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Abstract

Gaussian process (GP) regression is a widely used
method for non-linear prediction. The performance of
the GP regression depends on whether it can prop-
erly capture the covariance structure of target variables,
which is represented by kernels between input data.
However, when the input is represented as a set of fea-
tures, e.g. bag-of-words, it is difficult to calculate desir-
able kernel values because the co-occurrence of differ-
ent but relevant words cannot be reflected in the kernel
calculation. To overcome this problem, we propose a
Gaussian process latent variable set model (GP-LVSM),
which is a non-linear regression model effective for
bag-of-words data. With the GP-LVSM, a latent vector
is associated with each word, and each document is rep-
resented as a distribution of the latent vectors for words
appearing in the document. We efficiently represent the
distributions by using the framework of kernel embed-
dings of distributions that can hold high-order moment
information of distributions without need for explicit
density estimation. By learning latent vectors so as to
maximize the posterior probability, kernels that reflect
relations between words are obtained, and also words
are visualized in a low-dimensional space. In experi-
ments using 25 item review datasets, we demonstrate
the effectiveness of the GP-LVSM in prediction and vi-
sualization.

1 Introduction
In many regression problems, the input is represented as a
set of features. A typical example of such features is bag-
of-words (BoW) representation, which is used for repre-
senting a document as a multiset of words appearing in
the document while ignoring the order of the words. Gaus-
sian process (GP) regression is a widely used method for
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such regression problems in various domains, e.g. natu-
ral language processing (Cohn and Specia 2013), time se-
ries analysis (Preotiuc-Pietro and Cohn 2013), computer vi-
sion (Kapoor et al. 2009) and data mining (Lampos and Ale-
tras 2014). The performance of the GP regression generally
depends on whether it can properly capture the covariance
structure of target variables, which is represented by ker-
nels between input data (e.g. documents). The GP regres-
sion for BoW representation has a major weakness that the
co-occurrence of different but relevant words cannot be re-
flected in the kernel calculation. For example, when deal-
ing with a problem of predicting ratings from item review
texts, ‘good’ and ‘excellent’ are semantically similar and
characteristic words for high rating reviews. Nevertheless, in
the BoW representation, the two words might not affect the
computation of the kernel value between the texts because
many kernels, e.g. linear, polynomial and Gaussian RBF ker-
nels, evaluate kernel values based on word co-occurrences in
a document.

To overcome this weakness, we propose a Gaussian pro-
cess latent variable set model (GP-LVSM), which is a non-
linear regression model effective for BoW data. Figure 1 il-
lustrates the GP-LVSM. The GP-LVSM assumes that a la-
tent vector is associated with each vocabulary term, and
each document is represented as a distribution of the la-
tent vectors for words appearing in the document. By using
the framework of kernel embeddings (Smola et al. 2007),
we can effectively represent the distributions without den-
sity estimation while preserving necessary information of
distributions. In particular, the GP-LVSM maps each dis-
tribution into a reproducing kernel Hilbert space (RKHS),
and generates a regression function from a Gaussian process
with the covariance structures calculated by kernels between
documents on the RKHS. The learning of the GP-LVSM is
based on maximizing a posterior (MAP) estimation, which
is performed by updating the latent vectors for words and
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Figure 1: Illustration of GP-LVSM. Each word is repre-
sented as a latent vector denoted by ‘×’ in the latent space.
The distributions of the documents are mapped into a repro-
ducing kernel Hilbert space (RKHS). The target variables
are expressed by a non-linear regression function generated
from a Gaussian process.

other kernel parameters. The learned latent vectors for se-
mantically similar words are located close to each other in
the latent space, and we can obtain kernel values that re-
flect the semantics. As a result, the GP-LVSM can predict
the target variables of unseen data using more rich and use-
ful representation than BoW representation. Moreover, the
GP-LVSM can be used as a supervised visualization method
by plotting the two- or three-dimensional latent vectors for
words.

