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Abstract

This paper proposes a new approach for discriminative
clustering. The intuition is, for a good clustering, one
should be able to learn a classifier from the clustering
labels with high generalization accuracy. Thus we de-
fine a novel metric to evaluate the quality of a clus-
tering labeling, named Minimum Separation Probabil-
ity (MSP), which is a lower bound of the generaliza-
tion accuracy of a classifier learnt from the clustering
labeling. We take MSP as the objective to maximize
and propose our approach Maximin Separation Prob-
ability Clustering (MSPC), which has several attrac-
tive properties, such as invariance to anisotropic fea-
ture scaling and intuitive probabilistic explanation for
clustering quality. We present three efficient optimiza-
tion strategies for MSPC, and analyze their interesting
connections to existing clustering approaches, such as
maximum margin clustering (MMC) and discriminative
k-means. Empirical results on real world data sets ver-
ify that MSP is a robust and effective clustering qual-
ity measure. It is also shown that the proposed algo-
rithms compare favorably to state-of-the-art clustering
algorithms in both accuracy and efficiency.

Introduction
Clustering is an unsupervised learning paradigm that aims
to discover interesting groups in given data sets. It arises
in a wide range of contexts, and various clustering al-
gorithms have been proposed in the literature. In recent
years, there is a new branch of research efforts on clus-
tering, which connects the objective of clustering with that
of classification. Some of the representative approaches in-
clude Maximum Margin Clustering (MMC) (Xu et al. 2004;
Valizadegan and Jin 2007; Zhang, Tsang, and Kwok 2007;
Li et al. 2009; Zhou et al. ), Maximum Volume Clustering
(MVC) (Niu et al. 2013) and linear discriminative analy-
sis (LDA) based clustering (De la Torre and Kanade 2006;
Ding and Li 2007). These methods focus on maximizing dis-
crimination between clusters, thus are usually referred to as
discriminative clustering (DC). Empirically these methods
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have shown encouraging results in terms of clustering accu-
racy. However, there are still two important issues which are
not well addressed.

The first issue is the problem of anisotropic feature scal-
ing (AFS), which arises frequently in practice when features
correspond to variables with different units. In contrast to su-
pervised classification, clustering algorithms are more sus-
ceptible to AFS due to the absence of labels. Supposing we
amplify the values of a certain feature by a large factor (e.g.,
change the unit of time from minute to second), then the
maximal margin in MMC, or the maximal volume in MVC,
will be dominated by this feature, and the clustering results
are very likely to be affected. A common solution to this
problem is preprocessing the data so that the values of each
feature lie in a proper range. Although effective in practice,
data preprocessing is generally performed independently of
the clustering process, making it difficult to be optimized.

The second issue is the lack of a consistent measure for
evaluating clustering quality. In supervised classification, we
can leverage labeled training data to evaluate how confident
we are in the learned model. However, it is a challenge to
define a quality measure for clustering without true labels.
Though the clustering measures of existing clustering al-
gorithms, such as energy in k-means, maximum margin in
MMC, entropy or mutual information in information-based
clustering, can be used as measures for clustering quality,
they are basically problem dependent. For example, some of
these measures are not invariant to problem size or are sen-
sitive to feature scaling.

This paper tries to address the aforementioned issues by
resorting to the key intuition of discriminative clustering: if
a clustering is good, then we should be able to learn a clas-
sifier from the clustering labels with high generalization ac-
curacy. However, it is usually difficult to evaluate the gen-
eralization performance without true labels. In this paper,
we define a novel clustering metric named Minimum Sepa-
ration Probability (MSP) based on the Minimax Probability
Machine (MPM) (Lanckriet et al. 2003), and propose a clus-
tering approach by maximizing MSP, which is called Max-
imin1 Separation Probability Clustering (MSPC). It can be

1The term minimax is used in (Lanckriet et al. 2003) since it
considers minimizing the maximum probability of misclassifica-
tion.
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shown that MSPC has close relations to MMC and several
other DC approaches. However, MSPC is invariant to AFS,
and its objective yields an intuitive explanation for clustering
quality. Empirical results demonstrate that MSP has strong
positive correlation with clustering accuracy. Additionally,
we develop efficient learning algorithms for MSPC, leading
to an increase in speed by several orders-of-magnitude over
MMC and MVC algorithms. Meanwhile, MSPC achieves
impressive clustering accuracy on real data sets.

