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Abstract

We derive a convex optimization problem for the task of
segmenting sequential data, which explicitly treats pres-
ence of outliers. We describe two algorithms for solving
this problem, one exact and one a top-down novel ap-
proach, and we derive a consistency results for the case
of two segments and no outliers. Robustness to outliers
is evaluated on two real-world tasks related to speech
segmentation. Our algorithms outperform baseline seg-
mentation algorithms.

1 Introduction
Segmentation of sequential data, also known as change-
point detection, is a fundamental problem in the field of un-
supervised learning, and has applications in diverse fields
such as speech processing (Brent 1999; Qiao, Shimomura,
and Minematsu 2008; Shriberg et al. 2000), text process-
ing (Beeferman, Berger, and Lafferty 1999), bioinformatics
(Olshen et al. 2004) and network anomaly detection (Lévy-
Leduc and Roueff 2009), to name a few. We are interested in
formulating the segmentation task as a convex optimization
problem that avoids issues such as local-minima or sensitiv-
ity to initializations. In addition, we want to explicitly incor-
porate robustness to outliers. Given a sequence of samples
{xi}ni=1, for xi ∈ Rd, our goal is to segment it into a few
subsequences, where each subsequence is homogeneous un-
der some criterion. Our starting point is a convex objective
that minimizes the sum of squared distances of samples xi
from each sample’s associated ‘centroid‘, µi. Identical adja-
cent µis identify their corresponding samples as belonging
to the same segment. In addition, some of the samples are
allowed to be identified as outliers, allowing reduced loss
on these samples. Two regularization terms are added to the
objective, in order to constrain the number of detected seg-
ments and outliers, respectively.

We propose two algorithms based on this formulation,
both alternate between detecting outliers, which is solved
analytically, and solving the problem with modified sam-
ples , which can be solved iteratively. The first algorithm,
denoted by Outlier-Robust Convex Sequential (ORCS) seg-
mentation, solves the optimization problem exactly, while
the second is a top-down hierarchical version of the algo-
rithm, called TD-ORCS. We also derive a weighted version
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of this algorithm, denoted by WTD-ORCS. We show that
for the case of K = 2 segments and no outliers, a specific
choice of the weights leads to a solution which recovers the
exact solution of an un-relaxed optimization problem.

We evaluate the performance of the proposed algorithms
on two speech segmentation tasks, for both clean sources
and sources contaminated with added non-stationary noise.
Our algorithms outperform other algorithms in both the
clean and outlier-contaminated setting. Finally, based on the
empirical results, we propose a heuristic approach for ap-
proximating the number of outliers.

Notation: The samples to be segmented are denoted by
{xi ∈ Rd}ni=1, and their associated quantities (both vari-
ables and solutions) are µi, zi ∈ Rd. The same notation
with no subscript, µ, denotes the collection of all µi’s. The
same holds for x, z. We abuse notation and useµi to refer to
both the ‘centroid’ vector of a segment (these are not center
of mass, due to the regularization term), and to the indexes
of measurements assigned to that segment.

2 Outlier-Robust Convex Segmentation
Segmentation is the task of dividing a sequence of n data
samples {xi}ni=1, into K groups of consecutive samples, or
segments, such that each group is homogeneous with respect
to some criterion. A common choice of such a criterion of-
ten involves minimizing the squared Euclidean distance of
a sample to some representative sample µi. This criterion
is highly sensitive to outliers and indeed, as we show em-
pirically below, the performance of segmentation algorithms
degrades drastically when the data is contaminated with out-
liers. It is therefore desirable to incorporate robustness to
outliers into the model. We achieve this by allowing some
of the input samples xi to be identified as outliers, in which
case we do not require µi to be close to these samples. To
this end we propose to minimize:

