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Abstract

Predictive state representations (PSRs) are models of
dynamical systems that represent state as a vector of
predictions about future observable events (tests) con-
ditioned on past observed events (histories). If a prac-
titioner selects finite sets of tests and histories that are
known to be sufficient to completely capture the system,
an exact PSR can be learned in polynomial time using
spectral methods. However, most real-world systems are
complex, and in practice computational constraints limit
us to small sets of tests and histories which are there-
fore never truly sufficient. How, then, should we choose
these sets? Existing theory offers little guidance here,
and yet we show that the choice is highly consequential—
tests and histories selected at random or by a naı̈ve rule
significantly underperform the best sets. In this paper
we approach the problem both theoretically and empir-
ically. While any fixed system can be represented by
an infinite number of equivalent but distinct PSRs, we
show that in the computationally unconstrained setting,
where existing theory guarantees accurate predictions,
the PSRs learned by spectral methods always satisfy a
particular spectral bound. Adapting this idea, we pro-
pose a simple algorithmic technique to search for sets of
tests and histories that approximately satisfy the bound
while respecting computational limits. Empirically, our
method significantly reduces prediction errors compared
to standard spectral learning approaches.

Introduction
Hidden Markov models (HMMs) and their variants, which
postulate state variables that are never observed, are among
the most well-known models of discrete-time dynamical sys-
tems. They are usually trained with iterative expectation-
maximization (EM) algorithms that alternately “guess” the
latent state value and then update the model parameters as-
suming the guessed value is correct. This process is guaran-
teed to converge, however, it can often be quite slow and get
stuck in local optima (Wu 1983).

Predictive state representations (PSRs), first proposed
by Littman, Sutton, and Singh (2002), take a different ap-
proach. Unlike HMMs, they represent state as a vector of
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predictions about future events that, crucially, are observ-
able. This means that the signal needed for learning appears
directly in the data, rendering iterative algorithms unneces-
sary. Instead, it becomes possible to exploit recent develop-
ments in spectral learning (Hsu, Kakade, and Zhang 2012;
Balle, Quattoni, and Carreras 2011; Parikh, Song, and Xing
2011; Anandkumar et al. 2012). In particular, Boots, Sid-
diqi, and Gordon (2010) proposed a spectral learning al-
gorithm for PSRs that is closed-form, fast, and, under the
right assumptions, statistically consistent. In addition to be-
ing potentially easier to learn, PSRs of rank k are strictly
more expressive than HMMs with k states (Jaeger 2000;
Siddiqi, Boots, and Gordon 2010).

The learning algorithm of Boots, Siddiqi, and Gordon
(2010) takes as input a matrix of statistics indexed by sets of
tests and histories; these comprise sequences of observations
that might occur (tests) or might have occurred (histories)
at any given point in time, and are typically determined in
advance by the practitioner. If the chosen tests and histories
are sufficient in the right technical sense, then the learning
process is consistent. If they are not, then as far as we are
aware no formal guarantees are known.

Unfortunately, sufficiency requires that the number of tests
and histories is at least the linear dimension of the underlying
system that generates the data. (This condition does not by
itself imply sufficiency, but it is necessary.) Linear dimension
is a measure of system complexity; in an HMM, for example,
it is at most the number of states. While small toy problems
may have modest dimension, real-world systems are typically
extremely complex. At the same time, since the cost of the
learning algorithm scales cubically with the dimension of the
input matrices, we are usually computationally constrained to
small sets of tests and histories. The sufficiency assumption,
therefore, almost always fails in practice.

In this paper we propose a novel, practical method for
selecting sets of tests and histories for spectral learning of
PSRs in the constrained setting where sufficiency is infeasible.
As shown in Figure 1, this is not trivial; randomly chosen
sets of tests and histories of a fixed size exhibit a wide range
of prediction error rates. A simple baseline that chooses the
shortest available tests and histories (as often done in practice)
has higher error than average, and in the worst case, a poor
choice can produce highly uninformative predictions. The
sets chosen by our method, which have the same cardinality,
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Figure 1: The distribution of L1 variational error for 10,000
randomly chosen sets of four tests and four histories for a
synthetic HMM with 100 states and 4 observations (see the
Experiments section for details). The vertical lines show the
error rates of our method and a baseline that uses all length-
one tests and histories.

are an order of magnitude better.
Our approach is based on an analysis of a limiting case

where the sets of tests and histories become infinitely large.
Such sets are sufficient, so we know from existing theory
that the PSRs learned from them (given enough data) are
exact; however, we show that these PSRs have other unique
properties as well. In particular, although there are an infi-
nite number of equivalent but distinct PSRs representing any
given system, the PSR learned by the spectral method from
these infinite sets always satisfies a nontrivial spectral bound.
We adapt this idea to the practical setting by searching for
sets of finite size that approximately satisfy the bound.