In the experiments, we demonstrate the quantitative and
qualitative effectiveness of the GP-LVSM on 25 item re-
view datasets. First, we show that the GP-LVSM outper-
forms standard non-linear and linear regression methods in
rating prediction. Then, we show that the performance of
the GP-LVSM is robust for the dimensionality of the latent
vectors for words, and we can obtain vector representations
for words on a quite low-dimensional space while achiev-
ing high prediction performance. Finally, we show that the
GP-LVSM is also useful for visualizing words.

The GP-LVSM provides a general framework of solving
regression problems for BoW data. Thus, the idea of the
GP-LVSM can be applied to various machine learning prob-
lems, which have been solved based on GP regression such
as multi-task learning (Bonilla, Chai, and Williams 2008)
and active learning (Kapoor and Grauman 2007).

The rest of the paper is organized as follows. In Section 2,
we review models and techniques related to the GP-LVSM.
Section 3 introduces the framework of kernel embeddings of
distributions, which is a key technique in the GP-LVSM. In
Section 4, we explain the details of the GP-LVSM. In Sec-
tion 5, we show the effectiveness and the properties of the
GP-LVSM experimentally. Finally, we conclude with future
work in Section 6.

2 Related Work
Topic models such as latent Dirichlet allocation
(LDA) (Blei, Ng, and Jordan 2003) finds latent topic
structures from BoW data. By learning the LDA, we obtain
a low-dimensional and dense vector representation for each
document. Supervised topic model (Blei and McAuliffe
2007) is a topic model of predicting target variables from
documents, and uses the low-dimensional vectors for
documents as features for prediction. We note that there are
mainly two differences between the GP-LVSM and the su-
pervised topic model, which would show that the GP-LVSM
is better than the supervised topic model. The first one is
that the GP-LVSM performs non-linear prediction, while
the supervised topic model is linear prediction. The second
one is that the GP-LVSM uses V q parameters to represent
a document, while the supervised topic model only uses
K parameters, where V is the number of words in the
document, q is the latent dimensionality for words and K is
the number of topics. Generally, because of V q > K, the
GP-LVSM can capture the characteristic of the document in
more detail than the supervised topic model.

The GP-LVSM is related to but different from the Gaus-
sian process latent variable model (GP-LVM), which is used
for dimension reduction (Lawrence 2004) and matrix fac-
torization (Lawrence and Urtasun 2009). Given documents
represented with bag-of-words, the GP-LVM learns a single
latent vector for each document. Since the GP-LVM cannot
obtain the latent vector of a new document, we cannot use
it as a regression method. On the other hand, since the GP-
LVSM learns a latent vector for each word, we can predict
the target variable of a new document by using the represen-
tation of the document calculated from the latent vectors for
words.

The GP-LVSM employs a framework of kernel embed-
dings of distributions for representing documents. The ker-
nel embeddings have been used for extending kernel meth-
ods to distribution data. For example, the support measure
machine is a method for kernel-based discriminative learn-
ing on distributions, which generalizes the support vector
machine by kernel embeddings (Muandet et al. 2012). The
one-class support measure machine is a group anomaly de-
tection method that finds anomalous aggregated behaviors of
objects (Muandet and Schölkopf 2013). The latent support
measure machine is a generalization of the support measure
machine, which can classify bag-of-words data (Yoshikawa,
Iwata, and Sawada 2014). To the best of our knowledge, this
paper is the first study that incorporates the kernel embed-
dings of distributions in Gaussian processes.

3 Kernel Embeddings of Distributions
In this section, we introduce the framework of the kernel em-
beddings of distributions. The kernel embeddings of distri-
butions are to embed any probability distribution P on space
X into a reproducing kernel Hilbert space (RKHS)Hk spec-
ified by kernel k, and the distribution is represented as ele-
ment m(P) in the RKHS. More precisely, when given distri-
bution P, the kernel embedding of the distribution m(P) is
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defined as follows:

m(P) := Ex∼P[k(·,x)] =

∫
X
k(·,x)dP ∈ Hk, (1)

where kernel k is referred to as the embedding kernel. It is
known that kernel embeddingm(P) preserves the properties
of probability distribution P such as mean, covariance and
higher-order moments by using characteristic kernels (e.g.
Gaussian RBF kernel) (Sriperumbudur and Gretton 2010).

