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Abstract

Nyström approximation is an effective approach to acceler-
ate the computation of kernel matrices in many kernel meth-
ods. In this paper, we consider the Nyström approximation
for sparse kernel methods. Instead of relying on the low-rank
assumption of the original kernels, which sometimes does
not hold in some applications, we take advantage of the re-
stricted eigenvalue condition, which has been proved to be ro-
bust for sparse kernel methods. Based on the restricted eigen-
value condition, we have provided not only the approxima-
tion bound for the original kernel matrix but also the recovery
bound for the sparse solutions of sparse kernel regression. In
addition to the theoretical analysis, we also demonstrate the
good performance of the Nyström approximation for sparse
kernel regression on real world data sets.

Introduction
Kernel methods (Schölkopf and Smola 2002; Xu et al. 2009)
have received a lot of attention in recent studies of machine
learning. These methods project data into high-dimensional
or even infinite-dimensional spaces via kernel mapping
functions. Despite the strong generalization ability induced
by kernel methods, they usually suffer from the high com-
putation complexity of calculating the kernel matrix (also
called Gram matrix). Although low-rank decomposition
techniques(e.g., Cholesky Decomposition (Fine and Schein-
berg 2002; Bach and Jordan 2005)), and truncating meth-
ods(e.g., Kernel Tapering (Shen, Xu, and Allebach 2014;
Furrer, Genton, and Nychka 2006)) can accelerate the cal-
culation of the kernel matrix, they still need to compute the
kernel matrix.

An effective approach to avoid the computation cost of
computing the entire kernel matrix is to approximate the
kernel matrix by the Nyström method (Williams and Seeger
2001), which provides low-rank approximation to the ker-
nel matrix by sampling from its columns. The Nyström
method has been proven useful in a number of applications,
such as image processing (Fowlkes et al. 2004; Wang et
al. 2009), which typically involve computations with large
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dense matrices. Recent research (Zhang, Tsang, and Kwok
2008; Farahat, Ghodsi, and Kamel 2011; Talwalkar and
Rostamizadeh 2010; Kumar, Mohri, and Talwalkar 2012;
Mackey, Talwalkar, and Jordan 2011; Gittens and Mahoney
2013) on the Nyström method have shown that the approx-
imation error can be theoretically bounded. Jin et al. (2013)
further shows that the approximation error bound can be im-
proved from O(n/

√
m) to O(n/mp−1) (where n denotes

the number of instances and m denotes the number of di-
mensions) when the eigenvalues of the kernel matrix satisfy
a p-power law distribution.

In this paper, we focus on finding the approximation
bound of the Nyström method for sparse kernel methods.
Although previous studies have demonstrated the good ap-
proximation bounds of the Nyström method for kernel meth-
ods, most of which are based on the assumption of the low
rank of kernels (Jin et al. 2013). While if kernels are not
low rank, Nyström approximations can usually lead to sub-
optimal performances. To alleviate the strong assumption in
the seeking of the approximation bounds, we take a more
general assumption that the design matrix K ensuring the re-
stricted isometric property (Koltchinskii 2011). In particular,
the new assumption obeys the restricted eigenvalue condi-
tion (Koltchinskii 2011; Bickel, Ritov, and Tsybakov 2009),
which has been shown to be more general than several
other similar assumptions used in sparsity literature (Can-
des and Tao 2007; Donoho, Elad, and Temlyakov 2006;
Zhang and Huang 2008). Based on the restricted eigenvalue
condition, we have provided error bounds for kernel approx-
imation and recovery rate in sparse kernel regression. Thus
we can accurately recover the sparse solution even with a
modest number of random samples. It is important to note
that the expected risk of the learning function will be small
by exploiting the generalization error bound for data depen-
dent hypothesis space (Shi, Feng, and Zhou 2011). To fur-
ther evaluate the performance of the Nyström method for
sparse kernel regression, we conduct experiments on both
synthetic data and real-world data sets. Experimental results
have indicated the huge acceleration of the Nyström method
on training time while maintaining the same level of predic-
tion errors.
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Nyström Approximation for Sparse Kernel
Regression