min
µ,z

{
1

2

n∑
i=1

‖xi − zi − µi‖2
}

s.t.
n−1∑
i=1

1
{
‖µi+1 − µi‖p > 0

}
≤ K − 1 ,

n∑
i=1

1
{
‖zi‖q > 0

}
≤M ,
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where p, q ≥ 1. Considering samples xi for which zi =
0, the objective measures the loss of replacing a point xi
with some shared point µi, and can be thought of as mi-
nus the log-likelihood under Gaussian noise. Samples i with
zi 6= 0 are intuitively identified as outliers. The first con-
straint bounds the number of segments by K, while the sec-
ond constraint bounds the number of outliers by M . The op-
timal value for a nonzero zi is to set zi = xi − µi, making
the contribution to the objective zero, and thus in practice
ignoring this sample, treating it as an outlier. We note that
a similar approach to robustness was employed by (Forero,
Kekatos, and Giannakis 2011) in the context of robust clus-
tering, and by (Mateos and Giannakis 2012) in the context
of robust PCA. Since the `0 constraints results in a non con-
vex problem, we use a common practice and replace it with
a convex surrogate `1 norm which induces sparsity. For the
µi variables it means that for most samples we will have
µi+1 − µi = 0, allowing the identification of the corre-
sponding samples as belonging to the same segment. For the
zi variables, it means that most will satisfy zi = 0 and for
some of them, the outliers, otherwise. We now incorporate
the relaxed constraints into the objective, and in addition
consider a slightly more general formulation in which we
allow weighting of the summands in the first constraint. We
get the following optimization problem:

min
µ,z

{
1

2

n∑
i=1

‖xi − zi − µi‖2 + λ
n−1∑
i=1

wi ‖µi+1 − µi‖p

(1)

+ γ

n∑
i=1

‖zi‖q

}
,

where wi are weights to be determined. The parameter λ >
0 can be thought of as a tradeoff parameter between the first
term which is minimized with n segments, and the second
term which is minimized with a single segment. As λ is de-
creased, it crosses values at which there is a transition from
K segments to K + 1 segments, in a phase-transition like
manner where 1/λ is the analog of temperature. The param-
eter γ > 0 controls the amount of outliers, where for γ =∞
we enforce zi = 0 for all samples, and for γ = 0 the ob-
jective is optimal for zi = xi −µi, and thus all samples are
in-fact outliers. Alternatively, one can think of λ, γ as the
Lagrange multipliers of a constrained optimization problem.
In what follows we consider p = 2 and q = 1, 2, focusing
empirically on q = 2. Note that q = 1 encourages sparsity
of coordinates of zi, and not of the vector as a whole. This
amounts to outliers being modeled as noise in few features
or samples, respectively.

2.1 Algorithms
The decoupling between µ and z allows us to optimize
Eq. (1) in an alternating manner, and we call this algorithm
Outlier-Robust Convex Sequential (ORCS) segmentation.
Holding µ constant, optimizing over z is done analytically
by noting that Eq. (1) becomes the definition of the proxi-
mal operator evaluated at xi − µi, for which a closed-form
solution exists. For q = 1 the objective as a function of z is

separable both over coordinates and over data samples, and
the proximal operator is the shrinkage-and-threshold opera-
tor evaluated at each coordinate k:

proxγ (vk) = sign (vk) ·max {0, |vk| − γ} .

However, we are interested in zeroing some of the zi’s as a
whole, so we set q = 2. In this case, the objective is sepa-
rable over data samples, and the proximal operator is calcu-
lated to be:

proxγ (v) = v ·max

{
0, 1− γ

‖v‖2

}
. (2)

Holding z constant, optimizing over µ is done by defining
x̂i , xi − zi, which results in the following optimization
problem:

min
µ

n∑
i=1

‖x̂i − µi‖2 + λ
n−1∑
i=1

wi ‖µi+1 − µi‖2 . (3)

Note that Eq. (3) is equivalent to Eq. (1) with no outliers
present. We also note that if we plug the analytical solution
for the zis into Eq. (3) (via the x̂is), the loss term turns out to
be the multidimensional equivalent of the Huber loss of ro-
bust regression. We now discuss two approaches for solving
Eq. (3), either exactly or approximately.

Exact solution of Eq. (3): The common proximal-
gradient approach (Bach et al. 2011; Beck and Teboulle
2009b) for solving non-smooth convex problems has in this
case the disadvantage of convergence time which grows lin-
early with the number of samples n. The reason is that
the Lipschitz constant of the gradient of the first term in
Eq. (3) grows linearly with n, which results in a decreas-
ing step size. An alternative approach is to derive the dual
optimization problem to Eq. (3), analogously to the deriva-
tion of (Beck and Teboulle 2009a) in the context of im-
age denoising. The resulting objective is smooth and has
a bounded Lipschitz constant independent of n. Yet an-
other approach was proposed by (Bleakley and Vert 2011)
for the task of change-point detection, who showed that
under a suitable change of variables Eq. (3) can be for-
mulated as a group-LASSO regression (Tibshirani 1996;
Yuan and Lin 2006).