In practice, although distribution P is unknown, we are
given a set of samples X = {xi}ni=1 drawn from the dis-
tribution, where n is the number of samples. In this case,
by interpreting sample set X as empirical distribution P̂ =
1
n

∑n
i=1 δxi

(·), where δx(·) is the Dirac delta function at
point x ∈ X , empirical kernel embedding m(X) is given
by

m(X) =
1

n

n∑
i=1

k(·,xi) ∈ Hk, (2)

which can be approximated with an error rate of ||m(X) −
m(P)||Hk

= Op(n
− 1

2 ) (Smola et al. 2007). Unlike kernel
density estimation, the error rate of the kernel embeddings is
independent of the dimensionality of the given distribution.

4 Gaussian Process Latent Variable Set
Model

In this section, we define the proposed model, the Gaussian
Process Latent Variable Set Model (GP-LVSM), in detail.
Then, we explain how the GP-LVSM is learned, and when
a new input is given, how the GP-LVSM predicts the target
variable of the input.

4.1 Model
Suppose that we are given a set of N training data D =
{(di, yi)}Ni=1, where di is a set of words appearing in the
ith document and yi ∈ R is its target variable. Here, di is
bag-of-words with vocabulary set V .

With the GP-LVSM, each word v ∈ V is represented by a
q-dimensional latent vector xv ∈ Rq , and the ith document
is represented as a set of latent vectors for words appearing
in the document Xi = {xv}v∈di . Then, using the framework
of kernel embeddings described in Section 3, we can obtain
representation of the ith document from Xi by m(Xi) =

1
|di|
∑
v∈di k(·,xv).

The GP-LVSM assumes the following regression model
with Gaussian noise for a document and target pair (di, yi):

f(Xi) = w>m(Xi), yi = f(Xi) + ε, (3)

where w is a weight vector of the regression and ε is a noise
drawn from a Gaussian distribution with zero mean and pre-
cision parameter β, i.e., ε ∼ N (0, β−1).

We consider the probabilistic model for Eq. (3). Given a
set of latent vectors X = {xv}v∈V , weight vector w, and
a set of documents d = {di}Ni=1, the likelihood of target
variables y = [y1, y2, · · · , yN ]> is given by the following

Gaussian distribution:

p(y|w,X,d, β, γ) (4)

=
N∏
i=1

1√
2πβ−1

exp

(
−β

2
(yi − f(Xi))

2

)
,

where γ is a parameter of embedding kernel k. We analyti-
cally marginalize out weight vector w by assuming the fol-
lowing Gaussian prior distribution with zero mean and pre-
cision parameter α:

p(w|α) =
1√

2πα−1
exp

(
−α

2
w>w

)
. (5)

By doing the marginalization, we do not need to explore
the optimal w in a potentially infinite dimensional space.
The marginal likelihood of target variables y is also a Gaus-
sian distribution, which can be obtained analytically because
likelihood Eq. (4) and prior Eq. (5) are both Gaussian distri-
butions. As a result, the marginal likelihood is given by

p(y|X,d, α, β, γ) (6)

=

∫
p(y|w,X,d, β)p(w|α)dw

= p(y|0, α−1MM> + β−1I),

where M = [m(X1),m(X2), · · · ,m(XN )]>. The mean
and the covariance are derived by using E[y] = ME[w] = 0
and E[yy>] = ME[ww>]M> = α−1MM>, respectively.

