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Abstract

Hubness has been recently identified as a problematic
phenomenon occurring in high-dimensional space. In
this paper, we address a different type of hubness that
occurs when the number of samples is large. We in-
vestigate the difference between the hubness in high-
dimensional data and the one in large-sample data. One
finding is that centering, which is known to reduce the
former, does not work for the latter. We then propose a
new hub-reduction method, called localized centering.
It is an extension of centering, yet works effectively for
both types of hubness. Using real-world datasets con-
sisting of a large number of documents, we demonstrate
that the proposed method improves the accuracy of k-
nearest neighbor classification.

Introduction
The k-nearest neighbor (kNN) classifier (Cover and Hart
1967) is a simple instance-based classification algorithm. It
predicts the class label for a query sample using a majority
vote from its k most similar samples in a dataset, and thus
no traning is required beforehand. In spite of its simplic-
ity, the performance of kNN is comparable to other meth-
ods in tasks such as text classification (Yang and Liu 1999;
Colas and Brazdil 2006).

However, the kNN classifier is vulnerable to hubness, a
phenomenon known to occur in high-dimensional data; i.e.,
some samples in a high-dimensional dataset emerge as hubs
that frequently appear in the k nearest (or k most-similar)
neighbors of other samples (Radovanović, Nanopoulos, and
Ivanović 2010a).

The emergence of hubness often affects the accuracy of
kNN classification, as it incurs a bias in the prediction of
the classifier towards the labels of the hubs. This happens
because the predicted label of a query sample is determined
by the labels of its kNN samples, in which hubs are very
likely included.

∗Equally contributed
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To mitigate the influence of hubness in the kNN classifi-
cation, Suzuki et al. (2013) reported that centering—that is,
shifting the origin of the vector space to the centroid of the
dataset—is effective at reducing hubs, when sample similar-
ity is measured by the inner product.

Contributions
As in Suzuki et al. (2013), this paper also addresses how to
alter the inner product similarity into the one which produces
less hubs.

Thus far, it is known that hubness emerges in high-
dimensional datasets, and that hubs are the samples sim-
ilar to the data centroid (Radovanović, Nanopoulos, and
Ivanović 2010a). In such cases, centering successfully re-
duces hubness.

We point out that there exists a different type of hubness
which occurs when the number n of samples is large, with
the dimension d of the vector space not necessarily very
high; e.g., n = 10, 000, d = 500. Unlike the hubs in high-
dimensional datasets, these hubs are generally not so similar
to the centroid of the entire dataset. Consequently, centering
fails to reduce them.

We demonstrate that such a “new” hub sample is the one
highly similar to its local centroid, the mean of samples
within its local neighborhood. On the basis of this find-
ing, we propose a new hub-reduction method, which we
call localized centering. Our experimental results using syn-
thetic data indicate that localized centering reduces the hub-
ness not suppressed by classical centering. Using large real-
world datasets, moreover, we show that the proposed method
improves the performance of document classification with
kNN insofar as it reduces hubness.

Hubness in High-Dimensional Data
Hubness is known as a phenomenon concerning near-
est neighbors in high dimensional space (Radovanović,
Nanopoulos, and Ivanović 2010a). Let D ⊂ Rd be a dataset
in d-dimensional space, and let Nk(x) denote the number of
times a sample x ∈ D occurs in the kNNs of other samples
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Figure 1: Hubness in high-dimensional data (d = 4000):
The N10 distribution (a) before centring, and (b) after cen-
tering; (c) scatter plot of samples with respect to the N10

value and the similarity to the data centroid (before center-
ing).
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Figure 2: Hubness in large-sample data (|D| = 10, 000):
The N10 distribution (a) before centering, and (b) after cen-
tering; (c) scatter plot of samples with respect to the N10

value and the similarity to the data centroid (before center-
ing).

in D under some similarity measure. As the dimension d in-
creases, the shape of the distribution for Nk changes such
that it has a longer right tail, with a small number of sam-
ples taking unexpectedly large Nk values. Such samples are
called hubs, and this phenomenon (or the extent to which a
sample is a hub) is called hubness.