We consider the regression setting. Let D = {(xi, yi), i =
1, . . . , n} be the collection of training examples, where xi ∈
Rd and yi ∈ [−R,R]. Let κ(·, ·) be the kernel function,
and Hκ be the Reproduced Kernel Hilbert Space endowed
with kernel κ(·, ·). Without loss of generality, we assume
κ(x,x) ≤ 1 for any x ∈ Rd. The objective of kernel re-
gression is to find a f ∈ Hκ that best fits the data. It usually
results in the following optimization problem:

min
α∈Rn

1

2n
‖y −Kα‖22 + λ‖α‖1 (1)

where K = [κ(xi,xj)]n×n, y = (y1, . . . , yn)>, and λ
is a regularization parameter that can be usually deter-
mined by cross validation. The main computational chal-
lenge of kernel regression arises from handling the ker-
nel matrix K, which can be expensive to compute when
the number of training examples is large. A common ap-
proach to address the computational challenge of kernel re-
gression is to approximate kernel matrix K by a low rank
matrix K̂. Popular algorithms in this category include ran-
dom Fourier features (Rahimi and Recht 2007) and Nyström
method (Williams and Seeger 2001). Analysis in (Drineas
and Mahoney 2005) shows that additional error caused
by the low rank approximation of K can be as high as
O(n/

√
m), where m is the number of random samples used

by low rank matrix approximation. By making additional as-
sumptions, this error can further reduced to O(n/m) (Jin et
al. 2013).

In this paper, we focus on sparse kernel regression, where
the sparsity can usually lead to good performance. It as-
sumes there exists a sparse solution α∗ such that f∗(·) =∑n
i=1 α

i
∗κ(xi, ·) yields a small regression error for all the

training examples. To be more precisely, let’s denote by
J ∈ [n] the support of α∗. Define s := |J |. Since α∗ is a
sparse solution, we have s � n. Define ε as the largest re-
gression error made by f∗(·) over the training examples in
D, i.e.

ε := max
i∈[n]

(f∗(xi)− yi)2 (2)

Since f∗(·) is assumed to be an accurate prediction function,
we assume that ε is small. We will show that by assuming a
sparse solution for kernel regression, we will be able to ac-
curately recover the solution α∗ even with a modest number
of random samples for low rank matrix approximation.

The proposed algorithm for sparse kernel regression com-
bines the theory of sparse recovery with the Nyström
method. We first random sample m instances from D,
denoted by D̂ = {x̂1, . . . , x̂m}. Following the Nyström
method, we approximate K by a low rank matrix K̂ given
by

K̂ = KaK
−1
b K>a (3)

where Ka = [κ(x̂i,xj)]n×m measures the similarity be-
tween every instance in D and each sampled instance in D̂,

and Kb = [κ(x̂i, x̂j)]m×m. Since K̂ is a low rank matrix,

we can also write K̂ = ZZ> as Z = KaK
− 1

2

b . Given the
low rank approximation of K, we will solve the following
optimization problem for sparse kernel regression:

min
α∈Rn

1

2n
‖y − K̂α‖22 +

γ

2
‖α‖22 + λ‖α‖1 (4)

where λ and γ are the regularization parameters for the L2

and L1 constraints of α, respectively. We note that we intro-
duce an `2 regularizer in (4) besides the `1 regularizer. This
is closely related to the elastic net regularizer that was origi-
nally introduced for Lasso to select groups of correlated fea-
tures (Zou and Hastie 2005; De Mol, De Vito, and Rosasco
2009). Unlike the elastic-net regularizer, the purpose of in-
troducing `2 regularizer in (4) is to compensate the error in
approximating K with K̂.

The optimization problem in (4) is a convex optimization
problem, and thus can be solved by a first order method
or standard sparse optimization packages, such as (Liu, Ji,
and Ye 2009; Schmidt 2010). Alternatively, at each iteration,
given the current solution αt, we can update the solution by
solving the following optimization problem

αt+1 = arg min
α∈Rn

θ‖α− αt‖22 +
1

n
α>K̂(K̂αt − y)

+γα>t α+ λ‖α‖1 (5)

Since K̂ is of low rank, both K̂y and K̂2α can be computed
efficiently whose cost are O(dm).

