* = I(wTz > 0),
where I(.) is the indicator function (which equals to 1 if its
argument is true and 0 otherwise).

%%

(b) BCN Framework

o

@

(a) RCN /CCN Framework

Figure 2: Class Noise Frameworks

Figure 2(a) shows the framework of the most commonly
used random classification noise (RCN) model and class-
conditional class noise (CCN) model. Given a set of NV cor-
rupted samples, both & and y are observed, whereas 3¢ is
hidden, and w is to be learned. y* depends on x and w, and
y depends on y* only. In both of these two frameworks, as
long as y* is determined, y is no longer affected by  or w.
That is, p(y|y’, z, w) = p(yly").

In contrast, Figure 2(b) shows the framework of the
proposed boundary-conditional class noise (BCN) model,
where two extra links connecting « and w to y are added.
In this case, y also depends on both x and w, therefore
p(yly', =, w) # p(yly").

Instead of directly modelling p(y|y, z,w), we model
class noise p(y # y'|x), where w is omitted to keep the
notation uncluttered. The BCN assumption can be further
formalized, which imposes the constraints on p(y # yt|x):

%For better demonstration, the annotation noise rate plotted in
Figure 1 is smoothed by neighbourhood averaging with radius 5.

3Here  contains all the original features plus one dummy fea-
ture with constant value 1.



Assumption 1 (BCN).

Given two samples x; and x;:

Ifwm; = wha;, then p(y; # ytl@:) = ply; # y'la;);
If sign(wlz;) = sign(w?z;) and |wlz;| > |lwzy|,
then p(yi # yi|:) < p(y; # yjla;).

Under the BCN assumption, we start from defining p(y #
y'|z) in both symmetric and asymmetric cases. p(y|z) can
therefore be further derived. (See Section “Representation”
for details.) We then set up loss functions based on max-
imum likelihood and maximum a posteriori, and propose
learning algorithms to optimize w. (See Section “Learning”
for details.) Given the optimal w*, the predictions can then

be made from y* = I(w*T 2 > 0).

Model Representation

We define p(y # y*|x) and further model p(y|z) in this sec-

tion. More specifically, given the linear classification bound-

ary wlx = 0, and y* = I(wTz > 0), we can have:
ply=1lz) =D ply =1y, 2)p(y'|z)

yt

_py=1y'=0,2) _ |py" #ylz)
ply=1ly' =1,z) 1 —p(y" # ylz)

ifwlz <0
ifwle >0

Symmetric Case

We discuss symmetric class noise distribution in this sub-
section. More specifically, in addition to Assumption 1, we
further assume that:

Assumption 2 (BCN_Symmetric).
Given two samples x; and x;:
Ifw'z; = —w'x;, then p(y # y'|z;) = p(y # y'lz;).

Intuitively, this additional assumption indicates that, the
samples that have the same distance to the boundary but /o-
cated on different sides are equally likely to be corrupted.
The class noise distribution is therefore symmetric w.r.t. the
class boundary.

According to Assumptions 1 and 2, we first propose two
class noise models: symmetric Gaussian-noise model and
symmetric Laplace-noise model, and then reinterpret tradi-
tional Logistic regression and Probit regression from this
class noise perspective.

More specifically, we suppose that the linear classifica-
tion boundary is wTx = 0, and assume that the class noise
is distributed as an unnormalized Gaussian centred at the
linear boundary with variance o2. We therefore have

T 2 T
ply # y'|lz) = aexp(—F) = aexp(—(252)%).

Given that p(y # y'|x) reaches its maximum 0.5 on the
linear boundary (where w”z = 0), we have a = 0.5. In
addition, v/20 can be absorbed into w while still keeping the
boundary unchanged. The symmetric Gaussian-noise model
then can be represented by both p(y # yt|x) and p(y =
1|x), as shown in Table 1.

Similarly, assuming an unnormalized Laplace centred at
the linear boundary for class noise, symmetric Laplace-noise
model can also be represented by p(y # y'|z) and p(y =
1]x); see Table 1 for details.
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As traditional discriminative models, both Logistic re-
gression and Probit regression have been commonly used
to directly model p(y|x). It turns out that they can also
be intuitively reinterpreted from class noise perspective by
p(y # yt|x); also see Table 1 for details.