Here we demonstrate the emergence of hubness using
synthetic data. To simulate a document collection repre-
sented as “bag-of-words” vectors, we generate a set D
of sparse d-dimensional vectors holding non-negative ele-
ments. Let n = |D| be the number of samples to gen-
erate. Initially, all n vectors in D are null. For each di-
mension i = 1, · · · , d, a real number is drawn from the
LogNormal(5, 1) distribution. Let ni be its rounded integer.
We make exactly ni items hold a non-zero value in the ith
component, by choosing ni vectors from D uniformly at
random, and replacing their ith component with a random
number drawn uniformly from [0, 1]. Finally all sample vec-
tors are normalized to unit length.

We use the inner product as the measure of similarity.
Since all sample vectors have unit length, the sample sim-
ilarity is equivalent to cosine. Note however that for vectors
not belonging to D, the similarity (i.e., inner product) is not
necessarily equivalent to cosine. This also applies to the cen-
troid (i.e., the sample mean) ofD, which may not have a unit
length even if all samples in D do.

Figure 1(a) shows the distribution of N10 (i.e., Nk with
k = 10) for n = 2000 samples in high-dimensional space

(d = 4000). In the figure, we can observe the presence of
hubs, i.e., samples with an extremely large N10 value.

Following Radovanović, Nanopoulos, and Ivanović
(2010a), we evaluate the degree of hubness by the skewness
of theNk distribution, SNk

= E[(Nk − µNk
)
3
]/σ3

Nk
, where

E[ · ] is the expectation operator, and µNk
and σNk

are the
mean and the standard deviation of the Nk distribution, re-
spectively. Skewness is a standard measure for the degree of
symmetry of the distributions. Its value is zero for a sym-
metric distribution like Gaussian, and it takes a positive or
negative value for distributions with a long right or left tail.
In particular, a large (positive) SNk

indicates strong hubness
in a dataset. Indeed, SNk

is 4.45 in this synthetic dataset
(Figure 1(a)).

Figure 1(c) gives the scatter plot of samples with respect
to the N10 value and the similarity to the data centroid.
As the figure shows, a strong correlation exists between
them. Thus for this high-dimensional dataset, the samples
similar to the centroid are making hubs. See Radovanović,
Nanopoulos, and Ivanović (2010a) for more examples.

Centering as a Hubness Reduction Method
Centering is a transformation that involves shifting the
origin of the feature space to the data centroid c =
(1/|D|)

∑
x∈D x. It is a classic technique for removing ob-

servation bias in the data, but only recently has it been iden-
tified as a method for reducing hubness (Suzuki et al. 2013).

An important property of centering is that it makes the
inner product between a sample and the centroid c uniform
(actually zero). To see this, consider the similarity of a sam-
ple x ∈ D to a given query q ∈ Rd, given by their inner
product:

Sim(x; q) ≡ 〈x, q〉.
After centering, the similarity is changed to

SimCENT(x; q) ≡ 〈x− c, q − c〉. (1)

Substituting q = c, we have for any x ∈ Rd,

SimCENT(x; c) = 0,

which means that no samples are specifically similar to the
centroid. Thus, hubness is expected to decrease after center-
ing, at least in the dataset used to plot Figure 1(a) and (c),
for which samples similar to the centroid constitute hubs.

As expected, SNk
for this dataset decreases from 4.45 to

0.27 after centering; observe that the Nk distribution shown
in Figure 1(b) is nearly symmetric. Suzuki et al. (2013) give
a more detailed explanation as to why hubs are suppressed
by centering.

