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Abstract

Markov decision processes (MDPs) with large number of
states are of high practical interest. However, conventional al-
gorithms to solve MDP are computationally infeasible in this
scenario. Approximate dynamic programming (ADP) meth-
ods tackle this issue by computing approximate solutions. A
widely applied ADP method is approximate linear program
(ALP) which makes use of linear function approximation and
offers theoretical performance guarantees. Nevertheless, the
ALP is difficult to solve due to the presence of a large num-
ber of constraints and in practice, a reduced linear program
(RLP) is solved instead. The RLP has a tractable number of
constraints sampled from the original constraints of the ALP.
Though the RLP is known to perform well in experiments,
theoretical guarantees are available only for a specific RLP
obtained under idealized assumptions.
In this paper, we generalize the RLP to define a generalized
reduced linear program (GRLP) which has a tractable num-
ber of constraints that are obtained as positive linear com-
binations of the original constraints of the ALP. The main
contribution of this paper is the novel theoretical framework
developed to obtain error bounds for any given GRLP. Cen-
tral to our framework are two max-norm contraction opera-
tors. Our result theoretically justifies linear approximation of
constraints. We discuss the implication of our results in the
contexts of ADP and reinforcement learning. We also demon-
strate via an example in the domain of controlled queues that
the experiments conform to the theory.

Introduction
Markov decision process (MDP) is an important mathemat-
ical framework to study optimal sequential decision making
problems that arise in science and engineering. Solving an
MDP involves computing the optimal value-function (J∗),
a vector whose dimension is the number of states. MDPs
with small number of states can be solved easily by conven-
tional solution methods such as value/ policy iteration or lin-
ear programming (LP) (Bertsekas 2013). Dynamic program-
ming is at the heart of all the conventional solution methods
for MDPs.

The term curse-of-dimensionality (or in short curse) de-
notes the fact that the number of states grows exponentially
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in the number of state variables. Most practical MDPs suf-
fer from the curse, i.e., have large number of states and J∗ is
difficult to compute. A practical way to tackle the curse is to
compute an approximate value function J̃ instead of J∗. The
methods that compute J̃ instead of J∗ are known as approxi-
mate dynamic programming (ADP) methods whose success
depends on the quality of approximation, i.e., on the quan-
tity ||J∗ − J̃ ||. Most ADP methods employ linear function
approximation (LFA), i.e., let J̃ = Φr∗, where Φ is a feature
matrix and r∗ is a learnt weight vector. Dimensionality re-
duction is achieved by choosing Φ to have far fewer columns
in comparison to the number of states and this makes com-
puting J̃ easier.

Approximate linear program (ALP) (de Farias and Roy
2003) employs LFA in the linear programming formulation
(Bertsekas 2013) of MDP. The ALP computes an approx-
imate value function and offers sound theoretical guaran-
tees. A serious shortcoming of the ALP is the large num-
ber of constraints (of the order of the number of states). A
technique studied in literature that tackles the issue of large
number of constraints is constraint sampling (de Farias and
Roy 2004; Farias and Roy 2006) wherein one solves a re-
duced linear program (RLP) with a small number of con-
straints sampled from the constraints of the ALP. (de Farias
and Roy 2004) presents performance guarantees for the RLP
when the constraints are sampled with respect to the station-
ary distribution of the optimal policy. Such an idealized as-
sumption on the availability of the optimal policy (which in
turn requires knowledge of J∗) is a shortcoming. Neverthe-
less, the RLP has been shown to perform empirically well
(de Farias and Roy 2004; 2003; Desai, Farias, and Moallemi
2009) even when the constraints are not sampled using the
stationary distribution of the optimal policy.
Motivated by the gap between the limited theoretical guar-
antees of the RLP as currently available in the literature and
its successful practical efficacy, in this paper, we provide a
novel theoretical framework to characterize the error due to
constraint reduction/approximation. The novelty and salient
points of our contribution are listed below:
• We define a generalized reduced linear program (GRLP)
which has a tractable number of constraints that are obtained
as positive linear combinations of the original constraints of
the ALP.
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•We develop a novel analytical framework in order to relate
Ĵ , the solution to the GRLP, and the optimal value function
J∗. In particular, we come up with two novel max-norm
contraction operators, viz., the least upper bound (LUB) pro-
jection operator and the approximate least upper bound pro-
jection operator (ALUB).
• We show that ||J∗ − Ĵ || ≤ (c1 + c2), where c1 > 0,
c2 > 0 are constants. While the term c1 corresponds to the
error inherent to the ALP itself, the term c2 constitutes the
additional error introduced due to constraint approximation.
• The results from the GRLP framework solve the prob-
lem of theoretically justifying linear approximation of con-
straints. Unlike the bounds in (de Farias and Roy 2004) that
hold only for specific RLP, our bounds hold for any GRLP
and consequently for any RLP.
•We also discuss qualitatively the relative importance of our
results in the context of ADP and their implication in the re-
inforcement learning setting.
• We demonstrate via an example in controlled queues that
the experiments conform to the theory developed.
The rest of the paper is organized as follows. First, we
present the basics of MDP. We then discuss the ALP tech-
nique, the basic error bounds as well as the issues and pro-
posed solutions in literature, followed by the long-standing
open questions that we address in this paper. Finally, we
present the main results of the paper namely the GRLP and
its error analysis. We then present a qualitative discussion of
our result followed by the numerical example.