Approximate solution of Eq. (3): Two reasons suggest
that deriving an alternative algorithm for solving Eq. (3)
might have an advantage. First, the parameter λ does not al-
low direct control of the resulting number of segments, and
in many use-cases such a control is a desired property. Sec-
ond, as mentioned above, (Bleakley and Vert 2011) showed
that Eq. (3) is equivalent to group-LASSO regression, under
a suitable change of variables. It is known from the theory
of LASSO regression that certain conditions on the design
matrix must hold in order for perfect detection of segment
boundaries to be possible. Unfortunately, these conditions
are violated for the objective in Eq. (3) ; see (Levy-leduc and
others 2007) and references therein. Therefore a non-exact
solution has a potential of performing better, at least in some
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situations. We indeed encountered this phenomenon empir-
ically, as is demonstrated in Sec. 3. Therefore we also de-
rive an alternative top-down, greedy algorithm, which finds a
segmentation intoK segments, whereK is a user-controlled
parameter. The algorithm works in rounds. On each round
it picks a segment of a current segmentation, and finds the
optimal segmentation of it into two subsequences. We start
with the following lemma, which gives an analytical rule
which solves Eq. (3) for the case of K = 2 segments.

Lemma 1 Consider the optimal solution of Eq. (3) for the
largest parameter λ for which there are K = 2 segments,
and denote this value of the parameter by λ∗. Denote by i∗
the associated splitting point into 2 segments, i.e. samples
x̂i with i ≤ i∗ belong to the first segment, and otherwise be-
long to the second segment. Then i∗ (x) = argmax

1≤i≤n−1
g (i,x),

where:

g (i,x) =

{
i(n− i)
win

‖x̄2(i)− x̄1(i)‖2

}
, (4)

and x̄1,2(i) are the means of the first and second segments,
respectively, given that the split occurs after the ith sample.
In addition, λ∗ (x) = g (i∗,x).

The proof is given in the supplementary material of (Katz
and Crammer 2014). This result motivates a top-down hier-
archical segmentation algorithm, which chooses at each it-
eration to split the segment which results in the maximal de-
crease of the sum-of-squared-errors criterion. Note that we
cannot use the criterion of minimal increment to the objec-
tive in Eq. (3), since by continuity of the solution path, there
is no change in the objective at the splitting from K = 1
to K = 2 segments. The top-down algorithm can be imple-
mented in O (nK). Note that no search in the solution path
is needed in case K is known, and this search can be made
efficiently in case where K is not known. The top-down ap-
proach is used in the algorithm presented in Sec. 2.1.

From the functional form of g (i,x) in Eq. (4) it is clear
that in the unweighted case (wi = 1 for all i), the solu-
tion is biased towards segments of approximately the same
length, because of the i (n− i) factor. We now show that
a specific choice of wi exactly recovers the solution to the
unrelaxed optimization problem, where the regularization
term in Eq. (3) is replaced with the `0 constraint, that is∑n−1
i=1 1 {‖µi+1 − µi‖2 > 0} = 1. This is formulated by

the following lemma:

Lemma 2 Consider the case of two segments, K = 2, and
denote by n∗w the minimizer of Eq. (4) withwi =

√
i (n− i).

Then the split into two segments found by solving the follow-
ing:

argmin
µ

{
n∑
i=1

‖xi − µi‖2
}
, (5)

s.t.
n−1∑
i=1

1 {‖µi+1 − µi‖2 > 0} = 1 ,

is also given by n∗w.

The proof appears in the supplementary material of (Katz
and Crammer 2014). We note that the same choice for wi
was derived by (Bleakley and Vert 2011) from different con-
siderations based on a specific noise model. In this sense our
derivation is more general, as it does not make any assump-
tions about the data.