Our contributions. 1) We introduce a novel clustering
approach MSPC, the objective of which provides an effec-
tive and robust measure for clustering quality. 2) We propose
three algorithms to optimize the proposed model, which are
advantageous both in efficiency and clustering accuracy. 3)
We study connections between MSPC and several existing
algorithms. This also builds a bridge between two impor-
tant types of DC approaches, namely, MMC and LDA based
clustering.

Related Work
Discriminative clustering. Maximum Margin Cluster-
ing (MMC) (Xu et al. 2004) extended the large margin prin-
ciple in SVM to clustering. There are several improvements
to MMC, which can handle multi-class clustering or with
higher efficiency (Zhang, Tsang, and Kwok 2007; Zhao,
Wang, and Zhang 2008; Li et al. 2009). Similarly, the Max-
imum Volume Clustering (MVC) (Niu et al. 2013) extended
the large volume principle to clustering. There are several
other related discriminative clustering approaches, which si-
multaneously perform supervised dimension reduction and
clustering (De la Torre and Kanade 2006; Ding and Li 2007;
Ye, Zhao, and Wu 2007). We will further discuss the connec-
tions between these algorithms and MSPC in the rest sec-
tions.

Minimax Probability Machine (MPM) was proposed
by Lanckriet et al. (2003) for supervised classification. It
learns a classifier by maximizing a lower bound of the gen-
eralization accuracy. Recently, Huang et al. (2014) revisited
MPM and extended it for transductive learning and semi-
supervised learning based on an efficient label-switching
strategy. Our paper can be viewed as extending MPM to the
unsupervised case where we need to simultaneously learn a
clustering labeling and a classifier.

Clustering Quality Measure (CQM) has been studied in
the applied statistics literature (Milligan 1981), where it is
termed as cluster validity. Recently, CQM has been axiom-
atized for pairwise distance-based clustering by Ackerman
and Ben-David (2008). However, they do not connect CQM
with the commonly used clustering accuracy. The unsuper-
vised classification accuracy in (Balasubramanian, Donmez,
and Lebanon 2011) can also be viewed as a CQM, but it
assumes label proportion is known.

Minimax Probability Machine
Considering binary classification, there is a labeled train-
ing data set {X ,Y} = {xi, yi}Ni=1(xi ∈ Rd, yi ∈ {1, 2}),
where N is the number of samples, and d is the dimension-
ality. The Minimax Probability Machine (MPM) (Lanckriet

et al. 2003) assumes that the samples of each class Xj(j =
1, 2) are independently generated by a random distribution,
thus the class-conditional distributions can be modeled by
two random variables X1 and X2, respectively. MPM aims
to maximize the probabilities that X1 and X2 respectively
lie on two sides of a hyperplane H(w, b)(w ∈ Rd, b ∈ R),
i.e., Pr(w>X1 + b ≤ 0) and Pr(w>X2 + b ≥ 0). As
these probabilities are usually difficult to compute, MPM
considers maximizing the worst case separation probability
over all possible distributions of Xj whose mean and co-
variance {µj ,Σj} match the empirical moments {µ̂j , Σ̂j}
of Xj , leading to the following MPM formulation:

max
p,w∈Rd,b∈R

p

s.t. inf
X1∼{µ̂1,Σ̂1}

Pr(w>X1 + b ≥ 0) ≥ p,

inf
X2∼{µ̂2,Σ̂2}

Pr(w>X2 + b ≤ 0) ≥ p,

(1)

where µ̂k = 1
Nk

∑
xi∈Xk

xi, Σ̂k = 1
Nk

∑
xi∈Xk

(xi −
µ̂k)(xi − µ̂k)> and Nk = |Xk|, with k = 1, 2.

A remarkable advantage of considering the worst case dis-
tribution is that the constraints in (1) can be converted into
second order cone constraints due to the multivariate Cheby-
shev inequalities (Marshall, Olkin, and others 1960), with-
out making specific assumptions on the distribution form of
Xk. As derived in (Lanckriet et al. 2003), the optimization
in (1) can be reformulated as

max
w∈Rd

κ := w>(µ̂1−µ̂2)√
w>Σ̂1w+

√
w>Σ̂2w

, (2)

where κ =
√
p/(1− p). This optimization problem can be

solved efficiently by standard second order cone program-
ming (SOCP), or by the iterative least squares approach in-
troduced in (Lanckriet et al. 2003), which has a worst case
complexity of O(d3) 2.