We evaluate our approach on both synthetic and real-world
problems. Using synthetic HMMs, we show that our method
is robust to learning under a variety of transition topologies;
compared to a baseline using the shortest tests and histories,
our method achieves error rates up to an order of magnitude
lower. We also demonstrate significantly improved prediction
results on a real-world language modeling task using a large
collection of text from Wikipedia.

Background
We begin by reviewing PSRs and the spectral learning algo-
rithm proposed by Boots, Siddiqi, and Gordon (2010). At
a high level, the goal is to model the output of a dynamic
system producing observations from a finite set O at discrete
time steps. (For simplicity we do not consider the controlled
setting, in which an agent also chooses an action at each time
step; however, the extension seems straightforward.)

We will assume the system has a reference condition from
which we can sample observation sequences. Typically, this
is either the reset condition (in applications with reset), or
the long-term stationary distribution of the system, in which
case samples can be drawn from a single long trajectory.

A test or history is an observation sequence in O∗. For
any such sequence x, p(x) denotes the probability that the
system produces x in the first |x| time steps after starting
from the reference condition. It is not difficult to see that p(·)
uniquely determines the system. Given a set of tests T and a
set of historiesH, we define PT ,H to be the |T |× |H| matrix
indexed by elements of T and H with Pt,h = p(ht), where

ht is the concatenation of h and t.
When T = H = O∗, PT ,H is a special bi-infinite ma-

trix known as the system-dynamics matrix. The rank of the
system-dynamics matrix is called the linear dimension of the
system (Singh, James, and Rudary 2004). General sets T and
H are called core if the rank of PT ,H is equal to the linear
dimension; note that any PT ,H is a submatrix of the system
dynamics matrix, and therefore can never have rank greater
than the linear dimension. When T andH are core and have
cardinality equal to the linear dimension, then they are called
minimal core sets, since removing any element of T or H
will reduce the rank of PT ,H. Minimal core sets exist for any
system with finite linear dimension.

Predictive State Representations
PSRs are usually described from the top down, showing how
the desired state semantics can be realized by a particular
parametric specification. However, because we are interested
in PSRs that approximate (but do not exactly model) real sys-
tems, we will describe them instead from the bottom up, first
defining the parameterization and prediction rules, and then
discussing how various learning methods yield parameters
that give accurate predictions under certain assumptions.

A PSR of rank k represents its state by a vector in Rk
and is parameterized by a reference condition state vector
b∗ ∈ Rk, an update matrix Bo ∈ Rk×k for each o ∈ O, and
a normalization vector b∞ ∈ Rk. Let b(h) denote the PSR
state after observing history h from the reference condition
(so b(ε) = b∗, where ε is the empty history); the update rule
after observing o is given by

b(ho) =
Bob(h)

b>∞Bob(h)
. (1)

From state b(h), the probability of observing the sequence
o1o2 . . . on in the next n time steps is predicted by

b>∞Bon · · ·Bo2Bo1b(h) ; (2)

in particular, a PSR approximates the system function p(·) as

p(o1o2 . . . on) ≈ b>∞Bon · · ·Bo2Bo1b∗ . (3)

We now turn to setting the parameters b∗, Bo, and b∞. Let
T and H be minimal core sets, and define PoT ,H to be the
|T |×|H|matrix with [PoT ,H]t,h = p(hot). James and Singh
(2004) showed that if the PSR parameters are chosen to be

b∗ = PT ,{ε}

Bo = PoT ,HP
+
T ,H ∀o ∈ O (4)

b>∞ = P{ε},HP
+
T ,H ,

where P+ is the pseudoinverse of P , then Equation (3) holds
with equality. That is, a system of linear dimension d, which
has minimal core sets of cardinality d, can be modeled exactly
by a rank d PSR. Moreover, in this case we can interpret
the state vector b(h) as containing the probabilities of the
tests in T given that h has been observed from the reference
condition. This interpretation gives the PSR its name.