For better demonstration, Figure 3 compares the above
four symmetric models from class noise and conditional
class probability perspectives, both in 1D case (where x = 0
is set as the class boundary).

class noise distribution class probability
/

0, 0.
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Figure 3: Symmetric class noise distributions and condi-
tional class probabilities for all the four models, in 1D sam-
ple space where x = 0 is the boundary.

Asymmetric Case

We argue that, Assumption 2 (which leads to the symmetric
class noise distributions) may not hold in some cases. Intu-
itively, given two samples located on different sides of the
boundary, even if they are equally far away from the bound-
ary, they are still likely to be corrupted with different proba-
bilities.

Therefore, in this subsection, we consider only the con-
straints from Assumption 1, and discuss asymmetric class
noise distributions. Note that, the asymmetric case can be
considered as a more generic scenario, where symmetric dis-
tributions are only special cases (when Assumption 2 also
holds).

Similar to the previous section, we suppose that the lin-
ear classification boundary is w”@ = 0. To accommodate
the asymmetry property, we introduce a scale parameter A
(A > 0), and assume that the class noise is distributed as an
unnormalized Gaussian with variance (o /\)2. We then have

(w')?

T
ply # y'lz) = 5 exp(—g5575y7) = 5 exp(—(A- £52)%).
We again have v/2¢ absorbed into w while still keeping the
boundary unchanged, and end up with
p(y # y'lz) = 5 exp(—(w’z)?).

Asymmetric property can be implemented by setting dif-
ferent A on different sides of the class boundary. Alterna-
tively, as re-scaling A is equivalent to re-scaling w, we can
constrain A = 1 on one side of the class boundary, and keep
A as a free parameter on the other side. Consequently, the
asymmetric Gaussian-noise models can also be represented
by both p(y # y'|x) and p(y = 1|z), as shown in Table 1.

Similarly, p(y # y'|x) and p(y = 1|z) for asymmetric
Laplace-noise model, asymmetric Logistic regression and
asymmetric Probit regression are also summarized in Table
1.

For better demonstration, Figure 4 compares the above
four asymmetric models from class noise and conditional
class probability perspectives, where ) is set to 0.3.



Table 1: Summary of Symmetric and Asymmetric Models

Model [ ply # v'l) [ oy = 1)
1 exp(—(wTx)? ifwlx < 0,
Gaussian-Noise Model 3 exp(—(wTx)?) 2 exp(=( )T) T
1— Lexp(—(w'z)?) ifwz >0
—ex wle ifme<0,
. Laplace-Noise Model %cxp(fhuTm\) p( )
Symmetric 1—Lexp(—wTa) ifwTax > 0.
T 1
Logistic Regression 1+exp7&\sz\) TTom(—wTa)
w = A(0]0,1)d0 ifwTx <0, T
Probit Regression I (610,1) J* _FN(6]0,1)do
Jr7 N(]0,1)do ifwTz > 0.
ex wle ifwlae <0, L exp(—(wTx)? ifwlx <0,
Gaussian-Noise Model 2 p(=( ) 2 exp(=( )
Lexp(—(AwTx)?) ifw’z > 0. 1— Lexp(—w’x)?) ifwTz > 0.
exp(w’ x ifwlx <0, exp(wTx ifwle < 0,
Laplace-Noise Model 2 p( ) 2 p( )
Asymmetric 2 exp( 2w’ x) ifwTaz > 0. 1-1 exp —w? ) ifwle > 0.
ifwlz <0, ifwlz < 0,
Logistic Regression 1+"Xp(_“’ =) 1+9xP(_“’ =)
ifwlx > 0. ifwlax > 0.
1+exp(Aw ) 1+exp( )\w x)
) ) jw ® N(0]0,1)d0 ifwTx <0, j“’ mN(mo 1)do  ifwlx <0,
Probit Regression -
e °°T N(0]0,1)do ifwTx > 0. f*w * N(0]0,1)d6 if wTa > 0.

ic class noise distril

Asymmetric class probability (A =
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Figure 4: Asymmetric class noise distributions and condi-
tional class probabilities for all the four models, in 1D sam-
ple space where = 0 is the boundary.

Model Learning

In the previous section, we have proposed several algorithms
to model p(y|x) (parametrized by w in the symmetric case,
and by w and A in the asymmetric case). In this section, we
discuss the learning algorithm to optimize the parameters
given a set of training samples.