Main Results
We first introduce a few notations that will be used through-
out the section. Given a vector α ∈ Rn and a subset of in-
dices J ⊆ [n], αJ is a vector of n dimension that includes
all the entries of α in J , i.e.

[αJ ]i = αiI(i ∈ J)

Given a sparse solution α ∈ Rn, we use S(α) ⊆ [n] to rep-
resent the support set of α, i.e. S(α) = {i ∈ [n] : αi 6= 0}.
We use K∗,j to represent the jth column of kernel ma-
trix K, ‖K‖∗ to represent the spectral norm of K, and
‖K‖1 = max

i∈[n]
‖K∗,i‖1 the maximum `1 norm for all the

columns in K.
Similar to most sparse recovery problems, we need to

make assumption about the design matrix K in order to en-
sure restricted isometric property (Koltchinskii 2011), which
was introduced to characterize matrices which are nearly
orthogonal. In particular, we assume that the kernel ma-
trix K obeys the restricted eigenvalue condition (Koltchin-
skii 2011; Bickel, Ritov, and Tsybakov 2009), which has
shown to be more general than several other similar as-
sumptions used in sparsity literature (Candes and Tao 2007;
Donoho, Elad, and Temlyakov 2006; Zhang and Huang
2008). More specifically, for any J ⊆ [n], we define a func-
tion over a set J , β(J) as

β(J) := min{β ≥ 0 : β‖Kα‖2 ≥
√
n‖αJ‖2,

‖αJc‖1 ≤ 4‖αJ‖1} (6)
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and β as

β := min {β(J) : J ∈ [n], |J | ≤ s}

where parameter 4 is chosen for the convenience of analy-
sis. We assume β, the minimal integer that connects ‖Kα‖2
with ‖αJ‖2, is not too large for kernel matrix K. To better
understand the implication of β for kernel matrix, we have
the following theorem for bounding β. Define

τ+ := max
i∈[n]

1√
n
‖K∗,i‖2, τ− := min

i∈[n]

1√
n
‖K∗,i‖2

and
µ := max

1≤i<j≤n

1

n
‖K>∗,iK∗,j‖

The following theorem bounds β for kernel matrix K.
Theorem 1 Suppose κ(x,x′) ≥ 0 for any x and x′. If

8sµ

τ−
≤
√

τ−
τ+ + sµ

,

then

β ≤
√
τ−√

τ
3/2
− − 8µs

√
τ+ + µs

Furthermore, if

16µs ≤ τ−
√
τ−
τ+
,

we have
β ≤ 2

τ
1/4
−

As indicated by the above theorem, in order to obtain a mod-
est β, the key is to ensure the similarity between any two
instances is small enough.

Our analysis is divided into two parts. First, we will show
that the sparse solution α∗ can be accurately recovered by
the optimal solution to (4) if the difference between K and
K̂ is small. Second, we will bound the spectral norm of K−
K̂ for the Nyström method, and show it is small for kernel
matrix with skewed eigenvalue distribution.

Define
∆ = K− K̂, δ = ‖∆‖∗.

Theorem 2 Let α̂ be the optimal solution to (4). If

γ ≥ 2δ

n
‖K‖∗

λ ≥ 2max

(
ε‖K‖1
n

+
εδ√
n
+
δ‖α∗‖2
n

(s+ δ), γ‖α∗‖∞
)

we have
‖α̂− α∗‖1 ≤ 10λβs

Next, we will bound δ for the Nyström method. Similar
to the previous analysis of Nyström method (e.g. (Gittens
2011)), we define a coherence measure for all the eigenvec-
tors of kernel matrix K

τ := n max
1≤i,j≤n

‖Ui,j‖2

where U = (u1, . . . ,un) include all the eigenvectors of K.

Theorem 3 Assume τk ≤ n. Then, with a probability 1 −
2n−3, we have

‖K− K̂‖∗ ≤ C ′λk+1

√
n

m
log n,

provided that
m ≥ Cτk log n

where both C and C ′ are universal constants.