Hubness in Large-Sample Data
Nevertheless, there are cases where hubs are not suppressed
by centering. Let us generate a synthetic dataset D in the
same way as before, except that this time, the number of
samples is larger (|D| = 10, 000) and the feature space is
not especially high-dimensional (d = 500). For this data, the
skewness SN10

of the N10 distribution is 5.88 before center-
ing and 5.82 after centering; thus, hubness is not reduced
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(b) Skewness after centering

Figure 3: Contour plots for the skewness of the N10 distri-
bution (a) before and (b) after centering, with variations in
the sample size and dimensions (the + mark corresponds to
a dataset). A warmer color represents the existence of hub-
ness.

much. Indeed, as shown in Figure 2(a) and (b), the shape
of the N10 distribution is nearly identical before and after
centering. Moreover, the scatter plot in Figure 2(c) shows
that the requisite condition for the success of the centering
method—samples with a larger Nk value (i.e. hubs) have
a higher similarity to the data centroid—is unmet in this
dataset.

We further generate a range of datasets by changing the
number of samples |D| between 100 and 10, 000 and dimen-
sion d between 100 and 4000. For each dataset, the skewness
of the N10 distribution is calculated, both before and after
the data is centered. For each combination of |D| and d, we
generate ten datasets and take the average skewness.

Figure 3 shows the contour plot for the skewness of the re-
sulting N10 distribution; panel (a) plots the skewness before
centering, and panel (b) the one after centering. In panel (a),
hubness occurs in the upper-left and lower-right regions. By
comparing the two panels, we see that the hubness in the
upper-left region disappears after centering, whereas the one
in the lower-right region persists to almost the same degree
as it did before centering.

To investigate why centering fails to reduce hubness in the
lower-right region, we introduce two quantities defined for
each sample: local affinity and global affinity. We use these
quantities to describe how a sample is populated in a dataset.

LocalAffinity(x) is defined for a sample x ∈ D as the
average similarity between x and the samples belonging to
the κNN of x, calculated by

LocalAffinity(x) ≡ 1

κ

∑
x′∈κNN(x)

〈x, x′〉 = 〈x, cκ(x)〉,

(2)
where κ, called local segment size, is a parameter determin-
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Figure 4: Contour plots for (a) the skewness of the N10 dis-
tribution after localized centering, and (b) the global-to-local
affinity ratio, for the same datasets used in Figure 3.

ing the size of the local neighborhood,1 and

cκ(x) =
1

κ

∑
x′∈κNN(x)

x′

is the local centroid for x.
GlobalAffinity(x) is defined as the average similarity

between x and all samples in D.

GlobalAffinity(x) ≡ 1

|D|
∑
x′∈D
〈x, x′〉 = 〈x, c〉, (3)

where c = (1/|D|)
∑
x′∈D x

′ is the data centroid. As shown
in the last equality, global affinity for x is simply the inner
product similarity between x and c.

If D is a set of vectors with non-negative components,
then LocalAffinity(x) ≥ GlobalAffinity(x) ≥ 0 for
all x ∈ D. In text classification, a sample text is normally
represented as a (tf-idf weighted) word-count vector, and
the above inequality holds. Further note that if κ = |D|,
LocalAffinity(x) = GlobalAffinity(x).

We now consider the global-to-local affinity ratio, i.e.,
GlobalAffinity(x)/LocalAffinity(x). For a dataset of
non-negative vectors, this ratio falls within [0, 1]. It can be
used as a measure of how a sample x is not “localized” in
D; if the ratio is close to zero for some κ� |D|, the sample
x has a local set of samples to which x has especially high
similarity. If, to the contrary, the ratio is near one regardless
of κ, x does not possess this special set of similar samples.