The (i, j) element of MM> is inner product
〈m(Xi),m(Xj)〉Hk

of the kernel embeddings for ith
and jth documents on RKHS Hk specified by embedding
kernel k. The value of the inner product denotes the
similarity between their documents. From Eq. (2), the inner
product is given by

〈m(Xi),m(Xj)〉Hk

=

〈
1

|di|
∑
s∈di

k(·,xs),
1

|dj |
∑
t∈dj

k(·,xt)

〉
Hk

=
1

|di||dj |
∑
s∈di

∑
t∈dj

k(xs,xt). (7)

Using the inner product, we define kernels between docu-
ments. For each pair of document indexes (i, j), the kernel
value between their documents is calculated as follows:

Kij = α−1〈m(Xi),m(Xj)〉Hk
+ β−1δij , (8)

where δij is a function that returns 1 if i is equal to j and
0 otherwise. By defining K as a Gram matrix such that ith
row and jth column is Kij , marginal likelihood Eq. (6) can
be rewritten as the following Gaussian distribution with zero
mean and covariance K.

p(y|X,d, α, β, γ)

=
1

(
√

2π)N
√

detK
exp

(
−1

2
y>K−1y

)
. (9)

Choice of kernels between documents. Although Eq. (7) is
a linear kernel between documents, we can extend it to non-
linear kernels. An example of such kernels is the Gaussian
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RBF kernel with parameter λ > 0 between i and j docu-
ments, which is given by

exp

(
−λ
2
||m(Xi)−m(Xi)||2Hk

)
(10)

= exp
(
− λ

2
(〈m(Xi),m(Xi)〉Hk

− 2〈m(Xi),m(Xj)〉Hk + 〈m(Xj),m(Xj)〉Hk )
)
,

where the inner product 〈·, ·〉Hk
is calculated by Eq. (7). In

the sections below, we use linear kernel Eq. (7).

4.2 Learning
We estimate the parameters of the GP-LVSM, latent vectors
X, precision parameters α and β, and kernel parameter γ.

For latent vectors X, we place a Gaussian prior
with zero mean and precision parameter ρ: p(X|ρ) ∝∏
v∈V exp(−ρ2 ||xv||

2
2). Then, the parameter estimation is

performed by maximizing the following logarithm of the
posterior of the parameters:

L(Θ) = log p(y|X,d, α, β, γ) + log p(X|ρ) (11)

∝ −1

2
y>K−1y − 1

2
log detK− ρ

2

∑
v∈V
||xv||22,

where, Θ = {X, α, β, γ} is a set of parameters to be esti-
mated.

To maximize Eq. (11), we use the quasi-Newton method,
which is a gradient-based optimization method (Liu and No-
cedal 1989). For each word v ∈ V , the gradient with respect
to xv can be calculated by

∂L(Θ)

∂xv
=

N∑
i=1

N∑
j=1

(
∂L(Θ)

∂K

)
ij

∂Kij

∂xv
− ρxv. (12)

The first factor ∂L(Θ)
∂K is the gradient of L(Θ) with respect

to Gram matrix K, which is given by

∂L(Θ)

∂K
=

1

2
K−1yy>K−1 − 1

2
K−1, (13)

where we note that the form of the gradient is independent
of the choice of the embedding kernel. The second factor in
Eq. (12), ∂Kij

∂xv
, is the gradient of the kernel with respect to

xv , which varies by the choice of the embedding kernel. An
example of the embedding kernel is a Gaussian RBF embed-
ding kernel with parameter γ > 0, which is defined as

kγ(xs,xt) = exp
(
−γ

2
||xs − xt||22

)
. (14)

In this case, the gradient of Kij with respect to xv is given
by

∂Kij

∂xv
=

α−1

|di||dj |
∑
s∈di

∑
t∈dj

kγ(xs,xt) (15)

×

{
γ(xt − xs) (v = s ∧ v 6= t)
γ(xs − xt) (v = t ∧ v 6= s)
0 (v = t ∧ v = s)

Table 1: Specification of datasets.Ntr is the number of train-
ing data, Nte is the number of test data and |V| is the max-
imum number of vocabularies in training data. The number
of development data is equal to Ntr.