Remark. Compared to the relative error bound given
in (Gittens 2011) where ‖K − K̂‖∗ ≤ O(λk+1n/m), our
spectral norm bound for the Nyström method is significantly
better. The key for the improvement is to explore the orthog-
onality between U2 and U1. To show δ = ‖K−K̂‖∗ can be
small, consider the case when the eigenvalues of K follow
a power law, i.e. λk ≤ nk−p, where p > 1. By choosing
k = O(m/ log n), according to Theorem 3, we have

δ ≤ O
(

n3/2

m(2p+1)/2
[log n]p+1

)
implying that δ will be small if

m ≥ n3/(2p+1) log2 n

Analysis
We first present proof for Theorem 2 and then the proof for
Theorem 3.

Proof of Theorem 2
Let J ⊆ [n] be the support set for α∗. The following lemma
allows us to relate α̂ to α∗.
Lemma 1 We have

1

n
(α̂− α∗)>K̂(K̂α̂− y) + γ‖α̂− α∗‖22 + λ‖α̂Jc‖1

≤ λ‖α̂J − α∗‖1 + γ‖α∗‖∞‖α̂J − α∗‖1 (7)

The next lemma allows us to bound the first term in the in-
equality in (7).
Lemma 2 We have

1

n
(α̂− α∗)>K̂(K̂α̂− y)

≥ 1

n
‖K(α̂− α∗)‖22 +

1

n
‖∆(α̂− α∗)‖22

+
1

n
‖K̂ 1

2 (α̂− α∗)‖22 − a‖α̂− α∗‖1 − b‖α̂− α∗‖22

where

a := ε

(
‖K‖1
n

+
δ√
n

)
+
δ‖α∗‖2
n

(s+ δ), b :=
2δ

n
‖K‖∗

By choosing

γ ≥ b =
2δ

n
‖K‖∗

λ ≥ 2max (a, γ‖α∗‖∞)

= 2max

(
ε‖K‖1
n

+
εδ√
n
+
δ‖α∗‖2
n

(s+ δ), γ‖α∗‖∞
)
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we have
1

n
‖K(α̂− α∗)‖22 +

1

n
‖∆(α̂− α∗)‖22 + +

λ

2
‖α̂Jc‖1 ≤ 2λ‖α̂J − α∗‖1

We thus have ‖α̂Jc‖1 ≤ 4‖α̂J − α∗‖1, and using the defi-
nition of β, we have

‖α̂J − α∗‖21
β

≤ s‖α̂J − α∗‖22
β

≤ s

n
‖K(α̂− α∗)‖22 ≤ 2λs‖α̂J − α∗‖1

and therefore
‖α̂J − α∗‖1 ≤ 2λsβ

and

‖α̂− α∗‖1 = ‖α̂J − α∗‖1 + ‖α̂Jc‖1
≤ 5‖α̂J − α∗‖1 ≤ 10λsβ

Proof of Theorem 3
Our analysis is based on Theorem 1 (Gittens 2011) given as
below.

Theorem 4 (Theorem 1 from (Gittens 2011)) Let A a PSD
matrix of size n, and let S be a n × ` random matrix with
each column has exactly one non-zero element with value 1.
Partition A as

A =
k n− k

[U1 U2]

[
Σ1

Σ2

] [
U>1
U>2

]
and define Ω1 and Ω2 as

Ω1 = U>1 S, Ω2 = U>2 S

Assume Ω1 has full row rank. Then, the spectral approxima-
tion error of the naive Nyström method extension of A using
S as the column sampling matrix satisfies

‖A−CW†C‖∗ = ‖(I− PA1/2S)A1/2‖22
≤ ‖Σ2‖∗

(
1 + ‖Ω2Ω†1‖2∗

)
(8)

where C = AS and W = S>AS.

To map the result in Theorem 4 to the Nyström method, we
note C and W in Theorem 4 correspond to Ka and Kb in
(3), respectively. The key of using Theorem 4 is to effec-
tively bound ‖Ω2Ω†1‖∗. To this end, we need the following
matrix concentration inequality.