Robust top-down algorithm We now propose a robust
top-down algorithm for approximately optimizing Eq. (1).
For a fixed value of µ, using Eq. (2) we can calculate ana-
lytically which of the zis represent a detected outlier. These
are zis which satisfy ‖zi‖2 > γ. This allows us to calculate
the value γ∗ for which the first outlier is detected as hav-
ing a non-zero norm. Furthermore, for λ = λ∗, γ = γ∗

we know that zi = 0 for all i = 1, . . . , n, and therefore
µi = mean (x− z) = x̄ for all i = 1, . . . , n, and we can
find γ∗ analytically:

γ∗ = max
i
{‖xi − x̄‖2} , (6)

where the index i∗ at which the maximum is attained is the
index to the first detected outlier. The value of λ∗ is found as
given in Lemma 1, with the replacement of each xi with x̂i
as defined above. We note that the values λ∗, γ∗ are help-
ful for finding a solution path, since they allow to exclude
parameters which result in trivial solutions.

In the case where λ = λ∗ we can extend Eq. (6) for any
number M > 1 of outliers, by simply looking for the first
M vectors xi − x̄ with the largest norm. In this case it no
longer holds true that zi = 0 for all i = 1, . . . , n, so we have
to use the alternating optimization in order to find a solution.
However, each iteration is now solved analytically and con-
vergence is fast compared to the case λ < λ∗ where we do
not have an analytical solution for the optimization over µ.
This result motivates the top-down version of the ORCS al-
gorithm. We denote the algorithm by TD-ORCS for the un-
weighted case (wi = 1, i = 1, . . . , n), and by WTD-ORCS
when using the weights given in Lemma 2. The number of
required segments K and number of required outliers M is
set by the user. In each iteration the algorithm chooses the
segment-split which results in the maximal decrease in the
squared loss. Whenever a segment is split, the number of
outliers belonging to each sub-segment is kept and used in
the next iteration, so the overall number of outliers equals
M at all iterations. The algorithm is summarized in Alg. 1.

2.2 Analysis of Lemma 1 for K=2
We now bound the probability that the solution as given by
Lemma 1 fails to detect the correct boundary. We use the
derived bound to show that the weights given in Lemma 2
are optimal in a sense explained below. For simplicity we
analyze the one dimensional case xi ∈ R, and we show later
how the results generalize to multidimensional data.

We assume now that the data sequence is composed of
two subsequences of lengths n1 and n2, each composed of
samples taken iid from some probability distributions with
means µ1 and µ2 respectively, and define ∆µ , µ2 − µ1.
We further assume that the samples are bounded, i.e. |xi| ≤
M/2, i = 1, . . . , n, for some positive constant M . We set
wi = 1 for all i = 1, . . . , n − 1, and quote results for the
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Algorithm 1 Top-down outlier-robust hierarchical segmen-
tation

Input: Data samples {xi}ni=1.
Parameters: Number of required segments K, number of re-
quired outliers M , weights {wi}n−1

i=1 .
Initialize: Segments boundaries B = {1, n}, current number
of segments k = |B| − 1, number of outliers for each segment
Mj = M (for j = 1).
while k < K do

for j = 1, ..., k do
Set Sj =

{
xBj , ..,xBj+1−1

}
.

while not converged do
Split segment Sj into sub-sequences S1,2, using the so-
lution to Eq. (4) at x− z, with weights {wi}.
Find γ for Mj outliers, using the extension of Eq. (6) to
Mj outliers.
Set zi = proxγ (xi − x̄), for i = 1, . . . , n.

end while
Calculate the mean x̄j of segment Sj , and the means of
S1,2, denoted by x̄1 and x̄2.
Set L(j) =

∑
i∈S1

‖xi − x̄1‖2 +
∑
i∈S2

‖xi − x̄2‖2 −∑
i∈Sj

‖xi − x̄j‖2.

end for
Choose segment j∗ = arg maxj L(j) and calculate the split-
ting point nj∗
Add the new boundary xBj∗ +nj∗ +1 to the (sorted) bound-
ary list B.
Set Mj and Mj+1 to the number of zis with non-zero norm
in segment Sj and Sj+1, respectively.

end while

weighted case where relevant. We note that n1 and n2 rep-
resent the ground-truth, and not a variable we have to opti-
mize. We parameterize the sample-index argument of g (·)
in Eq. (4) as i = n1 + m (and similarly i∗ = n1 + m∗),
that is we measure it relatively to the true splitting point n1.
For ease of notation, in what follows we substitute g (m)
for g (n1 +m). Without loss of generality, we treat the case
where m ≥ 0. Note that m∗ 6= 0 if g(0) < g(m) for some
m > 0. The probability of this event is bounded:

P (g(0) < g(m)) ≤ 2 exp (−Cm) , (7)

for C =
(
2∆µ2n21

)
/
(
M2n2

)
. The proof is given in the

supplementary material of (Katz and Crammer 2014).
Note that in order for the bound to be useful, the true seg-

ments should not be too long or too short, in agreement with
the motivation for using weights given before Lemma 2. We
now use Eq. (7) to prove the following theorem:
Theorem 3 Consider a sequence of n variables as de-
scribed above. Given δ ∈ (0, 1) set m0 = log(2n2/δ)

C . Then,
the probability that the solution i∗ = n1 + m∗ as given in
Lemma 1 is no less than m0 samples away from the true
boundary is bounded, P (m∗ ≥ m0) ≤ δ .
The proof appears in the supplementary material of (Katz
and Crammer 2014).

Considering the weighted case with arbitrary wi, we re-
peated the calculation for the bound on P (g(0) < g(m)).
To illustrate the influence of the weights on the bound,
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Figure 1: Bounds on P (g(0) < g(m)) as a function of the
distance m from the true boundary n1, for n = 100, two
values of n1, and various values of the weighting parameter
α. The case of α = 0 amounts to uniform weights.
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Figure 2: Mean error (absolute time difference to ground-
truth boundary) of four algorithms on TIMIT phonetic data
contaminated with outliers. See text for a list of algorithms
compared.

we heuristically parameterize wj = (j (n− j))α for some
α ∈ [0, 1]1. The bound as a function of m is illustrated
in Fig. 1 for several values of α. It is evident that indeed
α > 0 achieves a faster decaying bound for small n1, and
that α = 0.5 is optimal in the sense that for α > 0.5 the
bound is no longer a monotonous function ofm. This agrees
with the weights given by Lemma 2. We note that this spe-
cific choice of the weights was derived as well by (Bleakley
and Vert 2011) by assuming a Gaussian noise model, while
our derivation is more general. Finally, we note that gen-
eralizing the results for multidimensional data is done by
using the fact that for any two vectors a, b ∈ Rd, it holds
that P (‖a‖2 ≤ ‖b‖2) ≤

∑
i P (|ai| ≤ |bi|). Thus generaliz-

ing Eq. (7) for d > 1 is straightforward. While the bound
derived in this way will have a multiplicative factor of d, it
is still exponential in the number of samples n.

3 Empirical Study
We compared the unweighted (TD-ORCS) and weighted
(WTD-ORCS) versions of our top-down algorithm to
LASSO and group fused LARS 2 of (Bleakley and Vert
2011), which are based on reformulating Eq. (3) as group
LASSO regression, and solving the optimization problem
either exactly or approximately. Both the TD-ORCS and

1This parametrization is motivated by Eq. (4)
2http://cbio.ensmp.fr/ jvert/svn/GFLseg/html/
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LARS algorithms have complexity of O (nK). We also
report results for a Bayesian change-point detection algo-
rithm (BCP), as formulated by (Erdman and Emerson 2008).
We note that we experimented with a left-to-right Hidden
Markov Model (HMM) for segmentation. We do not report
results for this model, as its performance was inferior to the
other baselines.

3.1 Biphones subsequences segmentation

In this experiment we used the TIMIT corpus (Garofolo
and others 1988). Data include 4, 620 utterances with anno-
tated phoneme boundaries, amounting to more than 170, 000
boundaries. Audio was divided into frames of 16ms dura-
tion and 1 ms hop-length, each represented with 13 MFCC
coefficients. The task is to find the boundary between two
consecutive phonemes (biphones), and performance is eval-
uated as the mean absolute distance between the detected
and ground-truth boundaries. Since the number of segments
isK = 2 the ORCS and the TD-ORCS algorithms are essen-
tially identical, and the same holds for LASSO and LARS.
Outliers were incorporated by adding short (0.25 frame-
length) synthetic transients to the audio source. The per-
centage of outliers reflects the percentage of contaminated
frames. Results are shown in Fig. 2 as the mean error as a
function of outlier percentage. For low fraction of outliers,
all algorithms perform the same, except WTD-ORCS, which
is slightly worse. For about 15% outliers, the performance
of W-LARS degrades to ~27ms mean error vs ~22ms for
the rest. For 30% outliers both TD-ORCS algorithms outper-
form all other algorithms. The counter-intuitive drop of error
at high outliers rate for the TD-ORCS algorithms might be
the result of over-estimating the number of outliers. We plan
to further investigate this phenomenon in future work.