Equation (4) can be viewed as a consistent learning algo-
rithm: if the P -statistics are estimated from data, then the
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derived parameters converge to an exact PSR as the amount
of data goes to infinity. In fact, consistency holds even when
T and H are not minimal (as long as they are core). How-
ever, since the rank of the PSR grows with the cardinality of
T , computationally it is desirable to keep these sets small.
Identifying small core sets of tests and histories is not trivial;
if they are not known in advance, then the problem of finding
them is called the discovery problem (Singh et al. 2003).

Boots, Siddiqi, and Gordon (2010) proposed an alternative
learning algorithm that uses spectral techniques to control
the rank of the learned PSR even when core sets T andH are
large. In some ways this approach ameliorates the discovery
problem, since finding large core sets is easier than finding
small ones. The spectral method involves first obtaining the
left singular vectors of the matrix PT ,H to form U ∈ R|T |×d
(recall that since T andH are core, PT ,H has rank d); then
the parameters are set as follows:

b∗ = U>PT ,{ε}

Bo = U>PoT ,H
(
U>PT ,H

)+ ∀o ∈ O (5)

b>∞ = P{ε},H
(
U>PT ,H

)+
.

Note that the resulting PSR is of rank d regardless of the size
of core sets T and H. Moreover, it remains exact when the
input statistics are exact, and consistent when the statistics
are estimated from data.

Insufficient Statistics
While the spectral algorithm in Equation (5) makes it possible
to use larger core sets of tests and histories without unnec-
essarily increasing the rank of the learned PSR, it does not
address a potentially more serious issue: the rank necessary
to learn most real-world systems exactly is impossibly large.

The runtime of spectral PSR learning is usually dominated
by the singular value decomposition of PT ,H, which requires
O(d3) time if |T | = |H| = d. Though this is polynomial, in
practice it typically means that we are limited to perhaps a
few thousand tests and histories given modern computational
constraints. (If the number of observations |O| is very large,
then the multiplications needed to compute all of the Bo
matrices may require T andH to be even smaller.)

On the other hand, the linear dimension of any real-world
system is likely to be effectively unbounded due to intrinsic
complexity as well as external influences and sensor noise
(which from the perspective of learning are indistinguishable
from the underlying system). This makes it doubtful that test
and history sets small enough to be computationally tractable
can ever be core.

In this paper, therefore, we are interested in developing
techniques for learning PSRs in the insufficient setting, where
recovering an exact model is infeasible, but we still want to
achieve good performance. To our knowledge, this setting
is not addressed by any existing analysis. (A related low-
rank setting is discussed by Kulesza, Nadakuditi, and Singh
(2014).)

We formulate the problem as a variant of the PSR discovery
problem for spectral learning, where rather than searching
for small core sets of tests and histories, we are looking for

sets that will perform well despite not being core. While we
could in principle treat this as a standard model selection
problem, the number of possible T and H is exponentially
large, so huge amounts of data would be needed to choose sets
based on empirical estimates of their performance without
overfitting. Instead, we seek a measure for characterizing
the likely performance of T and H that does not rely on
validation data. We next describe a limiting-case analysis that
motivates the measure we will eventually propose.

Limiting-Case Analysis
In order to get insight into the behavior of spectral PSR
learning, we begin by considering the theoretical case where
T = H = O∗; that is, where we have not only sufficient
statistics but complete statistics. Moreover, we will assume
that we have access to the exact system-dynamics matrix
PT ,H, so finite-sample effects do not come into play. These
are highly unrealistic assumptions, but they represent what
should be the best-case scenario for PSR learning. By under-
standing how the spectral method behaves in this ideal setting,
where the resulting PSR is guaranteed to be exact, we can
hopefully develop useful heuristics to improve performance
in practice.