Theorem 5 (Theorem 1.2 from (Candés and Romberg
2007)) Let U ∈ N × N include the eigenvectors of a PSD
matrix A with coherence τ . Let U1 ∈ RN×k include the
first k eigenvectors of A. Let S ∈ {0, 1}n×` be a ran-
dom matrix distributed as the first ` columns of a uniformly
random permutation matrix of size n. Suppose that ` obeys
` ≥ τkmax (Ca ln k,Cb ln(3/δ)) for some positive con-
stants Ca and Cb. Then

Pr
(∥∥∥n

`
U>1 SS

>U1 − I
∥∥∥
∗
≥ 1/2

)
≤ δ.

To bound ‖Ω2Ω†1‖2∗, we write it down explicitly as

‖Ω2Ω†1‖2∗ = ‖U>2 SS>U1(U>1 SS
>U1)−1‖2∗

We only consider the event ω1 where∥∥∥ n
m
U>1 SS

>U1 − I
∥∥∥
∗
≤ 1/2

According to Theorem 5, we have Pr(ω1) ≥ 1 − n−3 pro-
vided that

m ≥ Cτk lnn

where C is some universal constant. We then proceed
to bound ‖U>2 SS>U1‖∗ which is given in the following
lemma.
Lemma 3 Assume τk ≤ n. Then, with a probability 1 −
n−3, we have

‖U>2 SS>U1‖∗ ≤ 8τ

√
n

m
log(2n)

Combining the results in Theorem 5 and Lemma 3, we have,
with a probability 1− 2n−3,

‖Ω2Ω†1‖2∗ ≤ C ′τ
√
n

m
log n (9)

provided that
m ≥ Cτk log n

where C and C ′ are two universal constants. We complete
the proof by replacing ‖Ω2Ω†1‖∗ in (8) with the bound in (9).

Empirical Studies
We conduct experiments to verify the efficiency of the pro-
posed approximation algorithm for sparse kernel regression.
For comparison, we choose the approximation by random
Fourier features, which approximate the shift-invariant ker-
nel matrix with the Fourier transform of a non-negative mea-
sure (Rahimi and Recht 2007).

Experiment on Synthetic Data
In order to better show the performance of the Nyström ap-
proximation of sparse kernel regression, we design a syn-
thetic data set. We have the following expectations: 1) data
containing nonlinearity on the features; and 2) data being
embedded with redundant and grouping features. We then
generate a 20-dimensional synthetic dataset with 20,000
examples by additive models motivated by an example
in (Härdle et al. 2004). And the data are generated by

yi =
3∑
j=1

f1(xij) +
6∑
j=4

f2(xij) +
9∑
j=7

f3(xij)

+
12∑
j=10

f4(xij) + εi, (10)

where there are four mapping functions: f1(x) =
−2 sin(2x) + 1− cos(2), f2(x) = x2 − 1

3 , f3(x) = x− 1
2 ,

and f4(x) = e−x + e−1 − 1. We set the rest of mapping
functions as fj(x) = 0, for j > 9. x is uniformly distributed
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(a) Normalized error (b) Accelerating ratio on training time (c) Eigenvalues

Figure 1: Evaluation on the synthetic data. (a) shows the normalized error in comparison with the method of random Fourier
features when the number of samples is changed from 500 to 3000. The lower the better. (b) shows the acceleration ratio of
training time for the Nyström approximation over computing the entire kernel matrix. The larger the better. (c) shows the top
eigenvalues of the kernel matrix.

in [0, 1], and the noise εi ∼ N (0, 1) is a Gaussian noise. The
output Yi is determined by the corresponding features, from
1 to 12, in xi mapped by f1, f2, f3, and f4, respectively. The
data therefore contain 8 irrelevant features.

We repeat all the algorithms 20 times for each data set.
In each run, 50% of the examples are randomly selected as
the training data and the remaining data are used for test-
ing. The training data are normalized to have zero mean and
unit variance, and the test data are then normalized using the
mean and variance of the training data. The regularization
parameters λ and γ are selected by 10-fold cross validation.
The experiments are conducted on a PC with 2.67GHz CPU
and 4GB memory.