Maximum Likelihood (ML) Estimation

We use maximum likelihood to optimize the parameters in
this subsection. More specifically, the negative log condi-
tional likelihood is used as the loss function:

L (w, A) = =321 {yilog () + (1 — i) log(1 — h(w:))}
where N is the number of all the training samples, x; and y;
are the ¢th training sample and the corresponding observed
(corrupted) label respectively, and h(z;) = p(y; = 1|x;)
(where parameters w and )\ are omitted to keep the notation
uncluttered).

It can be shown that, in the symmetric case, the loss func-
tion is differentiable w.r.t. w for all the four models, the tra-
ditional gradient methods therefore can be directly applied.
In the asymmetric case, however, the loss function is no
longer differentiable w.r.t. w and A (when w”z = 0), we
then apply subgradient methods for optimization. The sub-

gradients* (w.r.t. w and \) for the four asymmetric models
are summarized in Table 2.

With the extra scale parameter A, the asymmetric mod-
els are expected to have lower bias thus achieving lower (or
at least equal) loss function values (compared to their sym-
metric counterparts). However, subgradient methods might
still stuck at local minima with relatively high loss function
values.

To overcome this limitation, we initialize the parameters
to the more sensible values. Specifically, for all the asym-
metric models, we initialize A to 1, and w to the final so-
lutions of the symmetric counterparts. Subgradient methods
then can be applied. The optimization might still end up with
local minima, however, it is guaranteed that lower (or at least
equal) loss function values can be achieved. See Algorithm
1 for details.

Algorithm 1 Learning asymmetric models
SetA=1
Initialize w randomly
Apply gradient method to optimize w:
Wstart = argming L(w, A = 1)
Initialize A = 1
Initialize w = Wstart
Apply subgradient method to optimize w and \:
w* = arg min,, L(w, \)
A* = argminy L(w, )

LRI NRERD =

Maximum A Posteriori (MAP) Estimation

We use maximum a posteriori to optimize the parameters in
this subsection.

More specifically, we assume a zero mean isotropic Gaus-
sian prior on w: p(w) = N(w|0,a 'I), where « is the
precision parameter, and I is the identity matrix.

*For simplicity, all the subgradients are derived for one training
sample (z, y); the extension to the entire training set is straightfor-
ward thus omitted.



Table 2: Subgradients of negative log likelihood for asymmetric models

Asymmetric [ 6%# [ OLB#
y=h) owTx.x  ifwTx <0 0 ifwTx <0
Gaussian-Noise Model )17h(x) ’ h(x) 1 wox ’
l(hx()x;y 22%2wTx - x ifwPx > 0. th(x) v 2/\(wa)2 ifwlx > 0.
Lanlace-Noise Model Y x ifwTx <0, 0 ifwlx <0,
aplace-Noise Mode
h(hx()x)y Ax ifwlx > 0. h(hx()x;y -wlx ifwTx > 0.
- . (h(x) —y) - x ifwlx <0, 0 ifwTx <0,
Logistic Regression
(h(x) —y) - Ax ifwTx > 0. (h(x) —y) - wix ifwTx>0.
h(x)— . T s T
- NwTx|0,1 ifw'x <0, 0 ifw'x <0,
Probit Regression h(x)(l f(x» ( 10,1 . -
h(x)(’f }f('x)) SNOAwTx|0,1) - Ax ifwTx > 0. m SNOwTx[0,1) - wPx ifwTx > 0.

We also assume a Gamma prior (with shape parameter o
and scale parameter 8') on A: p(\) = Gamma( ,B). We
further set the mode of the Gamma prior to 1, such that the
symmetric class-noise models (where A = 1) are preferred:
@~1 — 1= qo =B +1. The prior on \ therefore can be

ﬂ/

formulated: p()\) = Gamma(3 + 1,8) where 3 £ 3 > 0.
By further assuming the priors of w and A are indepen-

dent, the loss function (i.e., negative log posterior) can be

formulated:

Z{y’ log h(x;) +

i=1

+ %wTw + B8\ —

(1 —yi)log(1l — h(z:))}

Lyap(w, )

In\)

Similar to the previous subsection, the gradient and sub-
gradient methods are used to optimize the parameters for
symmetric and asymmetric models respectively. The subgra-
dients of negative log posterior (La;4p) can be derived:
oL _ 9Ly oL _ dL

guae = S yow,  Ohyar = Obyn L g(1-1/3)

Empirical Study

We conduct empirical study in this section. More specifi-
cally, experiments are conducted on the synthetic data with
injected class noise in Section “Synthetic Data”, and on real-
world UCI data sets in Section “UCI Data”.