Let us calculate the global-to-local affinity ratio for the
datasets used to draw Figure 3. Because this ratio is defined
for individual samples, we take the average over all samples
in a dataset. Figure 4(b) displays a contour plot in terms of
the average ratio, calculated over datasets of varying sample
sizes and dimensions. Here, the local segment size is fixed
at κ = 20. Comparing this plot to the one in Figure 3(b), we
see that the lower-right region, where the skewness remains

1The parameter κ in LocalAffinity can be different from the
parameter k of the kNN classification performed subsequently. In-
deed, in later experiments, we will tune κ so as to maximize the
correlation with the N10 skewness, independently from the kNN
classification.
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Figure 5: (a) Correlation between N10 and local affinity (be-
fore localized centering) and (b) the N10 distribution after
localized centering applied to the same large-sample dataset
used to draw Figure 2.
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Figure 6: Correlation between N10 and local affinity for the
same high-dimensional dataset used to draw Figure 1.

high after centering, corresponds to the region in Figure 4(b)
where the global-to-local affinity ratio is small. This indi-
cates that samples are “localized” in a dataset in this region,
which in turn suggests that the local affinity is more rele-
vant for reducing hubness than the global affinity in such a
dataset.

Indeed, for the large-sample dataset (|D| = 10, 000) of
Figure 2, a strong correlation is observed between the N10

value and the local affinity (i.e., the similarity to the local
centroid), as shown in Figure 5(a). Recall that by contrast,
correlation is weak between the N10 value and the global
affinity (i.e., the similarity to the data centroid), as seen in
Figure 2(c).

Furthermore, as shown in Figure 6, the N10 value cor-
relates well with the local affinity even for the high-
dimensional data (d = 4000) of Figure 1. These results
indicate that the local affinity can be a general indicator
of hubness, not just in large-sample data, but also in high-
dimensional data.

Proposed Method: Localized Centering
Inspired by the above observation that the local affinity is a
good indicator of hubness, we propose a new method of hub-
ness reduction based on the local affinity, which is effective
for both high-dimensional space, and large-sample data.

To this end, we draw analogy from Equation (1), the sim-
ilarity of a sample x ∈ D to a query q ∈ Rd after centering.

When nearest neighbors of a fixed query q is concerned, q is
a constant as well as c. Thus from Equation (1),

SimCENT(x; q) ≡ 〈x− c, q − c〉
= 〈x, q〉 − 〈x, c〉+ constant. (4)

In other words, the global affinity 〈x, c〉 is subtracted from
the original similarity score 〈x, q〉. In the same vein, the new
method, which we call localized centering, subtracts the lo-
cal affinity of x from the original similarity to q, as follows:2

SimLCENT(x; q) ≡ 〈x, q〉 − 〈x, cκ(x)〉 . (5)
Equation (5) contains the parameter κ to determine the
size of the local neighborhood. We systematically select κ
depending on the dataset, so that the correlation between
Nk(x) and the local affinity 〈x, cκ(x)〉 is maximized. Note
that if κ = |D|, the proposed method reduces to the standard
centering.

After the transformation with Equation (5), for any sam-
ple x ∈ D, the similarity to its local centroid cκ(x) is con-
stant, since substituting q = cκ(x) in Equation (5) yields

SimLCENT(x; cκ(x)) = 0.

In other words, no samples have specifically high similarity
to their local centroids after the transformation. Taking into
account the observation that the samples with high similarity
to their local centroids become hubs, we expect this transfor-
mation to reduce hubness. This expectation is borne out for
the dataset illustrated in Figure 5(b), where hubs disappear
after localized centering.

Localized centering also reduces hubness in other datasets
of varying sample sizes and dimensions. In Figure 4(a), we
display the contour plot for the skewness of the N10 dis-
tribution after localized centering. From the figure, we can
see that localized centering reduces both type of hubness:
the one occurs in large-sample data (corresponding to the
lower-right region of the contour plot), and the one occurs
in high-dimensional data (the upper-left region).

Even for high-dimensional data, the localized center-
ing (Equation (5)) is as effective as the standard centering
(Equation (4)). The explanation is that in such a dataset, the
global-to-local affinity ratio is close to one as indicated in
the upper-left (pale-colored) region of Figure 4(b). This im-
plies 〈x, cκ(x)〉 ≈ 〈x, c〉 for most samples x in datasets of
this region, and hence Equation (5) becomes nearly identical
to Equation (4).