Markov Decision Process (MDP)
In this section, we briefly discuss the basics of Markov De-
cision Process (MDP) (the reader is referred to (Bertsekas
2013; Puterman 1994) for a detailed treatment).
The MDP Model: An MDP is a 4-tuple < S,A, P, g >,
where S is the state space, A is the action space, P is the
probability transition kernel and g is the reward function.
We consider MDPs with large but finite number of states,
i.e., S = {1, 2, . . . , n} for some large n, and the action set
is given by A = {1, 2, . . . , d}. For simplicity, we assume
that all actions are feasible in all states. The probability
transition kernel P specifies the probability pa(s, s′) of
transitioning from state s to state s′ under the action a. We
denote the reward obtained for performing action a ∈ A in
state s ∈ S by ga(s).
Policy: A policy µ specifies the action selection mechanism,
and is described by the sequence µ = {u1, u2, . . . , un, . . .},
where un : S → A, ∀n ≥ 0. A stationary deterministic
policy (SDP) is one where un ≡ u, ∀n ≥ 0 for some
u : S → A. By abuse of notation we denote the SDP
by u itself instead of µ. In the setting that we consider,
one can find an SDP that is optimal (Bertsekas 2013;
Puterman 1994). In this paper, we restrict our focus to the
class U of SDPs. Under an SDP u, the MDP is a Markov
chain with probability transition kernel Pu.
Value Function: Given an SDP u, the infinite
horizon discounted reward corresponding to state
s under u is denoted by Ju(s) and is defined by
Ju(s)

∆
= E[

∑∞
n=0 α

ngan(sn)|s0 = s, an = u(sn) ∀n ≥ 0],

where α ∈ (0, 1) is a given discount factor. Here Ju(s) is
known as the value of the state s under the SDP u, and the
vector quantity Ju

∆
= (Ju(s),∀s ∈ S) ∈ Rn is called the

value-function corresponding to the SDP u.
The optimal SDP u∗ is obtained as u∗(s)

∆
=

arg maxu∈U Ju(s)1.
The optimal value-function J∗ is the one obtained under
the optimal policy, i.e., J∗ = Ju∗ .
The Bellman Equation and Operator: Given an MDP,
our aim is to find the optimal value function J∗ and the
optimal policy u∗. The optimal policy and value function
obey the Bellman equation (BE) as under: ∀s ∈ S,

J∗(s) = max
a∈A

(
ga(s) + α

∑
s′

pa(s, s′)J∗(s′)
)
, (1a)

u∗(s) = arg max
a∈A

(
ga(s) + α

∑
s′

pa(s, s′)J∗(s′)
)
. (1b)

Typically J∗ is computed first and u∗ is obtained by substi-
tuting J∗ in (1b).
The Bellman operator T : Rn → Rn is defined using the
model parameters of the MDP as follows:

(TJ)(s) = max
a∈A

(
ga(s) + α

∑
s′

pa(s, s′)J(s′)
)
, J ∈ Rn.