Ntr Nte |V|
apparel 1,000 7,064 1,449

automotive 200 324 918
baby 800 2,635 1,250

beauty 800 1,274 1,747
books 1,000 9,927 1,953

camera 1,000 5,338 1,434
cell phones & service 300 409 1,501

computer & video games 600 1,550 2,000
dvd 1,000 9,892 2,184

electronics 1,000 9,883 1,341
gourmet food 400 756 1,713

grocery 500 1,612 1,565
health & personal care 1,000 5,154 2,165

jewelry & watches 500 951 1,313
kitchen & housewares 1,000 9,855 1,161

magazines 700 2,745 1,695
music 1,000 9,870 1,716

musical instruments 100 127 542
office products 100 220 569
outdoor living 400 781 1,141

software 500 1,375 1,759
sports & outdoors 900 3,859 1,360
tools & hardware 30 49 155

toys & games 1,000 9,947 1,883
video 1,000 9,878 2,012

As with the estimation of latent vectors X, α, β and γ can
be estimated using the chain rule of Eq. (12). The gradients
of the kernel with respect to α and β are given by

∂Kij

∂α
= − α−2

|di||dj |
∑
s∈di

∑
t∈dj

k(xs,xt), (16)

∂Kij

∂β
= −β−2δij , (17)

which are independent of the choice of the embedding ker-
nel. When the embedding kernel is Gaussian RBF kernel
Eq. (14), the gradient with respect to kernel parameter γ is
given by

∂Kij

∂γ
= − α−1

2|di||dj |
∑
s∈di

∑
t∈dj

kγ(xs,xt)||xs − xt||22. (18)

Using these gradients, we can obtain a local solution of
the parameters by continuing to update the parameters in
order until the improvement of Eq. (11) is converged. The
computational cost to calculate the gradient for each word
vector x ∈ X is O(N2W 2q), where W is the average num-
ber of words in documents. However, when one wants to use
large training data, by using stochastic gradient descent, the
computational cost can be reduced to O(W 2q).
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4.3 Prediction
When a prediction is required, we can use the standard for-
mula for prediction by a Gaussian process regression (Ras-
mussen and Williams 2005). Given a new document d∗ con-
sisting of words in V , the predictive target variable y∗ is
given by

y∗ = k>∗K
−1y, (19)

where k∗ is a vector whose element is a kernel value be-
tween the new document and a training document, that is,

k∗ = [K∗1,K∗2, · · · ,K∗N ]
>
. (20)

Intuitively, the prediction is given by a weighted sum of
training target variables y, where the weights are calculated
by kernel values between training documents.

Since the GP-LVSM provides the posterior distribution of
the predictive target variable, we can calculate the variance
of the predictive value, which is given by

σ2
∗ = K∗∗ − k>∗K

−1k∗. (21)

This variance σ2
∗ can be used for measuring the confidence

of the prediction: a smaller variance indicates a higher con-
fidence for the prediction.

5 Experiments
In this section, we demonstrate the effectiveness of the GP-
LVSM in prediction and visualization.

5.1 Datasets and settings
For evaluation, we use 25 item review datasets obtained
from Amazon.com, where each dataset corresponds to
an item category on Amazon.com. Each review is repre-
sented with bag-of-words without short, low-frequency and
stop words, and is associated with a rating ranging from
{1, 2, · · · , 5}. In our experiments, we use the bag-of-words
as input document d and the standardized value of the rat-
ing as target variable y. Table 1 shows the specification of
the datasets. For each dataset, we randomly choose five sets
of training, development and test data from the whole of the
dataset.