Synthetic Data

To better observe the behaviour of the proposed models, in
this subsection, we conduct experiments on synthetic data
with various injected class noise.

A set of 2-D data (x = (x1,2), and x1, 29 € [—1,1]) is
generated randomly. The true class labels 3 are produced by
setting the true class boundary as x1+x5 = 0. The corrupted
class labels y are further produced, by injecting four types of
class noise, namely symmetric Gaussian noise, symmetric
Laplace noise, asymmetric Gaussian noise, and asymmet-
ric Laplace noise, according to Section “Model Representa-
tion”. A is set to 0.3 in the asymmetric cases.

Eight models (four symmetric and four asymmetric, as
in Table 1) with ML estimation are built on 200 to 3,000
training samples with corrupted labels (i.e., (x,y) tuples)’,

SWe vary the training data size to make more reliable experi-
mental observations.
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and are tested on 10, 000 test samples with true labels (i.e.,
(z,y') tuples). The process is repeated 10 times, and the av-
erage predictive accuracies on the test data are recorded for
comparison.
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Figure 5: Experiments on synthetic data

Figure 5 shows the experimental results® on the four
corrupted data sets. It can be observed that, when a cer-
tain type of noise is injected, the corresponding proposed
algorithm always performs the best. More specifically,
symmetric Gaussian-noise model, symmetric Laplace-noise
model, asymmetric Gaussian-noise model, and asymmet-
ric Laplace-noise model all have the best predictive perfor-
mance in Figures 5(a), 5(b), 5(c) and 5(d) respectively. This
clearly demonstrates the advantages of the proposed algo-
rithms with certain types of noise.

UCI Data

We also conduct the experiments on 22 data sets from UCI
Machine Learning Repository (Bache and Lichman 2013).

%In the experiments, the symmetric models usually outperform
their asymmetric counterparts when symmetric noise is injected,
whereas the asymmetric models overall work significantly better
with asymmetric noise. For better demonstration, we plot symmet-
ric models only in Figures 5(a) and 5(b), and asymmetric models
only in Figures 5(c) and 5(d).



Table 3: Predictive accuracies on 22 UCI data sets

Benchmark Models Asymmetric Models
Dataset Note Logistic ~ Probit L1-SVM  L2-SVM | Logistic ~ Probit  Gaussian-Noise  Laplace-Noise
biodegradation - 0.8711  0.8690  0.8753 0.8735 0.8721  0.8705 0.8665 0.8749
cardiotocography - 0.9895  0.9891 0.9882 0.9892 0.9898  0.9896 0.9895 0.9900
ILPD - 0.7218  0.7254  0.7150 0.7251 0.7285  0.7344 0.7207 0.7242
ionosphere - 0.8914  0.8923 0.8889 0.8897 0.8929  0.8946 0.8943 0.8909
letter_recognition_uv Class “u” vs Class “v” 0.9957  0.9953 0.9941 0.9950 0.9961 0.9958 0.9949 0.9966
magic04 - 0.7910  0.7901 0.7918 0.7893 0.7911  0.7902 0.7862 0.7929
mammographic_masses - 0.8277  0.8265 0.8299 0.8265 0.8354  0.8349 0.8267 0.8348
optdigits 46 Class “4” vs Class “6” 0.9936  0.9935 0.9930 0.9927 0.9942  0.9941 0.9941 0.9944
pendigit_46 Class “4” vs Class “6” 1.0000  1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000
pima-indians-diabetes - 0.7754  0.7743 0.7728 0.7728 0.7764  0.7758 0.7695 0.7770
pop-_failures - 0.9611  0.9607 0.9611 0.9591 0.9628  0.9615 0.9554 0.9631
sat_1vsRest Class “1” vs rest 0.9870  0.9868 0.9867 0.9872 0.9871  0.9868 0.9864 0.9873
segment_lvsRest Class “1” vs rest 0.9978  0.9978 0.9978 0.9978 0.9978  0.9978 0.9978 0.9978
semeion_46 Class “4” vs Class “6” 0.9929 09932  0.9938 0.9960 0.9947  0.9957 0.9963 0.9950
sensor_readings_24_ForwardvsRest | Class “Forward” vsrest | 0.7599  0.7590 0.7548 0.7600 0.7673  0.7663 0.7577 0.7701
sonar - 0.7804  0.7841 0.7908 0.7778 0.7953  0.7958 0.7850 0.7952
spambase - 09282 09262  0.9289 0.9261 0.9290  0.9274 0.9193 0.9315
transfusion - 0.7735  0.7735 0.7635 0.7725 0.7817  0.7778 0.7743 0.7844
vertebal 2¢ - 0.8503  0.8497 0.8545 0.8526 0.8674  0.8681 0.8603 0.8668
wdbc - 09812  0.9808 0.9773 0.9784 0.9819  0.9812 0.9777 0.9826
winequality-red_6vsRest Class “6” vs rest 0.6012  0.6004  0.5996 0.5917 0.6203  0.6193 0.6015 0.6204
winequality-white_6vsRest Class “6” vs rest 0.5677  0.5676  0.5515 0.5654 0.5707  0.5697 0.5485 0.5747