Maximin Separation Probability Clustering
Inspired by MPM, we define a novel metric to measure the
quality of a candidate clustering labeling.
Definition 1. The minimum separation probability (MSP)
of a clustering labeling y on X is the optimal p solved from
problem (1) on the pseudo-labeled training set {X,y}.

The intuition under this metric is, from a good cluster-
ing labeling, we should be able to learn a classifier with
high generalization accuracy, which is bounded from be-
low by MSP. Note here we are actually assuming that the
clusters induced by an arbitrary labeling y are consisted of
i.i.d samples which are generated from independent distri-
butions. This assumption is stronger than that in MPM, but
is common in discriminative clustering.

The proposed clustering approach is to find a best cluster-
ing labeling by directly maximizing MSP:

max
w∈Rd,y∈{1,2}N

κ := |w>(µ̂1(y)−µ̂2(y))|∑
k=1,2

√
w>(Σ̂k(y)+λΛ)w

(3)

2This complexity does not take into account the cost of com-
puting the empirical moments, which has a complexity of O(Nd2)
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where λΛ is a regularization term on the covariance matri-
ces. Though the two covariance matrices can be regularized
separately with different regularizers, we use a unified one
for convenience. In our algorithms, we let Λ = diag(Σ̂),
where Σ̂ is the covariance of the whole training set X . Note
that the empirical mean and covariance of both clusters are
functions of the label vector y.

We call the formulation (3) Maximin Separation Proba-
bility Clustering (MSPC). In the subsequent part, we analyze
its properties, and introduce optimization methods to solve
it.

Invariant to feature scaling The following theorem
shows that MSP is invariant to invertible linear transforma-
tion on training data, and is thus immune to anisotropic fea-
ture scaling.
Theorem 1. Let P ∈ Rd×d be an invertible matrix. Then
the two data sets X = {xi}Ni=1 and XP = {P>xi}Ni=1 have
the same optimal MSP.

Due to limited spaces, all proofs appear in the supplemen-
tary material.

Since MSP is not pairwise distance-based CQM, we can-
not analyze it under the axiomatic framework proposed by
(Ackerman and Ben-David 2008). However, it can be shown
that a generalized version of MSP satisfy all the axioms for
a valid CQM. We give the detailed discussions in the sup-
plementary material.

Optimization of MSPC
The mixed integer problem (3) is intractable in practice. In
this section, we introduce three efficient algorithms to solve
it approximately.

Approach 1: Iterative MPM
Inspired by the iterative support vector regression method
(IterSVR) (Zhang, Tsang, and Kwok 2007) for MMC, we
propose to solve MSPC in a similar fashion. Firstly, k-means
clustering is adopted to find an initial labeling. Then we it-
erate between solving w and updating y as the IterSVR al-
gorithm. Note that with fixed labeling, solving w in MSPC
is actually training an ordinary MPM model. We denote this
algorithm by MSPCMPM, which is summarized in the first
column of Table 1.

This simple algorithm works surprisingly well in our ex-
periments. It also converges fast, with typically 10 iterations
before terminating. Moreover, using the updating formula
(2) in Appendix B, at each iteration we only need to com-
pute the covariance of a small set instances, i.e., those who
are switched from one cluster to the other at this iteration.

Approach 2: Maximizing a lower bound
In this subsection, we derive a lower bound of MSP, enabling
the design of an efficient MSPC algorithm. Moreover, this
bound allows us to build connections between MSPC and
some existing algorithms, as given in the next section.

Let r1 , N1/N and r2 , N2/N denote the ratios of sam-
ples assigned to subsets X1 and X2, respectively. We then
have the following theorem which gives a lower bound for
the objective in (3).

Theorem 2. Let r1 ∨ r2 , max{r1, r2} and r1 ∧ r2 ,
min{r1, r2}. Then we have

κ2 ≥ (w>(µ̂1−µ̂2))
2

2(r1∧r2)−1w>(Σ̂+λΛ)w−2(r1∨r2)(w>(µ̂1−µ̂2))2
, (4)

and the equality holds when w>Σ̂1w = w>Σ̂2w and r1 =
r2.