Basis Solution Methods: When the number of states of the
MDP is small, J∗ and u∗ can be computed exactly using
conventional methods such as value/policy iteration and lin-
ear programming (LP) (Bertsekas 2013).
Curse-of-Dimensionality is a term used to denote the fact
that the number of states grows exponentially in the number
of state variables. Most MDPs occurring in practice suffer
from the curse, i.e., have large number of states and it is dif-
ficult to compute J∗ ∈ Rn exactly in such scenarios.
Approximate Dynamic Programming (Bertsekas 2013)
(ADP) methods compute an approximate value function J̃
instead of J∗. In order to make the computations easier,
ADP methods employ function approximation (FA) where
in J̃ is chosen from a parameterized family of functions.
The problem then boils down to finding the optimal param-
eter which is usually of lower dimension and is easily com-
putable.
Linear Function Approximation (LFA) (de Farias and
Roy 2003; Nedić and Bertsekas 2003; Konidaris, Osentoski,
and Thomas 2011; Mahadevan and Liu 2010; Mahadevan
and Maggioni 2007) is a widely used FA scheme where the
approximate value function J̃ = Φr∗, with Φ = [φ1| . . . |φk]
being an n× k feature matrix and r∗, is the parameter to be
learnt.

Approximate Linear Programming
We now present the linear programming formulation of the
MDP which forms the basis for ALP. The LP formulation is
obtained by unfurling the max operator in the BE in (1) into

1Such u∗ exists and is well defined in the case of infinite hori-
zon discounted reward MDP, for more details see (Puterman 1994).
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a set of linear inequalities as follows:

min
J∈Rn

c>J

s.t J(s) ≥ ga(s) + α
∑
s′

pa(s, s′)J(s′), ∀s ∈ S, a ∈ A, (2)

where c ∈ Rn
+ is a probability distribution and denotes the

relative importance of the various states. One can show that
J∗ is the solution to (2) (Bertsekas 2013). The LP formula-
tion in (2) can be represented in short2 as,

min
J∈Rn

c>J

s.t J ≥ TJ. (3)

The approximate linear program (ALP) is obtained by mak-
ing use of LFA in the LP, i.e., by letting J = Φr in (3) and
is given as

min
r∈Rk

c>Φr

s.t Φr ≥ TΦr. (4)

Unless specified otherwise we use r̃c to denote the solution
to the ALP and J̃c = Φr̃c to denote the corresponding ap-
proximate value function. The following is a preliminary
error bound for the ALP from (de Farias and Roy 2003):
Theorem 1 Let 1, i.e., the vector with all-components equal
to 1, be in the span of the columns of Φ and c be a probability
distribution. Then, if J̃c = Φr̃c is an optimal solution to the
ALP in (4), then ||J∗ − J̃c||1,c ≤ 2

1−α minr ||J∗ − Φr||∞,
where ||x||1,c =

∑n
i=1 c(i)|x(i)|.

For a more detailed treatment of the ALP and sophisticated
bounds, the reader is referred to (de Farias and Roy 2003).
Note that the ALP is a linear program in k (<< n) variables
as opposed to the LP in (3) which has n variables. Never-
theless, the ALP has nd constraints (same as the LP) which
is an issue when n is large and calls for constraint approxi-
mation/reduction techniques.