We will make use of the fact that PoT ,H is now actually a
submatrix of PT ,H, which is possible since both matrices are
bi-infinite. In particular, for all o ∈ O we define the bi-infinite
operator Ro with rows and columns indexed by T , where
[Ro]t,t′ = I(t′ = ot) (I is the indicator function). Then,

[RoPT ,H]t,h =
∑
t′

[Ro]t,t′Pt′,h (6)

= Pot,h = p(hot) = [PoT ,H]t,h , (7)

and thus PoT ,H = RoPT ,H.
In order for the spectral algorithm to apply, PT ,H must

have a singular value decomposition; while this is always
true for finite matrices, in the infinite setting certain technical
conditions are required. (For instance, if the system becomes
fully deterministic then the singular values of the system-
dynamics matrix can tend to infinity.) Since we are interested
in the general behavior of the learning algorithm, we will
not attempt a detailed characterization of such systems and
instead simply assume that a singular value decomposition
PT ,H = UΣV > exists.

We can now express Bo from Equation (5) as

Bo = U>RoPT ,H
(
U>PT ,H

)+
(8)

= U>RoPT ,HV Σ+ (9)

= U>RoU . (10)

Let σ1(A) denote the first (largest) singular value of a matrix
A. U is an orthogonal matrix because it contains the left
singular vectors of PT ,H, therefore σ1(U) = 1; similarly,
Ro is a binary matrix with at most a single 1 per row or
column, so σ1(Ro) = 1. Since for matrices A and B we
have σ1(AB) ≤ σ1(A)σ1(B) (Horn and Johnson 2012), we
conclude that

σ1(Bo) ≤ 1 . (11)
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Figure 2: A simple HMM with two states and two observa-
tions. Solid edges indicate state transitions, and dotted edges
show observation probabilities.

Equivalent PSRs
The bound in Equation (11) may not seem surprising at first;
after all, products of the PSR update matrices are used in
Equation (3) to predict probabilities that must always be in
[0, 1], so we know they cannot blow up. And yet, for any
system of finite linear dimension there are an infinite number
of exact PSRs, and as we will see they do not all satisfy
Equation (11)1. Perhaps more importantly, the PSRs we learn
in practice generally do not satisfy the bound; later, we will
use this idea to improve the empirical performance of the
spectral learning algorithm. First, though, we discuss some
of the interesting implications of Equation (11).

Consider the simple system shown as an HMM in Figure 2.
Using the direct HMM-to-PSR construction described by
Jaeger (2000), we can exactly model this system with the
following rank 2 PSR:

b∗ =

[
1
0

]
B0 =

[
0 0.09
1 0.81

]
(12)

b>∞ =

[
1
1

]
B1 =

[
0 0.01
0 0.09

]
(13)

Since σ1(B0) ≈ 1.228, this is an instance of a PSR that does
not satisfy the bound in Equation (11). Yet if we apply the
spectral learning algorithm in Equation (5), we obtain an
equivalent PSR where maxo σ1(Bo) ≈ 0.909.

More generally, for any rank k PSR with pa-
rameters (b∞, {Bo}, b∗), an invertible k × k ma-
trix A generates an equivalent PSR with parameters
(b∞A

−1, {ABoA−1}, Ab∗)—it is easy to see that the As
cancel out in expressions like Equation (3). If, for instance,
we let A = diag(a, 1) for some constant a > 1, then

Bo =

[
0 1
1 0

]
⇒ ABoA

−1 =

[
0 a

1/a 0

]
, (14)

and thus σ1(ABoA
−1) = a. Obviously, by choosing an ap-

propriate a we can make this quantity as large as we like.
Note that scaling Bo does not affect the claim.

We have shown that the direct construction of Jaeger (2000)
does not necessarily satisfy Equation (11), and further that
we can construct examples where Equation (11) is arbitrarily

1In fact, the bound in Equation (11) holds even when learning in
the weighted finite automaton setting, where the values of the p(·)
function are unconstrained (Balle et al. 2013).
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Figure 3: The distribution of log maxo σ1(ABoA
−1) for

10,000 random HMMs and transformations A.

violated. For yet another perspective, we show in Figure 3 the
distribution of maxo σ1(ABoA

−1) when theBo matrices are
learned exactly using the spectral algorithm from randomly
generated HMMs with 10 states and 10 observations, and A
is a random matrix with independent normally-distributed
entries. We see that the transformation by A nearly always
brings σ1 above 1 (log σ1 > 0), typically to about 5, but
sometimes up to 100,000 or more. Thus the guarantee in
Equation (11) does seems to say something “special” about
the particular PSRs found by spectral learning, in the sense
that transformed variants rarely satisfy the bound.