We can further extend Equation (5). The second term on
the right side of the formula can be interpreted as a penalty
term used to render the similarity score smaller depending
on how likely x is to become a hub. Now, in order to control
the degree of penalty, we introduce a parameter γ, to some
extent heuristically, such that

SimLCENT
γ (x; q) ≡ 〈x, q〉 − 〈x, cκ(x)〉γ . (6)

Parameter γ can be tuned so as to maximally reduce the
skewness of the Nk distribution.

2Unlike the standard centering method, transformation by local-
ized centering can no longer be interpreted as shifting the origin to
somewhere in the vector space. Moreover, SimLCENT is not a sym-
metric function; i.e., SimLCENT(x; y) = SimLCENT(y;x) does not
generally hold.
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Figure 7: Relation between the sample size and the skew-
ness of the N10 distribution: baseline cosine similarity with-
out any centering (green), with centering (blue), and with
localized centering (red). The average global-to-local affin-
ity ratio (light blue) is also plotted.

Experiments Using Real-world Data
We applied localized centering to real-world datasets for
multiclass document classification, in order to evaluate its
effect in reducing hubness and to determine whether it im-
proves the classification accuracy. The datasets are: We-
bKB, Reuters-52, and 20Newsgroups, all preprocessed and
distributed by Cardoso-Cachopo (2007), and TDT2-30 dis-
tributed by Cai, He, and Han (2005). We represented each
document as a tf-idf weighted “bag-of-word” vector normal-
ized to unit length. Throughout the experiment, inner prod-
uct is used as the measure of similarity. Therefore the base-
line similarity measure is equivalent to cosine, since we use
normalized vectors.

Hubness Reduction
In the first experiment, we examined whether localized cen-
tering reduces hubness in real large-sample datasets, as it did
with the synthetic datasets in the previous sections. We ran-
domly selected a subset of samples from an entire dataset,
increasing the size of the subset from 100 to 4000. For each
subset size, we repeated the random selection of a subset
ten times, and computed the average skewness of the N10

distribution with each repetition. We compared the average
skewness values before and after centering, and the one after
localized centering.

The results are shown in Figure 7. Throughout the four
datasets that were examined, we observe the same trend. As
the sample size is increased, the N10 skewness for the orig-
inal similarity also increases; i.e., hubness is enlarged. With
centering, the skewness also increases with the sample size,

even though the amount of increase is slightly smaller than
the original similarity measure. By contrast, with localized
centering the skewness remains at approximately the same
value, regardless of the sample size. Standard centering is ef-
fective when the number of samples is small (i.e., fewer than
approximately 500), but not for datasets with more samples.
Localized centering on the other hand keeps hubness at a
low level even for large datasets.

Moreover, we calculated the average global-to-local affin-
ity ratio for each dataset using Equations (2) and (3), and
overprinted the plot in Figure 7. Here, we clearly observe
the same tendency as previously observed with the synthetic
datasets: When the global-to-local affinity ratio is small, lo-
calized centering suppresses hubness, whereas standard cen-
tering fails to do so.

kNN Classification Accuracy

We examined whether reduction of hubness by localized
centering leads to an improved kNN classification accuracy.
The task is to classify a document into one of the prede-
fined categories. To simulate a situation in which the num-
ber of training samples is large, we ignored the predefined
training-test splits provided with the datasets. Instead, the
performance was evaluated by the accuracy of the leave-one-
out cross validation over all samples. We predicted the label
for a test sample (document) with kNN classification, using
the remaining documents as training samples, and calculated
the rate of correct predictions.