Related Work
Constraint sampling and The RLP: The most important
work in the direction of constraint reduction is constraint
sampling (de Farias and Roy 2004) wherein a reduced lin-
ear program (RLP) is solved instead of the ALP. While the
objective of the RLP is same as that of the ALP, the RLP
has only m << nd constraints. These m constraints are
sampled from the original nd constraints of the ALP ac-
cording to a special sampling distribution ψu∗,V , where u∗
is the optimal policy and V is a Lyapunov function (see
(de Farias and Roy 2004) for a detailed presentation). If
r̃ and r̃RLP are the solutions to the ALP and the RLP re-
spectively, from (de Farias and Roy 2004) we know that
||J∗ − Φr̃RLP ||1,c ≤ ||J∗ − Φr̃||1,c + ε||J∗||1,c. A ma-
jor gap in the theoretical analysis is that the error bounds are
known for only a specific RLP formulated using idealized

2J ≥ TJ is a shorthand for the nd constraints in (2). It is also
understood that constraints (i− 1)n+ 1, . . . , in correspond to the
ith action.

assumptions, i.e., under knowledge of u∗.
Other works: Most works in literature make use of the un-
derlying structure of the problem to cleverly reduce the num-
ber of constraints of the ALP. A good example is (Guestrin
et al. 2003), wherein the structure in factored linear func-
tions is exploited. The use of basis function also helps con-
straint reduction in (Morrison and Kumar 1999). In (Borkar,
Pinto, and Prabhu 2009), the constraints are approximated
indirectly by approximating the square of the Lagrange mul-
tipliers. In (Petrik and Zilberstein 2009) the transitional er-
ror is reduced ignoring the representational and sampling
errors. Empirical successes include repeated application of
constraint sampling to solve Tetris (Farias and Roy 2006).
Long-Standing Open Questions: The fact that RLP works
well empirically goads us to build a more elaborate theory
for constraint reduction. In particular, one would like to an-
swer the following questions related to constraint reduction
in ALP that have so far remained open.
• As a natural generalization of the RLP, what happens if we
define a generalized reduced linear program (GRLP) whose
constraints are positive linear combinations of the original
constraints of the ALP?
• Unlike (de Farias and Roy 2004) which provides error
bounds for a specific RLP formulated using an idealized
sampling distribution, is it possible to provide error bounds
for any GRLP (and hence any RLP)? In this paper, we ad-
dress both of the questions above.

Generalized Reduced Linear Program
We define the generalized reduced linear program (GRLP)
as below:

min
r∈χ

c>Φr,

s.t W>Φr ≥W>TΦr, (5)

whereW ∈ Rnd×m
+ is an nd×mmatrix with all positive en-

tries and χ ⊂ Rk is any bounded set such that Ĵc ∈ χ. Thus
the ith (1 ≤ i ≤ m) constraint of the GRLP is a positive lin-
ear combination of the original constraints of the ALP, see
Assumption 1. Constraint reduction is achieved by choosing
m << nd. Unless specified otherwise we use r̂c to denote
the solution to the GRLP in (5) and Ĵc = Φr̂c to denote the
corresponding approximate value function. We assume the
following throughout the rest of the paper:

Assumption 1 W ∈ Rnd×m
+ is a full rank nd ×m matrix

with all non-negative entries. The first column of the fea-
ture matrix Φ (i.e.,φ1) is 13 ∈ Rn and that c = (c(i), i =
1, . . . , n) ∈ Rn is a probability distribution, i.e., c(i) ≥ 0
and

∑n
i=1 c(i) = 1. It is straightforward to see that a RLP

is trivially a GRLP.

As a result of constraint reduction the feasible region of the
GRLP is a superset of the feasible region of the ALP (see
Figure 1). In order to bound ||J∗ − J̃c||, (de Farias and
Roy 2003) makes use of the property that Φr̃c ≥ TΦr̃c.
However, in the case of the GRLP, this property does not

31 is a vector with all components equal to 1.
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J ≥ TJ

W
>
J
≥
W
>
T
J

Φr

J∗ J̃c
Ĵc

Figure 1: The outer lightly shaded region corresponds to
GRLP constraints and the inner dark shaded region corre-
sponds to the original constraints. The main contribution of
the paper is to provide a bound for ||J∗ − Ĵc||.