In this expression, rk and µ̂k (k = 1, 2) are functions of
the label vector y. When y is given, maximizing the lower
bound in (4) reduces to

maxw∈Rd
w>(µ̂1−µ̂2)(µ̂1−µ̂2)

>w

w>(Σ̂+λΛ)w
. (5)

The optimal solution to (5) can be obtained efficiently by
finding the largest eigenvector of the generalized eigenvalue
problem (GEP): (µ̂1 − µ̂2)(µ̂1 − µ̂2)>v = γ(Σ̂ + λΛ)v.

Thus we can again adopt alternating optimization scheme
to optimize the lower bound of κ. Specifically, with fixed y,
the optimal w is obtained by solving a GEP. With fixed w,
the optimal label vector can be obtained as follows 3. We first
sort the samples according to the values of their projections
on w, i.e., ti = w>xi. Then we assign the first N1 samples
to X1 and the rest to X2, where N1 is an integer between
1 and N − 1 that maximizes the lower bound in (4). The
algorithm is summarized in the second column of Table 1.

Approach 3: A relaxation method
We give a relaxation of the formulation in Approach 2. The
relaxed model can be solved without alternating optimiza-
tion, and is efficient for high dimensional data.

Define a cluster indicator vector q as qi =
√
N2/(NN1),

if i ∈ X1, and qi = −
√
N1/(NN2), if i ∈ X2.

Thus we have ‖q‖ = 1, and w>(µ̂1 − µ̂2) =√
N/(N1N2)w>X>q.
Now we relax q to take real values under the constraint
‖q‖ = 1, and assume that N1 and N2 are constants (conse-
quently, r1 and r2 are constants as well). The optimization
problem in Approach 2 is approximated by

maxw∈Rd,‖q‖=1
w>X>qq>Xw

w>(Σ̂+λΛ)w
. (6)

Without loss of generality, we assume that the data matrix
are preprocessed to be centered, i.e., 1>X = 0. Then we
show that the optimal q can be obtained by solving an eigen-
problem, as stated by the following theorem.
Theorem 3. An optimal solution of q to (6) is the largest
normalized eignevector of the matrix IN − (IN + X̃)−1 (or
X(X>X + λΛ)−1X>), where X̃ = X(λΛ)−1X> and IN
is the N ×N identity matrix.

According to Theorem 3, the relaxed cluster indicator
vector q can be optimized conveniently by computing the
largest eigenvector of aN×N matrix. When the optimal q∗

is obtained, we can use the sign of its elements to construct
our label vector. Alternatively, we can use the predict vector
Xw∗ = XX>q∗ to obtain our final prediction. In our ex-
periments, the later one is used. We denote the algorithm as
MSPCEIG, which is presented in the last column of Table 1.

3It can be shown that this process finds the optimal y with given
w, in O(N logN +Nd) time.
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Analysis of the optimization algorithms
Among the three algorithms, MSPCMPM is the only one that
tries to directly optimize the MSP defined in (3), and it usu-
ally yields the highest accuracy in our experiments. It has a
complexity of O(l(Nd2 + d3)), where l denotes the num-
ber of iterations, Nd2 comes from the covariance estima-
tion, and d3 accounts for MPM retaining. Typically, we have
l = 10, thus the algorithm is very efficient when d is not
large.

MSPCGEP works in a similar fashion as MSPCMPM, but it
aims to maximize a lower bound of MSP. Since the lower
bound is tight when two clusters are balanced, MSPCGEP

tends to give similar results as MSPCMPM on balanced data
sets. It has a computational complexity of O(l(Nd2 + dα +
N logN)), where dα corresponds to solving the GEP in (5)
with 2 < α < 3, and N logN accounts for the cost of sort-
ing the projections.

MSPCEIG has a complexity of O(N2d + N3), if N < d,
or O(Nα + d3), if N > d (2 < α < 3). Thus it is more
efficient than MSPCMPM and MSPCGEP on high dimensional
data where N � d.

To summarize, MSPCMPM is the first choice if accuracy
is the main concern; MSPCGEP is especially suited for bal-
anced and medium-dimensional data; MSPCEIG is the most
efficient one on high dimensional data.

Connections with Existing Algorithms

Relationships to MMC
We show that interesting connections exist between MSPC
and MMC. Actually, MMC solutions ensures high MSP un-
der certain conditions, and MSPC essentially favors a large
relative margin.

Theorem 4. Supposing that the optimal margin learned by
MMC is δ, then the MSP (with λ = 0) is at least p ≥

1
2(r1∧r2)−1(σmax/δ)2−2(r1∨r2)+1 , where σ2

max is the largest

eigenvalue of the covariance matrix Σ̂, and r1 and r2 are
the ratios of samples assigned to the two clusters, respec-
tively.