We report the following performance measures: the nor-
malized error (i.e. mean square error divided by the norm of
training data) on the test data, and the training time. It can
be observed that the Nyström approximation achieves much
better performance than the method of Random Fourier Fea-
tures. This is indeed not superposing in that the random Fig-
ure 1(a) shows the normalized error.samples in the Nyström
method are strongly dependant with the training data. Fig-
ure 1(b) shows the acceleration ratio of the training time
when varying the number of random samples over the train-
ing time when calculating the entire kernel matrix. Espe-
cially, when only 500 random samples are used to approxi-
mate the kernel matrix, it is over 70,000 times faster than the
naive method calculating the entire kernel matrix, while the
normalized errors are in the same level. Figure 1(c) partially
explains why the acceleration is so big – the eigenvalues of
the kernel matrix has the property of fast decade.

Experiment on Real-world Data
We adopted three data sets from other literature and the
UCI machine learning repository http://archive.ics.uci.edu/
ml/datasets.html. The CPU data set also used in (Rahimi
and Recht 2007) contains 6,554 examples. The Bike data set
records the rental behavior and the corresponding weather
conditions, precipitation, day of week, season, hour of the
day, etc. The Slice data set contains 53500 CT images from
74 different patients (43 male, 31 female). Each CT slice is
described by two histograms in polar space. The label vari-
able (relative location of an image on the axial axis) was

Table 1: Description of the Real-world regression data sets.

Data set # Training data # Test data # Dim
CPU 6554 819 21
Bike 8645 8734 13
Slice 29852 23648 348

constructed by manually annotating up to 10 different dis-
tinct landmarks in each CT Volume with known location.
The location of slices in between landmarks was interpo-
lated.

The data information is summarized in Table 1.
We first report the normalized error on the three data sets.

As shown in Figure 2, it can be observed that the Nyström
approximation achieves much lower normalized errors than
the method of Random Fourier Features on all the three
data sets. This consistently shows the strong generaliza-
tion ability of the Nyström method. Especially, even using
a small number of selected examples, the Nyström method
can achieve very close results with using the entire kernel
matrix.

We then report the average training time with standard di-
vision for the real-world data sets, as shown in Figure 3.
It can be observed that the training procedure after us-
ing the Nyström approximation can be very fast even on a
large scale data with tens of thousands examples. To fur-
ther clearly show the advantages over computing the entire
kernel matrix, we also report the acceleration ratio of using
the Nyström method as shown in Figure 4. It can also be
observed that the Nyström method can extremely accelerate
the training time. Note that it is very hard to compute the
entire kernel matrix for the Slice data in a computer with a
modest size of memory due to the high storage and compu-
tation complexities of large kernel matrices. So we omit the
result on the Nyström method.

Conclusion
In this paper, we have presented the theoretical analysis
and empirical evaluation of the Nyström approximation for
sparse kernel regression problems. Based on the restricted
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(a) Normalized error on CPU (b) Normalized error on Bike (c) Normalized error on Slice

Figure 2: Test error comparison on three real-world data sets. (a) shows the normalized error on CPU in comparison with the
method of random Fourier features when the number of samples is changed from 500 to 3000. The lower the better. (b) shows
the normalized error on Bike. The larger the better. (c) shows the normalized error on Slice.
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Figure 3: Training time comparison on three real-world data sets. (a) shows the training time on CPU when the number of
samples is changed from 500 to 3000. The lower the better. (b) shows the training time on Bike. (c) shows the training time on
Slice.
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Figure 4: The acceleration ratio of training time for the Nyström approximation over computing the entire kernel matrix. (a)The
acceleration ratio on CPU. (c) The acceleration ratio on Bike. The larger the better.

eigenvalue condition, we not only provide an approximation
bound for arbitrary kernels, but also provide a stable recov-
ery rate for sparse kernel methods. In addition to the theo-
retical analysis, we also demonstrate the good performance
of Nyström approximation on real world data sets.

For the future work, we will seek to provide better approx-
imation bounds and recovery rates for sparse kernel classifi-
cation methods.
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