Besides the baseline inner product (cosine) similarity
(COS), we tried five similarity measures transformed from
the baseline similarity: the standard centering (CENT), lo-
calized centering (LCENT)3, commute-time kernel (CT),
mutual proximity (MP), and local scaling (LS). The
commute-time kernel was originally presented in Saerens et
al. (2004) to define the similarity between graph nodes based
on graph Laplacian, and was later shown effective in reduc-
ing hubness (Suzuki et al. 2012).

Mutual proximity4 (Schnitzer et al. 2012) and local scal-
ing (Zelnik-Manor and Perona 2005) are hub reduction
methods for distance metrics, which attempt to symmetrize
the nearest-neighbor relations by rescaling the distance be-
tween samples. Since the value calculated as one minus the
cosine (i.e., the baseline similarity) can be considered a dis-
tance, MP and LS are applicable to the task here.

The results are shown in Table 1. Methods based on lo-
cal transformations (i.e., LCENT and LS) achieved the best
overall performance in terms of accuracy. The standard cen-
tering (CENT) results in improved accuracy and skewness
within a small margin of the baseline similarity. In contrast,
the localized centering (LCENT) reduces skewness (i.e., re-
duces hubness) and increases accuracy considerably.

3As mentioned previously, the parameters κ and γ in Equa-
tion (6) were selected with respect to the N10 skewness, without
using the label for the data.

4We used a MATLAB script norm mp empiric.m distributed at
http://ofai.at/∼dominik.schnitzer/mp.
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(a) WebKB (4168 samples, 7770 features, 4 classes)

Accuracy Skewness
k COS CENT LCENT CT MP LS COS CENT LCENT CT MP LS

10 0.753 0.756 0.761 0.743 0.761 0.764 2.64 2.85 1.13 3.52 0.74 1.15
20 0.769 0.766 0.774 0.757 0.771 0.777 2.01 2.12 0.87 2.51 0.69 0.65
30 0.770 0.776 0.780 0.764 0.780 0.786 1.74 1.70 0.73 2.06 0.65 0.47
40 0.777 0.778 0.781 0.772 0.778 0.785 1.63 1.42 0.66 1.78 0.52 0.34
50 0.776 0.780 0.785 0.781 0.783 0.790 1.57 1.25 0.63 1.60 0.39 0.22

(b) Reuters-52 (9100 samples, 19, 241 features, 52 classes)

Accuracy Skewness
k COS CENT LCENT CT MP LS COS CENT LCENT CT MP LS

10 0.872 0.885 0.901 0.858 0.898 0.895 14.82 11.04 1.76 6.93 0.82 2.36
20 0.876 0.894 0.913 0.885 0.908 0.904 7.92 6.42 1.58 4.92 0.77 1.76
30 0.875 0.896 0.913 0.889 0.909 0.904 5.74 4.64 1.61 4.04 0.78 1.37
40 0.869 0.896 0.913 0.889 0.903 0.901 4.68 3.77 1.63 3.55 0.81 1.08
50 0.866 0.894 0.910 0.892 0.900 0.897 4.02 3.27 1.63 3.22 0.80 0.90

(c) TDT2-30 (9394 samples, 36, 093 features, 30 classes)

Accuracy Skewness
k COS CENT LCENT CT MP LS COS CENT LCENT CT MP LS

10 0.964 0.963 0.964 0.953 0.962 0.961 3.63 3.18 0.91 4.20 0.47 0.80
20 0.965 0.963 0.964 0.955 0.962 0.962 3.13 2.81 0.81 3.09 0.38 0.77
30 0.966 0.964 0.966 0.958 0.963 0.963 2.72 2.42 0.45 2.62 0.31 0.71
40 0.965 0.963 0.966 0.959 0.963 0.963 2.50 2.16 0.45 2.34 0.25 0.64
50 0.965 0.963 0.967 0.960 0.963 0.965 2.36 1.98 0.46 2.15 0.22 0.61

(d) 20Newsgroups (18, 820 samples, 70, 216 features, 20 classes)