hold anymore and hence it is a challenge to bound the er-
ror ||J∗ − Ĵc||. We tackle this challenge by introducing two
novel max-norm contraction operators called the least up-
per bound projection (LUBP) and approximate least upper
bound projection (ALUBP) operators denoted by Γ and Γ̃
respectively. We first present some definitions before the
main result and a sketch of its proof. The least upper bound
(LUB) projection operator Γ: Rn → Rn is defined as be-
low:
Definition 2 Given J ∈ Rn, its least upper bound projec-
tion is denoted by ΓJ and is defined as

(ΓJ)(i)
∆
= min
j=1,...,k

(Φrej )(i), ∀i = 1, . . . , n, (6)

where V (i) denotes the ith component of the vector V ∈
Rn. Also in (6), ej is the vector with 1 in the jth place and
zeros elsewhere, and rej is the solution to the linear program
in (7) for c = ej .

rc
∆
= min

r∈χ
c>Φr,

s.t Φr ≥ TJ. (7)

Remark 1

1. Given Φ and J ∈ Rn, define F ∆
= {Φr|Φr ≥ TJ}.

Thus F is the set of all vectors in the span of Φ that upper
bound TJ . By fixing c in the linear program in (7) we
select a unique vector Φrc ∈ F . The LUB projection
operator Γ picks n vectors Φrei , i = 1, . . . , n from the set
F and ΓJ is obtained by computing their component-wise
minimum.

2. Even though ΓJ does not belong to the span of Φ, ΓJ
in some sense collates the various best upper bounds that
can be obtained via the linear program in (7).

3. The LUB operator Γ in (6) bears close similarity to the
ALP in (4).

We define an approximate least upper bound (ALUB) pro-
jection operator which has a structure similar to the GRLP
and is an approximation to the LUB operator.
Definition 3 Given J ∈ Rn, its approximate least upper
bound (ALUB) projection is denoted by Γ̃J and is defined as

(Γ̃J)(i)
∆
= min
j=1,...,k

(Φrej )(i), ∀i = 1, . . . , n, (8)

where rej is the solution to the linear program in (9) for
c = ej , and ej is same as in Definition 2.

rc
∆
= min

r∈χ
c>Φr,

s.t W>Φr ≥W>TJ,W ∈ Rnd×m
+ . (9)

Definition 4 The LUB projection of J∗ is denoted by J̄ =

ΓJ∗, and let r∗ ∆
= arg min

r∈Rk

||J∗ − Φr∗||.

Main Result
Theorem 5

||J∗ − Ĵc||1,c ≤
6||J∗ − Φr∗||∞ + 2||ΓJ̄ − Γ̃J̄ ||∞

1− α
. (10)

Proof: Here we provide a sketch of the proof (see (Lak-
shminarayanan and Bhatnagar 2014) for the detailed proof).
Figure 2 gives an idea of the steps that lead to the result.
First, one shows that the operators Γ and Γ̃ have the max-
norm contraction property with factor α. As a result, oper-
ators Γ and Γ̃ have fixed points Ṽ ∈ Rn and V̂ ∈ Rn re-
spectively. This leads to the inequalities J̃c ≥ Ṽ ≥ J∗ and
Ĵc ≥ V̂ (see Figure 2), followed by which one can bound
the term ||J∗ − V̂ ||∞ and then go on to show that any so-
lution r̃c to the GRLP is also a solution to the program in
(11).

min
r∈χ
||Φr − V̂ ||1,c

s.t W>Φr ≥W>TΦr. (11)

One then obtains the bound ||J∗ − Ĵc||1,c as in (10) using
the fact that ||J∗ − J̄ ||∞ ≤ 2||J∗ − Φr∗||∞, where r∗ is as
in Definition 4.

J̃c ≥ Ṽ J∗≥

ĴcV̂ ≤

Solution
to ALP

Fixed point of Γ Optimal Value Function

Solution to GRLPFixed point of Γ̃

d1

d2
d ≤ d1 + d2

Figure 2: A schematic of the error analysis.
Here d = ||J∗ − Ĵc||1,c.

It is important to note that Γ/Γ̃ are only analytical con-
structs that lead us to the error bounds, and need not be cal-
culated in practice for systems with large n.