For comparison, we use four non-linear and linear
regression methods: Gaussian Process (GP) regression,
Ridge (Hoerl and Kennard 1970), Lasso (Tibshirani 1996)
and Elastic net (Zou and Hastie 2005). With the GP regres-
sion, we use a Gaussian RBF kernel with additive noise term
as follows:

Kij = α−1 exp
(
−γ

2
||vec(di)− vec(dj)||22

)
+ β−1δij ,

(22)
where vec(·) is a function that returns a vector with vocabu-
lary length, and vth element of the vector is the frequency of
the vth word in the given set. Parameters α, β and γ are es-
timated so as to maximize the marginal likelihood of the GP
regression. Ridge (Hoerl and Kennard 1970), Lasso (Tib-
shirani 1996) and Elastic net (Zou and Hastie 2005) are
standard linear regression models with different regulariz-
ers. We choose the parameters for these regularizers so as to

Figure 2: Prediction errors of GP-LVSM when varying latent
dimensionality. The regularizer parameter is fixed at ρ = 10.

minimize the prediction errors on development data. With
the GP-LVSM, we learned the model with latent dimen-
sionality q ∈ {1, 2, 4, 6, 8, 10} and regularizer parameter
ρ ∈ {10−2, 10−1, · · · , 102}, and chose the optimal q and
ρ so as to minimize the prediction errors on development
data.

5.2 Prediction performance
Table 2 shows the prediction errors of ratings on test data.
On 19 of 25 datasets, the GP-LVSM outperforms the other
methods. On average of the prediction errors on all datasets,
the GP-LVSM is the best method. This result indicates the
GP-LVSM is robust and can perform better prediction than
the other methods.

Next, we investigate how the choice of latent dimension-
ality q and regularizer parameter ρ of the GP-LVSM affects
the prediction performance. Figure 2 shows the prediction
errors of the GP-LVSM when varying the latent dimension-
ality q. Here, the regularizer parameter ρwas fixed at ρ = 10
to eliminate the effect of ρ. As shown in the figure, even with
a very small latent dimensionality, the GP-LVSM achieves
low prediction error. Even though q is relatively high, the er-
rors are nearly unchanged compared to that of the best latent
dimensionality. Thus, the performance of the GP-LVSM is
robust for the dimensionality of the latent vectors for words,
and we can obtain vector representations for words on a
quite low dimensional space while achieving high predic-
tion performance. Figure 3 shows the prediction errors when
varying the regularizer parameter ρ. As opposed to the latent
dimensionality, the predictive performance is sensitive to the
choice of ρ. These results indicate that the GP-LVSM can
archive the high predictive performance by focusing only on
tuning the best ρ.

5.3 Visualization
Finally, we show that the GP-LVSM can visualize words us-
ing two- or three-dimensional latent vectors for words. In
our experiments, since we predict the ratings from item re-
views, it is expected that positive and negative words for the
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Table 2: Prediction errors (RMSE) and their standard deviations. Values in bold typeface are better than the others. The ‘Aver-
age’ row indicates the average errors and their standard deviations on all the datasets.

GP-LVSM GP regression Ridge Lasso Elastic net
apparel 0.885± 0.015 0.936± 0.069 0.889± 0.018 0.898± 0.018 0.868± 0.019

automotive 0.958± 0.049 1.002± 0.075 0.972± 0.058 1.036± 0.059 0.989± 0.074
baby 0.874± 0.034 0.985± 0.039 0.933± 0.025 0.891± 0.031 0.919± 0.055

beauty 0.890± 0.030 0.938± 0.052 0.936± 0.019 0.914± 0.029 0.935± 0.044
books 0.923± 0.024 0.979± 0.023 1.111± 0.022 0.941± 0.027 0.937± 0.025

camera & photo 0.870± 0.013 0.962± 0.024 0.957± 0.010 0.898± 0.015 0.894± 0.019
cell phones & service 0.843± 0.034 0.942± 0.028 0.968± 0.038 0.943± 0.028 0.905± 0.026

computer & video games 0.847± 0.019 0.881± 0.021 0.987± 0.025 0.898± 0.019 0.932± 0.023
dvd 0.942± 0.040 0.968± 0.044 1.117± 0.035 0.945± 0.036 0.951± 0.038

electronics 0.854± 0.010 0.927± 0.045 0.983± 0.019 0.890± 0.012 0.882± 0.016
gourmet food 0.931± 0.045 0.947± 0.065 0.983± 0.048 0.986± 0.041 0.993± 0.052