This “specialness” is what we hope to exploit. Though
we will never be working in the infinite setting analyzed
above, Equation (11) guarantees that, for a system of linear
dimension d, not only does there exist an exact PSR of rank
d, but there exists an exact rank d PSR where the singular
values of theBo matrices are also bounded by 1. Additionally,
it tells us that the spectral algorithm will learn one of these
bounded models in the limit of infinitely large sets T and
H. Both of these facts motivate using Equation (11) as an
objective with which to choose among finite sets of tests
and histories. This objective will always steer us toward at
least one exact model, and moreover encourages the learning
algorithm to behave as it would in the idealized setting.

Although this analysis does not provide any formal guar-
antees for our approach (as far as we are aware no guarantees
of any kind are known in the insufficient setting), we will
show later that it has significant advantages in practice.

Our Algorithm
We formulate the algorithmic problem as follows: given a
maximum size k, which is determined by the practitioner
based on computational constraints, find sets T andH with
cardinality k to minimize the largest singular value of the
update matrices {Bo}:

arg min
T ,H

|T |=|H|=k

max
o
σ1(Bo) , (15)

where Bo depends on T andH via the spectral procedure in
Equation (5).

While one could imagine a variety of ways to turn this
objective into a concrete learning algorithm, we propose a
simple local search method that is simple to implement and
works well in practice. Our method is described in Algo-
rithm 1, where SPECTLEARN(D, T ,H) denotes an imple-
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Algorithm 1 Search for sets of k tests and histories that
approximately minimize maxo σ1(Bo).
Input: dataset D, initial T and H of size k, distributions
pT /pH over candidate tests/histories, number of rounds r
{Bo} := SPECTLEARN(D, T ,H)
σopt := maxo∈O σ1(Bo)
for i = 1, . . . , r do

Sample h 6∈ H ∼ pH
for h′ ∈ H do
{Bo} := SPECTLEARN(D, T ,H \ h′ ∪ {h})
σ(h′) := maxo∈O σ1(Bo)

h∗ = arg minh′ σ(h′)
if σ(h∗) < σopt then

σopt := σ(h∗)
H := H \ h∗ ∪ {h}

[Repeat the same procedure for T ]
Output: T ,H

mentation of Equation (5) using P -statistics estimated from
datasetD with tests T and historiesH. Starting with a default
T and H of the desired size, we iteratively sample a single
new test (history) and consider using it to replace each ele-
ment of T (H). If the best replacement is an improvement in
terms of maxo σ1(Bo), then we keep it. After a fixed number
of rounds, we stop and return the current T andH.

Experiments
We demonstrate Algorithm 1 in both synthetic and real-world
domains.

Synthetic Domains
We learn PSRs to model randomly generated HMMs with
100 states and 4 observations. The observation probabilities
in a given state are chosen uniformly at random from [0, 1]
and then normalized. The initial state distribution is generated
in the same way. Transition probabilities are chosen to reflect
three different state topologies:
• Random: Each state has 5 possible successor states, se-

lected uniformly at random.
• Ring: The states form a ring, and each state can only tran-

sition to itself or one of its 2 neighbors.
• Grid: The states form a 10× 10 toric grid, and each state

can only transition to itself or one of its 4 neighbors.
In each case, the non-zero entries of the transition matrix are
chosen uniformly at random from [0, 1] and normalized.

We measure the performance of a PSR by comparing its
predicted distributions over observation sequences of length
1–10 to the true distributions given by the underlying HMM
using L1 variational distance. Since at longer lengths there
are too many sequences to quickly compute the exact L1 dis-
tance, we estimate it using 100 uniformly sampled sequences,
which is sufficient to achieve low variance. Because an in-
exact PSR may predict negative probabilities, we clamp the
predictions to [0,∞) and approximately normalize them by
uniformly sampling sequences to estimate the normalization
constant.
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Figure 4: Results with random-topology synthetic HMMs.
First row: L1 error vs. prediction length. Second row: distri-
bution of the difference in error between Algorithm 1 and the
baseline.