We also compared our algorithm to RD, which (Qiao,
Shimomura, and Minematsu 2008) found to be the best
among five different objective functions, and was not de-
signed for treating outliers. In this setting (no outliers) the
RD algorithm achieved 15.1ms mean error, while TD-ORCS
achieved 13.4ms, with 95% confidence interval (not re-
ported for the RD algorithm) of 0.1.

3.2 Radio show segmentation

In this experiment we used a 35 minutes, hand-annotated
audio recording of a radio talk show, composed of dif-
ferent sections such as opening title, monologues, dialogs,
and songs. A detected segment boundary is considered a
true positive if it falls within a tolerance window of two
frames around a ground-truth boundary. Segmentation qual-
ity is commonly measured using the F measure, which is
defined as 2pr/ (p+ r), where p is the precision and r
is the recall. Instead, we used the R measure introduced
by (Räsänen, Laine, and Altosaar 2009), which is more
robust to over-segmentation. It is defined as R , 1 −
0.5 (|s1|+ |s2|), where s1 ,

√
(1− r)2 + (r/p− 1)

2 and

s2 , (r − r/p) /
√

2. The R measure satisfies R ≤ 1, and
R = 1 only if p = r = 1.

Signal representation A common representation in
speech analysis is the MFCC coefficients mentioned in
Sec. 3.1. However, this representation is computed over time
windows of tens of milliseconds, and therefore it is not de-
signed to capture the characteristics of a segment with length
in the order of seconds or minutes. We therefore apply post-
processing on the MFCC representation. First, the raw au-
dio is divided into N non-overlapping blocks of 5 seconds
duration, and the MFCC coefficients are computed for all
blocks {Sj}Nj=1. We used 13 MFCC coefficient with 25ms
window length and 10ms hop length. Then a Gaussian Mix-
ture Model (GMM) Tj with 10 components and a diagonal
covariance matrix is fitted to the jth block Sj . These param-
eters of the GMM were selected using the Bayesian Infor-
mation Criterion (BIC). The log-likelihood matrix A is then
defined by Aij = logP (Sj |Ti). The clean feature matrix
(no outliers) is shown in Fig. 3(a), where different segments
can be discerned. Since using the columns of A as features
yields a dimension growing with N , we randomly choose a
subset of d = 100 rows of A, and the columns of the re-
sulting matrix X ∈ Rd×N are the input to the segmentation
algorithm. We repeat the experiment for different number of
outliers, ranging between 0% and 16% with intervals of 2%.
Outliers were added to the raw audio. A given percentage of
outliers refers to the relative number of blocks randomly se-
lected as outliers, to which we add a 5 seconds recording of
repeated hammer strokes, normalized to a level of 0dB SNR.

Algorithms We consider the Outlier-Robust Convex Se-
quential (ORCS) segmentation, and its top-down versions
(weighted and unweighted) which we denote by WTD-
ORCS and TD-ORCS, respectively. We compare the per-
formance to three other algorithms. The first is a greedy
bottom-up (BU) segmentation algorithm, which minimizes
the sum of squared errors on each iteration. The bottom-
up approach has been successfully used in tasks of speech
segmentation (Qiao, Luo, and Minematsu 2012; Gracia and
Binefa 2011). The second algorithm is the W-LARS algo-
rithm of (Bleakley and Vert 2011). The third algorithm is
a Bayesian change-point detection algorithm (BCP), as for-
mulated by (Erdman and Emerson 2008). A solution path
was found as follows. For the ORCS algorithm, a 35 × 35
parameter grid was used, where 0 < γ < γ∗ was sampled
uniformly, and for each γ value, 0 < λ < λ∗ (γ) was sam-
pled logarithmically, where λ∗ (γ) is the critical value for
λ for a given choice of γ (see Sec. 2.1 for details). For the
TD-ORCS, W-LARS, and BU algorithms, K = 2, . . . , 150
number of segments were used as an input to the algorithms.
For the TD-ORCS algorithm, where the number of required
outliers is an additional input parameter, the correct num-
ber of outliers was used. For the BCP algorithm, a range of
thresholds on the posterior probability of change-points was
used to detect a range of number of segments. As is evi-
dent from the empirical results below, the ORCS algorithm
can achieve high detection rate of the outliers even without
knowing their exact number a-priori. Furthermore, we sug-
gest below a way of estimating the number of outliers. For
each algorithm, the maximal R measure over all parameters
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range was used to compare all algorithms.