grocery 0.927± 0.045 0.925± 0.082 0.940± 0.036 0.922± 0.049 0.953± 0.068
health & personal care 0.883± 0.019 0.877± 0.058 0.946± 0.015 0.902± 0.024 0.888± 0.022

jewelry & watches 0.900± 0.049 0.954± 0.082 0.924± 0.045 0.900± 0.043 0.945± 0.055
kitchen & housewares 0.860± 0.017 0.922± 0.065 0.956± 0.011 0.884± 0.008 0.873± 0.009

magazines 0.835± 0.022 0.882± 0.046 0.895± 0.019 0.877± 0.016 0.898± 0.028
music 0.960± 0.052 0.977± 0.065 1.128± 0.045 0.954± 0.064 0.956± 0.064

musical instruments 0.966± 0.144 1.025± 0.188 0.978± 0.128 1.031± 0.185 1.023± 0.189
office products 1.033± 0.108 1.041± 0.105 1.025± 0.114 1.108± 0.088 1.076± 0.113
outdoor living 0.882± 0.036 0.920± 0.074 0.952± 0.037 0.960± 0.050 0.955± 0.033

software 0.806± 0.014 0.915± 0.064 0.927± 0.015 0.883± 0.024 0.870± 0.025
sports & outdoors 0.875± 0.015 0.949± 0.048 0.950± 0.013 0.887± 0.015 0.896± 0.022
tools & hardware 0.892± 0.165 0.884± 0.260 0.918± 0.273 1.107± 0.256 0.974± 0.272

toys & games 0.846± 0.030 0.879± 0.050 0.908± 0.021 0.865± 0.019 0.851± 0.022
video 0.844± 0.027 0.867± 0.027 0.975± 0.019 0.891± 0.033 0.887± 0.029

Average 0.893± 0.052 0.939± 0.047 0.970± 0.064 0.936± 0.068 0.930± 0.054

Figure 3: Prediction errors of GP-LVSM when varying regu-
larizer parameter. The latent dimensionality is fixed at q = 2.

items are separated from each other. Figure 4 shows the vi-
sualization result of the latent vectors for words, which are
trained on a ‘software’ dataset. Here, the regularizer param-
eter is fixed at ρ = 0.1. For understandability, we selected
positive and negative words based on Loughran and Mc-
Donald Financial Sentiment Dictionaries 1, and visualized

1http://www3.nd.edu/∼mcdonald/Word Lists.html

Figure 4: Visualization of latent vectors for words trained on
‘software’ dataset. Words in blue are positive words while
words in red are negative words.

their latent vectors with blue and red colors. As shown in
the figure, positive and negative words tend to gather in dif-
ferent regions. Therefore, ‘great’ and ‘cumbersome’, which
are characteristic words in positive and negative polarity are
far away from each other.
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6 Conclusion
We have proposed a non-linear regression model for bag-of-
words data, which we call a Gaussian process latent vari-
able set model (GP-LVSM). The GP-LVSM represents each
word as a latent vector, and each document as a distribution
of the latent vectors for words appearing in the document.
Then, the GP-LVSM maps each distribution into a reproduc-
ing kernel Hilbert space (RKHS) by using the framework
of kernel embeddings of distributions, and generates a re-
gression function from a Gaussian process with the covari-
ance structures calculated by kernels between documents on
the RKHS. Since the GP-LVSM can reflect the relations be-
tween words based on their latent vectors to the kernel val-
ues between documents, the GP-LVSM can improve the re-
gression performance. In our experiments, we have shown
that the GP-LVSM outperforms conventional linear and non-
linear regression methods on the rating prediction using 25
item review datasets, and is useful for visualizing words by
using the learned latent vectors for the words.

In future work, we will employ stochastic gradient de-
scent to reduce the computational costs of the learning.
Then, we will further confirm the effectiveness of the GP-
LVSM by applying it to a varied domain of data, not limited
to text.
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