Results Figure 4 shows the results averaged over 100
HMMs with random topologies, comparing our method to
a baseline that uses the shortest available tests and histories.
We include results for k = 4, where the baseline includes
all tests and histories of length one, and k = 20, where the
baseline includes all tests and histories of length one and two.
Both algorithms receive exact P -statistics and do not need
to estimate them from data. Our algorithm is initialized at
the baseline T andH, and we sample new tests and histories
whose length is one observation longer than the longest se-
quences in the baseline sets; the sampling probability of a
sequence x is proportional to p2(x). We run our algorithm for
10 rounds. Except as noted, all experiments use this setup.

Our algorithm significantly improves on the baseline at
all prediction lengths, and dramatically so for k = 4. In the
bottom half of the figure, we show the distribution of the error
difference between our algorithm and the baseline across
HMMs. Though in many cases the two are nearly equal, our
algorithm almost never underperforms the baseline.

Figure 5 extends these results to the ring and grid topolo-
gies. We see qualitatively similar results, although our al-
gorithm does not significantly improve on the baseline for
ring topologies at k = 20. This may be because k = 20 is a
relatively generous limit for this simpler toplogy, so less is
gained by a careful choice of T andH.

The dependence of our algorithm on r, the number of
rounds, is illustrated in Figure 6. It is clear that more rounds
lead to improved performance, suggesting that the objective
derived from Equation (11) acts as a useful proxy; it is also
clear that the earliest rounds are the most beneficial. Notice
that the error bars are large for the baseline, but shrink for our
algorithm as the number of rounds increases; this suggests
that our search procedure not only reduces error but also
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Figure 5: Results with ring and grid topology HMMs.
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Figure 6: L1 error at length
5 vs. number of rounds, av-
eraged over 100 random-
topology HMMs, k = 20.
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Figure 7: Results for mod-
eling Wikipedia text: log of
L1 accuracy (higher is bet-
ter) vs. prediction length.

reduces variance, which may be independently valuable.
In reality we do not get perfect P -statistics, so in Figure 8

we show how performance changes when the statistics are
estimated from a dataset containing sampled observation se-
quences. We sample observation sequences of length 7 from
a random-topology HMM and estimate p(ht) by dividing the
number of sequences with prefix ht by the total number of
sequences. In this setting, the distributions used to sample
new tests and histories in our algorithm are also estimated
from the data. Our algorithm continues to outperform the
baseline for all dataset sizes.

Wikipedia Text Prediction
Finally, we apply our algorithm to model a real-world text
dataset of over 6.5 million sentences from Wikipedia arti-
cles (Sutskever, Martens, and Hinton 2011). The text contains
85 unique characters that consitute our observation setO, and
each “time step” consists of a single character. We use the
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Figure 8: Results with P -statistics estimated from sampled
data: L1 error at length 5 vs. dataset size.

beginning of a sentence as our reference condition, so p(x)
is estimated from the number of times x appears as the prefix
of a sentence.

We set k = 85, therefore our baseline consists of all tests
and histories of length one. As before, we clamp negative
predictions to zero, initialize our algorithm using the baseline
sets, and sample new tests and histories of length two with
probability ∝ p2(·). We run our algorithm for 100 rounds.

The majority of the data is used for training, but we re-
serve 100,000 sentences for evaluation. For each evaluation
sentence, we predict the first 1–5 characters using the learned
PSR. For lengths up to 3, we normalize our predictions ex-
actly; for longer lengths, we use 500,000 uniformly sampled
strings to estimate the normalization constant.

We cannot compute L1 distance in this setting, since the
true distribution over strings is unknown. Instead, we com-
pute the mean probability assigned by the model to the ob-
served strings; we refer to this metric as L1 accuracy since it
is a linear transformation of the L1 distance to the δ distribu-
tion that assigns probability 1 to the observed string.

Figure 7 plots the L1 accuracy obtained by the baseline
and by our algorithm. Our algorithm produces meaningfully
improved accuracy for all lengths greater than one.

Conclusion

We proposed a simple algorithm for choosing sets of tests
and histories for spectral learning of PSRs, inspired by a
limiting-case bound on the singular values of the learned
parameters. By attempting to minimize the bound in practice,
we regularize our model towards a known good solution. Ex-
periments show that our approach significantly outperforms
a standard shortest-tests/histories baseline on both synthetic
and real-world domains. Future work includes developing
more effective techniques to optimize Equation (15).
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