Accuracy Skewness
k COS CENT LCENT CT MP LS COS CENT LCENT CT MP LS

10 0.859 0.860 0.877 0.838 0.865 0.874 3.25 2.99 0.81 5.53 0.49 0.77
20 0.845 0.845 0.861 0.841 0.852 0.862 3.14 2.69 0.89 4.09 0.49 12.90
30 0.834 0.836 0.849 0.837 0.846 0.855 3.06 2.47 1.05 3.42 0.43 6.71
40 0.831 0.832 0.841 0.833 0.840 0.849 3.04 2.37 1.27 2.97 0.39 4.54
50 0.825 0.827 0.835 0.833 0.835 0.844 3.01 2.27 1.36 2.67 0.36 3.06

Table 1: Accuracy (higher the better) of document classification via kNN, and skewness (smaller the better) for the Nk distri-
bution calculated using five similarity or distance measures for different k. COS: cosine similarity, CENT: centering, LCENT:
localized centering, CT: commute-time kernel, MP: mutual proximity, LS: local scaling. The bold letter indiates best accuracy.

Discussion and Related Work

Radovanović, Nanopoulos, and Ivanović (2010b) remarked
that hubs tend to be more similar to their respective cluster
centers. However, to find clusters we have to choose the right
clustering algorithms and parameters (such as the number of
clusters for the K-means clustering). The localized center-
ing instead employs the local centroids of individual samples
to detect hubs. Local centroids are straightforward to com-
pute, and the parameter κ can be systematically tuned with
respect to the Nk skewness.

The existence of hubness in a dataset depends on two fac-
tors: (1) high intrinsic dimensionality, and (2) spatial central-
ity, in the sense that a “central” point exists in the data space
with respect to the given distance (or similarity) measure
(Radovanović, Nanopoulos, and Ivanović 2010a). If at least
one of the two factors is absent, hubness will not emerge.
Localized centering can be understood as an approach that
eliminates the second factor.

A key observation behind localized centering is the con-
nection between the hubness occurring in a large-sample

dataset and the low global-to-local affinity ratio; i.e., we
pointed out that samples are “localized” and not uniformly
populated in the dataset. On the other hand, Low et al. (2013)
argued that the hubness phenomenon is directly related to
the existence of density gradients, rather than high dimen-
sionality, and hence the phenomenon can be made to occur
in low-dimensional data. Although our argument is based
on similarity measures, whereas Low et al. (2013) assume
distance, the two arguments seem consistent, as the non-
uniformity of a sample population in a dataset can be a
source of a density gradient, and therefore a cause of hub-
ness.

Localized centering and local scaling (Zelnik-Manor and
Perona 2005) have similar formulations, in that both penal-
ize the original similarity/distance on the basis of the infor-
mation on the neighborhood of individual samples. More-
over, localized centering subtracts the local affinity from the
original similarity score, whereas local scaling divides the
original distance by the local scale, which is the distance to
the kth nearest neighbor. It is intriguing that these formula-
tions are derived with different objectives in mind: Local-
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ized centering tries to decrease the correlation between Nk
and local affinity, but local scaling aims at making neighbor-
hood relations more symmetric.

Concerning the problematic behavior of large-sample
data, von Luxburg, Radl, and Hein (2010) showed that the
commute-time distance becomes meaningless in a graph
with a large number of nodes; in the limit, it gives the same
distance rankings regardless of the query node, which im-
plies that the top-ranked nodes are in fact hubs.

Conclusion
Although hubness is known to occur in high-dimensional
spaces, we observed that hubness also occurs when the num-
ber of samples is large relative to the dimension of the space.
Analyzing the difference between these two cases of hub-
ness, we proposed localized centering, a new hub-reduction
method that works effectively for both types of hubness.
Using real-world data, we demonstrated that localized cen-
tering effectively reduces hubness and improves the perfor-
mance of document classification. A theoretical analysis of
hubness reduction with localized centering shall be pursued
in future work.
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