Theorem 4 states that to ensure high MSP, the normalized
margin δ/σmax, instead of the absolute margin δ, should be
large. For any data set, we could create an arbitrarily large
margin by feature scaling, however, the normalized margin
cannot be made arbitrary large since σmax is also sensitive to
feature scaling. This theorem also explains why data prepro-
cessing is important to MMC: it prevents σmax from grow-
ing too large, so that the subsequent margin maximization
process could reliably maximize intrinsic separability.

Theorem 5. Supposing that the two clusters yielded by
MSPC are respectively generated from two independent dis-
tributions with mean µ1 and µ2, and with a MSP (λ = 0)
of p, then there exists a hyperplane {w, b} such that at
least 1 − r fraction of the points from each distribution
satisfy |w>xi + b| ≥ ρ∆/2 (0 ≤ ρ ≤ 1), where ∆ =

|w>(µ1 − µ2)|, and r = p−1−1
(p−1−1)+(1−ρ)2/4 .

In MMC, we are usually maximizing a soft margin, by
pushing most of the points away from the margin. From The-
orem 5, we see that MSPC also ensures a large fraction (e.g.,
at least 1− r) of the samples are separated by a margin ρ∆,
where ∆ is actually the average margin between two clus-
ters. If we define the |w>xi + b|/∆ as the relative margin,
then a high MSP solution ensures a large relative margin
with high probability. Unlike the absolute margin in MMC,
the relative margin is invariant to feature scaling.

Relationships to LDA-based clustering approaches
Several recent work (De la Torre and Kanade 2006; Ding
and Li 2007; Ye, Zhao, and Wu 2007) addressed the advan-
tages of integrating linear discriminant analysis (LDA) and
k-means clustering. It can be shown that MSPC is related to
the these discriminative clustering approaches.

The objective function (binary clustering case) introduced
in (De la Torre and Kanade 2006) is given by

max
w∈Rd,y∈{1,2}N

(w>Sw)−1w>Sb(y)w, (7)

where S is the total scatter matrix, and Sb is the between
cluster scatter matrix, which is a function of the label vector
y.

It can be observed that for binary clustering, S and Sb are
respectively proportional to Σ̂ and (µ̂1 − µ̂2)(µ̂1 − µ̂2)> in
our algorithm. Therefore, the two expressions in (4) and (7)
are actually equivalent, if we omit the ratios rj and the reg-
ularization term in the former. Thus the algorithm in (De la
Torre and Kanade 2006) essentially maximizes an approxi-
mated lower bound of MSP (the objective of MSPCEIG).

The objective function in (Ding and Li 2007) is identical
to that in (De la Torre and Kanade 2006), except the total
scatter matrix S is replaced by the within cluster scatter ma-
trix Sw. Since we have the relation St = Sw + Sb, the two
objective are essentially equivalent. Thus the algorithm in
(Ding and Li 2007) also maximize an approximated lower
bound of MSP, but with a different optimization scheme.

The discriminative k-means algorithm proposed in (Ye,
Zhao, and Wu 2007) has a similar objective as that in (Ding
and Li 2007). It performs kernel k-means clustering with the
kernel matrix IN − (IN + (λ)−1XX>)−1. Obviously, this
kernel matrix can be obtained from Theorem 3 by setting
the regularization matrix Λ to IN . Though the difference
seems trivial, it is critical since the regularizer Λ preserves
the property of invariant to AFS in our algorithm.

Empirical Study
Experiment setup All algorithms are implemented in
MATLABTM, and are executed on an Intel i7 Quad Core
CPU 3.39GHz machine with 16GB RAM. All of data sets
are obtained from the UCI repository, except the handwrit-
ten digits data sets MNIST4 and USPS. For those data sets
originally contain more than two classes, we select their first
two classes to create binary clustering tasks, if not explicitly

4Available at http://yann.lecun.com/exdb/mnist/
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MSPCMPM MSPCGEP MSPCEIG

1. Initialize y by k-means;
2. Fix y and optimize {w, b} with MPM;
3. Update the label vector y according

to sign(w>xi + b);
4. Repeat Step 2 and 3 until converge.

1. Initialize y by k-means;
2. Fix y and optimize w by solving (5);
3. Fix w, and find the optimal y that

maximizes the lower bound of κ;
4. Repeat Step 2 and 3 until converge.