Results Results are shown in Fig. 3(b) as the maximal
R measure achieved versus the percentage of outliers, for
each of the algorithms considered. It is evident that the per-
formance of the BU and BCP algorithms decreases signif-
icantly as more outliers are added, while the outlier-robust
ORCS algorithm keeps an approximately steady perfor-
mance. Our unweighted and weighted TD-ORCS algorithms
achieve the best performance for all levels of outliers. Re-
sults for LARS algorithm are omitted as it did not perform
better than other algorithms. We verified the ability of our
algorithms to correctly detect outliers by calculating the R
measure of the outliers detection of the ORCS algorithm,
with zero length tolerance window, i.e a detection is consid-
ered a true-positive only if it exactly pinpoints an outlier. The
R measure of the detection was evaluated on the γ, λ param-
eter grid, as well as the corresponding numbers of detected
outliers. Results for the representative case of p = 10% out-
liers are shown in Fig. 4(a). It is evident that a high R mea-
sure (> 0.9) is attained on a range of parameters that yield
around the true number of outliers. We conclude that one
does not need to know the exact number of outliers in order
to use the ORCS algorithm, and a rough estimate is enough.
Some preliminary results suggest that such an estimate can
be approximated from the histogram of number of detected
outliers (i.e. Fig. 4(b)).

4 Related Work and Conclusion
There is a large amount of literature on change-point detec-
tion, see for example (Basseville and Nikiforov 1993; Brod-
sky and Darkhovsky 1993). Optimal segmentation can be
found using dynamic programming (Lavielle and Teyssière
2006); however, the complexity is quadratic in the number
of samples n, which might be infeasible for large data sets.
Some approaches with linear complexity in n (Levy-leduc
and others 2007; Killick, Fearnhead, and Eckley 2012) treat
only one dimensional data. Some related work is concerned
with the objective in Eq. (3). In (Levy-leduc and others
2007) it was suggested to reformulate Eq. (3) for the one di-
mensional case as a LASSO regression problem (Tibshirani
1996; Yuan and Lin 2006), while (Bleakley and Vert 2011)
extended this approach to multidimensional data, although
not treating outliers directly. Another common approach is
deriving an objective from a maximum likelihood criterion
of a generative model (Qiao, Luo, and Minematsu 2012;
Qiao, Shimomura, and Minematsu 2008; Gracia and Binefa
2011). We note that the two-dimensional version of Eq. (3)
is used in image denoising applications, where it is known as
the Total-Variation of the image (Rudin, Osher, and Fatemi
1992; Chambolle 2004; Beck and Teboulle 2009a). Finally,
we note that all these approaches do not directly incorporate
outliers into the model.

We formulated the task of segmenting sequential data and
detecting outliers using convex optimization, which can be
solved in an alternating manner. We showed that a specific
choice of weighting can empirically enhance performance.
We described how to calculate λ∗ and γ∗, the critical values
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Figure 4: (a) Outliers detection quality by the ORCS algo-
rithm, quantified using the R measure of outliers detection.
R is evaluated on a 35×35 parameter grid, for 10% outliers.
(b) The corresponding number of detected outliers.

for the split into two segments and the detection of the first
outlier, respectively. We also derived a top-down, outlier-
robust algorithm which minimizes the objective in a greedy
manner. This algorithm allows for directly controlling both
the number of segments K and number of outliers M . Ex-
periments with real-world audio data with outliers added
manually demonstrated the superiority of our algorithms.

We consider a few possible extensions to the current work.
One is deriving algorithms that will work on-the-fly. An-
other direction is to investigate more involved noise models,
such as noise which corrupts a single feature along all sam-
ples, or a consecutive set of samples. Yet another interest-
ing question is how to identify that different segments come
from the same source, e.g. that the same speaker is present
at different segments. We plan to investigate these directions
in future work.
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