Discussion
We now make various important qualitative observations
about the result in Theorem 5.
Error Terms: The error term is split into two factors, the
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first of which is related to the best possible projection while
the second factor is related to constraint approximation. The
second factor ||ΓJ̄−Γ̃J̄ ||∞ is completely defined in terms of
Φ, W and T , and does not require knowledge of stationary
distribution of the optimal policy. It makes intuitive sense
since given that Φ approximates J∗, it is enough for W to
depend on Φ and T without any additional requirements.
Unlike the result in (de Farias and Roy 2004) which holds
only for a specific RLP formulated under ideal assumptions,
our bounds hold for any GRLP and as a result for any given
RLP. Another interesting feature of our result is that it holds
with probability 1. Also by making use of appropriate Lya-
punov functions as in (de Farias and Roy 2003), the error
bound in (10) can also be stated using a weighted L∞-norm,
thereby indicating the relative importance of states.
Additional insights on constraint sampling: It is easy to
notice from Definitions 2, 3 and 4 that for any given state
s ∈ S, ΓJ̄(s) ≥ J∗(s), and that ΓJ̄(s) ≥ Γ̃J̄(s). If the state
s is selected in the RLP, then it is also true that ΓJ̄(s) ≥
Γ̃J̄(s) ≥ J∗(s). Thus the additional error |ΓJ̄(s)− Γ̃J̄(s)|
due to constraint sampling is less than the original projection
error |ΓJ̄(s) − J∗(s)| due to function approximation. This
means that the RLP is expected to perform well whenever
important states are retained after constraint sampling. Thus
the sampling distribution need not be the stationary distribu-
tion of the optimal policy as long as it samples the impor-
tant states, an observation that might theoretically explain
the empirical successes of the RLP (de Farias and Roy 2003;
Farias and Roy 2006; Desai, Farias, and Moallemi 2009).
Relation to other ADP methods:

ADP Method Empirical Theoretical
Projected Bellman 3 5-Policy Chattering

Equation
ALP 5-Large number of Constraints 3
RLP 3 5- Only under

ideal assumptions

A host of the ADP methods such as (Lagoudakis and Parr
2003; Nedić and Bertsekas 2003; Boyan 1999; Tsitsiklis and
Roy 1997) are based on solving the projected Bellman equa-
tion (PBE). The PBE based methods have been empirically
successful and also have theoretical guarantees for the ap-
proximate value function. However, a significant shortcom-
ing is that they suffer from the issue of policy-chattering (see
section 6.4.3 of (Bertsekas 2013)), i.e., the sequence of poli-
cies might oscillate within a set of bad policies. A salient
feature of the ALP based methods is that they find only one
approximate value function J̃c and one sub-optimal policy
derived as a greedy policy with respect to J̃c. As a result
there is no such issue of policy-chattering for the ALP based
methods. By providing the error bounds for the GRLP, our
paper provides the much required theoretical support for the
RLP. Our GRLP framework closes the long-standing gap in
the literature of providing a theoretical framework to bound
the error due to constraint reduction in ALP based schemes.
GRLP is linear function approximation of the con-
straints: In order to appreciate this fact consider the La-
grangian of the ALP and GRLP in (12) and (13), respec-

tively, i.e.,
L̃(r, λ) = c>Φr + λ>(TΦr − Φr), (12)

L̂(r, q) = c>Φr + q>W>(TΦr − Φr). (13)
The insight that the GRLP is linear function approximation
of constraints (i.e., the Lagrangian multipliers) can be ob-
tained by noting that Wq ≈ λ in (13). Note that while the
ALP employs LFA in its objective, the GRLP employs lin-
ear approximation both in the objective as well as the con-
straints. This has significance in the context of the reinforce-
ment learning setting (Sutton and Barto 1998) wherein the
model information is available in the form of noisy sam-
ple trajectories. RL algorithms make use of stochastic ap-
proximation (SA) (Borkar 2008) and build on ADP methods
to come up with incremental update schemes to learn from
noisy samples presented to them and linear approximation
architectures are found to be useful in this setting. An SA
scheme to solve the GRLP in the RL setting can be derived
in a manner similar to (Borkar, Pinto, and Prabhu 2009).