1. Calculate IN − (IN + X̃)−1

or X(X>X + λΛ)−1X>;
2. Compute the largest eigenvector q∗;
3. Obtaining the optimal label vector

via the sign of XX>q∗.

Table 1: Summary of the proposed three MSPC algorithms.

ID Data N d KM Iter- LG- MVC LDA Dis- MSPC MSPC MSPC
SVR MMC -KM KM -MPM -GEP -EIG

1 ionosphere 351 34 28.77 22.51 24.70 15.67 28.77 17.95 28.77 29.63 29.63
2 breast 683 10 3.81 3.22 3.51 2.93 3.81 3.81 2.93 2.63 2.78
3 australian 690 14 14.49 14.06 14.06 17.25 14.49 14.49 14.49 14.06 16.67
4 diabetes 768 8 33.07 30.86 32.68 29.63 32.94 28.26 32.55 31.51 31.77
5 letter 1555 16 6.30 5.53 0.00 5.66 5.53 5.59 5.59 5.53 8.75
6 satellite 2236 36 4.25 6.17 0.76 0.85 4.07 4.20 0.63 3.80 1.70
7 spam 4601 57 20.04 20.98 18.30 N/A 20.07 19.17 13.76 17.19 21.75
8 mnist3vs8 13966 784 20.04 20.06 18.12 N/A 18.78 18.78 17.85 18.54 23.19
9 mnist1vs7 15170 784 4.23 4.23 2.30 N/A 2.52 1.54 0.93 1.10 3.70

10 mnist8vs9 13783 784 7.34 40.16 7.19 N/A 5.12 4.43 4.25 4.67 18.50

Table 2: Clustering error (%) on ten clustering tasks.
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Figure 1: Clustering accuracy (%) with respect to
anisotropic feature scaling.

stated. For comparisons to be fair, we normalize each feature
of the UCI data sets to the range [-1,1]5.

Baselines and parameter setting The baseline clustering
algorithms include two relatively efficient MMC algorithms,
IterSVR (Zhang, Tsang, and Kwok 2007) and LGMMC (Li
et al. 2009); MVC (Niu et al. 2013), and two related DC
algorithms, LDA-KM (Ding and Li 2007) and Dis-KM (Ye,
Zhao, and Wu 2007). For IterSVR, LGMMC and MVC, both
the regularization parameter C and the Gaussian kernel pa-
rameter σ are tuned (linear kernel LGMMC is used for the
three mnist data sets), following the settings in (Li et al.
2009) and (Niu et al. 2013), i.e., the hyperparameters cor-
respond to highest clustering accuracy are directly selected.
For LDA-KM, Dis-KM and the proposed three MSPC al-
gorithms, the regularization coefficient, which is the only
hyperparameter, is optimally chosen from the candidate set
[10−4, 10−3, . . . , 104] based on the clustering accuracy.

5Actually, the proposed algorithms performed well on both nor-
malized and unnormalized data, while some baselines degraded
significantly without feature normalizing.

Clustering Accuracy and efficiency
We report the clustering error on seven UCI data sets and
three binary clustering tasks in Table 2, where the best re-
sults are shown in bold. An ”N/A” indicates an algorithm
that fails to finish in a reasonable time (24 hours). It can be
observed that MSPCMPM, which directly optimizes the MSP,
achieves very encouraging results. It yields the lowest clus-
tering error on the five relatively larger data sets. This val-
idates MSP as a proper clustering measure. In accordance
with our analysis in previous sections, the results obtained
by MSPCGEP are similar to that of MSPCMPM on the bal-
anced data sets, e.g., letter and the three binary mnist tasks.
However, the clustering error given by MSPCEIG is relatively
higher than that obtained by the other two MSPC algorithms.

In Table 3, we report the running time of the DC algo-
rithms on six relatively larger data sets. From the results, one
can observe that the proposed three algorithms are several
orders of magnitude faster than MMC and MVC. MSPCMPM

is the most efficient algorithm on low dimensional data sets,
while it is surpassed by MSPCGEP on mnist tasks which have
a relatively larger dimensionality. We attribute the high ef-
ficiency of MSPCMPM and MSPCGEP to two main reasons:
1) solving for w is independent of the number of training
data when the means and covariances are given, thus it is
efficient when d is not large, and 2) the covariances can be
updated efficiently by using the formula (2) in Appendix B
(the means can be updated similarly). Although some base-
lines, such as Iter-SVR, also have a linear complexity in N ,
there is a large constant hidden in it. Note that for extremely
high dimensional data with d � N , we can use MSPCEIG,
or use MSPCMPM with kernel MPM introduced in (Lanckriet
et al. 2003).