Table 4: T-test summary w/t/l1 on 22 UCI data sets
Benchmark Models Asymmetric Models
Logistic  Probit L1-SVM  L2-SVM | Logistic Probit  Gaussian-Noise  Laplace-Noise
Logistic 0/22/0  6/15/1 8/11/3 8/13/1 0/5/17 1/10/11 10/8/4 0/7/15
Benchmark | Probit 1/15/6  0/22/0 7/10/5 3/17/2 0/4/18 0/4/18 8/11/3 0/6/16
Models L1-SVM 3/11/8  5/10/7 0/22/0 5/9/8 2/8/12 3/6/13 5/9/8 0/6/16
L2-SVM 1/13/8  2/17/3 8/9/5 0/22/0 0/8/14 0/9/13 7/10/5 0/7/15
Logistic 17/5/0 18/4/0 12/8/2 14/8/0 0/22/0 7/13/2 16/5/1 1/1477
Asymmetric | Probit 11/10/1  18/4/0 13/6/3 13/9/0 2/13/7 0/22/0 16/6/0 2/10/10
Models Gaussian-Noise | 4/8/10  3/11/8 8/9/5 5/10/7 1/5/16 0/6/16 0/22/0 1/6/15
Laplace-Noise 15/7/0  16/6/0 16/6/0 15/7/0 7/14/1  10/10/2 15/6/1 0/22/0

On all the data sets, categorical features are converted to bi-
nary (numeric), samples with missing values are removed,
duplicate features are removed, and multiple class labels are
converted / reduced to binary. (See Column “Note” in Table
3)

Four asymmetric models with MAP estimation are tested
on each data set. In comparison, we also present the results
on four benchmark linear models: Logistic regression, Pro-
bit regression, L1-SVM (Linear SVM with hinge loss, (Fan
et al. 2008)), and L2-SVM (Linear SVM with squared hinge
loss, (Fan et al. 2008)), all with L2 regularization.

Grid-search on regularization coefficients using 10-fold
cross-validation is applied (Hsu, Chang, and Lin 2010).
More specifically, for each model, the regularization coef-
ficients are chosen from {275,273 ... 213 215} "and only
the ones with the best CV accuracy are picked. The whole
process is repeated 10 times on each data set, and the aver-
age predictive accuracies are recorded for comparison.

The average predictive accuracies are shown in Table 3,
where the highest accuracy on each data set is highlighted in
bold. The overall t-test (paired t-test with 95% significance
level) results are also shown in Table 4, where the “w/t/I” in
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each cell indicates that the algorithm in the corresponding
row wins on “w”, ties on “t”, and loses on “1” data sets, in
comparison with the algorithm in the corresponding column.

It can be observed from Tables 3 and 4 that, the proposed
asymmetric models have overall superior predictive perfor-
mance compared to the benchmark models. In addition, the
asymmetric Laplace-noise model clearly performs the best
among all the eight models.

Conclusions

To summarize, we assume that the samples around the class
boundary are more likely to be corrupted than others, and
propose boundary-conditional class noise (BCN). We de-
sign Gaussian-noise models and Laplace-noise models to
directly model how BCN is generated. Both Logistic regres-
sion and Probit regression are reinterpreted from this class
noise prospective, and all the models are further adapted to
asymmetric cases. The empirical study shows that, the pro-
posed asymmetric models overall outperform the benchmark
linear models, and the asymmetric Laplace-noise model
achieves the best performance among all.
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