Application to Controlled Queues
We take up an example in the domain of controlled queues
to show that experiments are in agreement with the theory
developed. More specifically, we look at the error bounds
for different constraints reduction schemes to demonstrate
the fact that whenever value of ||ΓJ̄ − Γ̃J̄ ||∞ is less, the
GRLP solution is close to the optimal value function.
The queuing system consists of n = 104 states and d = 4
actions. We chose n = 104 because it was possible to solve
both the GRLP and the exact LP (albeit with significant ef-
fort) so as to enumerate the approximation errors. We hasten
to mention that while we could run the GRLP for queuing
systems with n > 104 without much computational over-
head, solving the exact LP was not possible for n > 104, as
a result of which the approximation error could not be com-
puted.
Queuing Model: The queuing model used here is similar
to the one in Section 5.2 of (de Farias and Roy 2003). We
consider a single queue with arrivals and departures. The
state of the system is the queue length with the state space
given by S = {0, . . . , n− 1}, where n− 1 is the buffer size
of the queue. The action set A = {1, . . . , d} is related to
the service rates. We let st denote the state at time t. The
state at time t+ 1 when action at ∈ A is chosen is given by
st+1 = st + 1 with probability p, st+1 = st− 1 with proba-
bility q(at) and st+1 = st, with probability (1− p− q(at)).
For states st = 0 and st = n − 1, the system dynamics is
given by st+1 = st + 1 with probability p when st = 0
and st+1 = st − 1 with probability q(at) when st = n− 1.
The service rates satisfy 0 < q(1) ≤ . . . ≤ q(d) < 1 with
q(d) > p so as to ensure ‘stabilizability’ of the queue. The
reward associated with the action a ∈ A in state s ∈ S is
given by ga(s) = −(s+ 60q(a)3).
Choice of Φ : We make use of polynomial features in Φ
(i.e., 1, s, . . . , sk−1) since they are known to work well for
this domain (de Farias and Roy 2003). This takes care of the
term ||J∗ − Φr∗||∞ in (10).
Selection of W : For our experiments, we choose two con-
tenders for the W -matrix:
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(i) Wc- matrix that corresponds to sampling according to c.
This is justified by the insights obtained from the error term
||ΓJ̄ − Γ̃J̄ ||∞ and the idea of selecting the important states.
(ii) Wa state-aggregation matrix, a heuristic derived by in-
terpreting W to be the feature matrix that approximates the
Lagrange multipliers as λ ≈Wq, where λ ∈ Rnd, r ∈ Rm.
One can show (Dolgov and Durfee 2006) that the optimal
Lagrange multipliers are the discounted number of visits
to the ‘state-action’ pairs under the optimal policy u∗, i.e.,
λ∗(s, u∗(s)) =

(
c>(I − αPu∗)−1

)
(s) =

(
c>(I + αPu∗ +

α2P 2
u∗ + . . .)

)
(s), λ∗(s, u∗(s)) = 0,∀a 6= u∗(s), where

Pu∗ is the probability transition matrix with respect to the
optimal policy. Even though we might not have the opti-
mal policy u∗ in practice, the fact that λ∗ is a linear com-
bination of {Pu∗ , P 2

u∗ , . . .} hints at the kind of features that
might be useful for the W matrix. Our choice of Wa ma-
trix to correspond to aggregation of nearby states is mo-
tivated by the observation that Pn captures nth hop con-
nectivity/neighborhood information. The aggregation ma-
trix Wa is defined as below: ∀i = 1, . . . ,m,

Wa(i, j) = 1, ∀j s.t j = (i− 1)
n

m
+ k + (l − 1)n,

k = 1, . . . ,
n

m
, l = 1, . . . , d,

= 0, otherwise. (14)

In order to provide a contrast between good and bad choices
of W matrices we also make use of two more matrices, an
ideal matrix Wi generated by sampling according to the sta-
tionary distribution of the optimal policy as in (de Farias and
Roy 2004) andWc generated by sampling using c, as well as
Wr, a random matrix in Rnd×m