Sensitivity to anisotropic feature scaling
In order to verify that MSPC is insensitive to AFS, we run
MSPCMPM on six deliberately un-uniformly scaled data sets.
At each time, we randomly select one of the features from
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ID Data Iter-SVR LG-MMC MVC LDA-KM Dis-KM MSPCMPM MSPCGEP MSPCEIG

5 letter 50.2 45.7 178 0.07 0.38 0.02 0.23 0.45
6 satellite 9.16 140 603 0.10 1.05 0.02 0.27 0.95
7 spam 42.6 1769 N/A 0.52 5.01 0.09 0.10 5.63
8 mnist3vs8 6372 1824 N/A 5.53 96.8 2.82 2.72 9.25
9 mnist1vs7 3602 2602 N/A 3.01 184 1.65 1.54 16.6
10 mnist8vs9 3504 2990 N/A 4.01 109 2.40 1.83 9.88

Table 3: Wall clock time (in seconds) of the clustering algorithms.

Figure 2: MSP (the circles) and CA (the bars) on three groups of data sets. From left to right: the 10 tasks presented in Table
2; the 21 binary clustering tasks created from Satellite; and the 45 binary clustering tasks created from USPS( the tasks are
ordered by “0vs1”,“0vs2”,...,“0vs9”,“1vs2”,...,“8vs9”).
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Figure 3: Correlation between CA and MSP.

a data set, and scale its values by a factor of a, where a
is chosen from the set [2, 4, 8, 16]. Then we run k-means,
LGMMC with linear kernel, and MSPCMPM on it. This ex-
periment is repeated 10 times (we ensure 10 different fea-
tures are scaled, and for diabetes all the eight features are
selected and scaled once) on each data set, and the average
results obtained by the three algorithms are shown in Fig.1.
It is obvious that MSPCMPM is robust to such feature scaling,
while the other two algorithms degrade significantly with a
large scaling factor. Note that MSPCMPM is a local search al-
gorithm and it is initialized with k-means, thus it is not fully
immune to AFS. If we can afford to find the global optimum,
then MSPC solutions will totally be unaffected by AFS, as
guaranteed by Theorem 1.

MSP and clustering accuracy
Estimating clustering accuracy (CA) without ground truth
labels is a very challenging task. Since MSP is a problem-
independent clustering quality measure, and it has the same
value range as CA ([0,1]), it is interesting to see how they
correlate with each other empirically. Fig.2 and Fig.3 show
the CA and corresponding MSP obtained by MSPCMPM on
the ten tasks presented in Table 2, the 21 binary cluster-
ing tasks created from Satellite, and the 45 binary cluster-
ing tasks created from USPS. One can observe that these
two variables do correlate with each other to some extent.
For example, the correlation coefficient on the 10 UCI and

MNIST data sets is 0.72, indicating a moderate positive lin-
ear relationship between them. If we only consider the later
five larger data sets, then the correlation coefficient reaches
0.97, which means an almost perfect linear correlation. In-
terestingly, the MSP indicates the separability of the three
MNIST tasks can be ordered as “1vs7”>“8vs9”>“3vs8”,
which exactly matches the order given by CA. The results on
the binary clustering tasks of Satellite and USPS also show
a high correlation between MSP and CA, with coefficients
of 0.86 and 0.81 respectively (shown in Fig.3).

Conclusion
In this paper, we proposed a new clustering metric, mini-
mum separation probability (MSP), which is a lower bound
of the generalization accuracy of a classifier learnt from the
clustering labeling. Then we proposed three clustering ap-
proaches by approximately maximizing MSP. We provided a
detailed analysis of the relations between MSPC and several
existing discriminative clustering approaches. Empirical re-
sults demonstrated that MSP is insensitive to anisotropic fea-
ture scaling, and it showed a positive correlation with clus-
tering accuracy on real data sets. The proposed algorithms
were impressively faster than MMC and MVC algorithms,
and compared favorably to state-of-the-art clustering algo-
rithms in terms of accuracy. Future work could focus on
further studying the relations between MSP and clustering
accuracy, and extending MSPC for multi-class clustering.
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