+ . For the sake of compari-
son, we compute ||ΓJ̄−Γ̃J̄ ||∞ for the differentW matrices.
Though computing ||ΓJ̄ − Γ̃J̄ ||∞ might be hard in the case
of large n, since ||ΓJ̄ − Γ̃J̄ ||∞ is completely dependent on
the structure of Φ, T and W , we can compute it for small n
instead and use it as a surrogate. Accordingly, we first chose
a smaller system, QS , with n = 10, d = 2, k = 2, m = 5,
q(1) = 0.2, q(2) = 0.4, p = 0.2 and α = 0.98. In the case
ofQS , Wa ((14) withm = 5) turns out to be a 20×5 matrix
where the ith constraint of the GRLP is the average of all
constraints corresponding to states (2i−1) and 2i (there are
four constraints corresponding to these two states). The var-
ious error terms are listed in Table 1 and plots are shown in
Figure 3. It is clear from Table 1 that Wa, Wi and Wc have
much better ||ΓJ̄− Γ̃J̄ ||∞ than randomly generated positive
matrices. Since each constraint is a hyperplane, taking linear
combinations of non-adjacent hyperplanes might drastically
affect the final solution. This could be a reason why Wr

(random matrix) performs poorly in comparison with other
W matrices.

Error Term Wi Wc Wa Wr

||ΓJ̄ − Γ̃J̄ ||∞ 39 84 54.15 251.83

Table 1: Shows various error terms for QS .

Next we consider a moderately large queuing system QL

with n = 104 and d = 4 with q(1) = 0.2, q(2) = 0.4,
q(3) = 0.6, q(4) = 0.8, p = 0.4 and α = 0.98. In the
case of QL, we chose k = 4 (i.e., we used 1, s, s2 and s3

as basis vectors) and we chose Wa (14), Wc, Wi and Wr

with m = 50. We set c(s) = (1− ζ)ζs, ∀s = 1, . . . , 9999,
with ζ = 0.9 and ζ = 0.999 respectively. The results in
Table 2 show that performance exhibited by Wa and Wc is
better by several orders of magnitude over ‘random’ in the
case of the large system QL and is close to the ideal sampler
Wi. Also note that a better performance of Wa and Wc in
the larger system QL is in agreement with a lower value of
||ΓJ̄ − Γ̃J̄ ||∞ in the smaller system QS .

Error Terms Wi Wc Wa Wr

||J∗ − Ĵc||1,c for ζ = 0.9 32 32 220 5.04× 104

||J∗ − Ĵc||1,c for ζ = 0.999 110 180.5608 82 1.25× 107

Table 2: Shows performance metrics for QL.

Conclusion
Solving MDPs with large number of states is of practical
interest. However, when the number of states is large, it
is difficult to calculate the exact value function. ALP is a
widely studied ADP scheme that computes an approximate
value function and offers theoretical guarantees. Neverthe-
less, the ALP is difficult to solve due to its large number of
constraints and in practice a reduced linear program (RLP)
is solved. Though RLP has been shown to perform well em-
pirically, theoretical guarantees are available only for a spe-
cific RLP formulated under idealized assumptions. This pa-
per provided a more elaborate treatment of constraint reduc-
tion/approximation. Specifically, we generalized the RLP
to formulate a generalized reduced linear program (GRLP)
and provided error bounds. Our results addressed a long-
standing open problem of analytically justifying linear func-
tion approximation of the constraints. We discussed the im-
plications of our results in the contexts of ADP and rein-
forcement learning. We found that our experiments conform
to the theory developed in this paper on an example in the
domain of controlled queues. Future directions include pro-
viding more sophisticated error bounds based on Lyapunov
functions, a two-time scale actor-critic scheme to solve the
GRLP, and basis function adaptation schemes to tune the W
matrix.
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Figure 3: Plot corresponding to QS on the left and QL on
the right. The GRLP here used Wa in (14) with m = 5 for
QS and m = 50 for QL.
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