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Abstract

Current manifold alignment methods can effectively
align data sets that are drawn from a non-intersecting
set of manifolds. However, as data sets become in-
creasingly high-dimensional and complex, this assump-
tion may not hold. This paper proposes a novel man-
ifold alignment algorithm, low rank alignment (LRA),
that uses a low rank representation (instead of a nearest
neighbor graph construction) to embed and align data
sets drawn from mixtures of manifolds. LRA does not
require the tuning of a sensitive nearest neighbor hyper-
parameter or prior knowledge of the number of mani-
folds, both of which are common drawbacks with ex-
isting techniques. We demonstrate the effectiveness of
our algorithm in two real-world applications: a transfer
learning task in spectroscopy and a canonical informa-
tion retrieval task.

Introduction
As machine learning practitioners tackle increasingly large
and complex data sets, better data representations are neces-
sary to improve task performance while reducing computa-
tional burden. Manifold learning techniques, which aim to
uncover the underlying geometry of a data set, have proven
to be especially useful in combating the curse of dimension-
ality (Ma and Fu 2011).

One task that has especially benefited from manifold-
based approaches is data set alignment, a semi-supervised
task in which correspondences are learned between multiple
data sets based on intra-set geometry and a provided partial
set of pairwise correspondences between the data sets. Man-
ifold alignment is a class of techniques that solves the align-
ment problem when these data sets are assumed to share
a common underlying structure, by embedding each input
set into a shared latent manifold space (Ham, Lee, and Saul
2005).

Manifold alignment was introduced as a semi-supervised,
nonlinear extension of canonical correlation analysis (CCA)
(Hotelling 1936) that aimed to preserve both local geometry
and inter-set correspondences (Wang and Mahadevan 2009).
One drawback of existing manifold alignment approaches is
their assumption that all data sets are drawn from one or
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more non-overlapping manifolds. This assumption stems
from the use of distance-weighted local neighborhoods for
embedding construction, a technique that fails when the data
are drawn from an intersecting mixture of manifolds. As
data sets begin to use representations that employ thousands
or millions of features (Ma et al. 2009), the assumption of
non-mixing manifolds becomes increasingly tenuous.

This mixture of manifolds problem is demonstrated in
Figure 1: when input manifolds are poorly separated, lo-
cal neighborhood information is insufficient for recovering
the true structure at manifold junctions. Thus, the use of tra-
ditional nearest neighbor graph construction algorithms in-
duce incorrect connections at these intersection points, dis-
torting the manifold representation.

This shortcoming of conventional manifold methods has
given rise to a number of unsupervised clustering algorithms
which attempt to segment input data by identifying the indi-
vidual manifold components of a mixed manifold structure
(Souvenir and Pless 2005; Wang et al. 2010). One such al-
gorithm is low rank embedding (LRE) (Liu, Hao, and Su
2011), which notably avoids the construction of a nearest
neighbor graph.

In this paper, we present a novel manifold learning algo-
rithm, low rank alignment (LRA), which builds on the ideas
of manifold alignment and LRE to align data sets drawn
from mixtures of manifolds. LRA does not suffer from the
sensitive nearest neighbor hyperparameter present in tradi-
tional manifold alignment, nor does it require prior knowl-
edge of the number of manifolds, a common input to many
manifold clustering techniques.

Manifold Alignment
The general manifold alignment framework for two data sets
(Ma and Fu 2011; Wang and Mahadevan 2009) is the follow-
ing. We are given the data setsX and Y of shapesNX×DX

and NY × DY , where each row is a sample (or instance)
and each column is a feature, and a correspondence matrix
C(X,Y ) of shape NX ×NY , where

C
(X,Y )
i,j =

{
1 : Xi is in correspondence with Yj
0 : otherwise . (1)

Manifold alignment calculates the embedded matrices
F (X) and F (Y ) of shapes NX × d and NY × d for d ≤
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(a) Single “Swiss roll”
manifold.

(b) Non-overlapping man-
ifolds.

(c) Mixture of manifolds.

Figure 1: Types of manifold data.

min(DX , DY ) that are the embedded representation of X
and Y in a shared, low-dimensional space. These embed-
dings aim to preserve both the intrinsic geometry within
each data set and the sample correspondences among the
data sets. More specifically, the embeddings minimize the
loss function V ,

V
(
F (X), F (Y )

)
=
µ

2

NX∑
i=1

NY∑
j=1

||F (X)
i − F (Y )

j ||22C
(X,Y )
i,j

+
1− µ

2

NX∑
i,j=1

||F (X)
i − F (X)

j ||22W
(X)
i,j

+
1− µ

2

NY∑
i,j=1

||F (Y )
i − F (Y )

j ||22W
(Y )
i,j ,

(2)

whereN is the total number of samplesNX+NY , µ ∈ [0, 1]
is the correspondence tuning parameter, and W (X),W (Y )

are the calculated similarity matrices of shapes NX × NX

and NY ×NY , such that

W
(X)
i,j =

{
k(Xi, Xj) : Xj is a neighbor of Xi

0 : otherwise (3)

for a given kernel function k(·, ·). W (Y )
i,j is defined in the

same fashion. Typically, k is set to be the nearest neighbor
set member function or the heat kernel
k(Xi, Xj) = exp

(
−|Xi −Xj |2

)
.

In the loss function of equation (2), the first term corre-
sponds to the alignment error between corresponding sam-
ples in different data sets. The second and third terms cor-
respond to the local reconstruction error for the data sets X
and Y respectively. This equation can be simplified using
block matrices by introducing a joint weight matrix W and
a joint embedding matrix F , where

W =

[
(1− µ)W (X) µC(X,Y )

µC(Y,X) (1− µ)W (Y )

]
(4)

and

F =

[
F (X)

F (Y )

]
. (5)

In Wang and Mahadevan (2009) it is shown that the loss
function V can be reduced to a matrix trace formulation,

arg min
F :F>DF=I

V(F ) = arg min
F :F>DF=I

tr(F>LF ), (6)

where tr(·) is the matrix trace and L is the combinatorial
graph Laplacian L = D −W , where D is the diagonal ma-
trix of row sums D(i, i) =

∑
j W (i, j). See Chung (1996)

for a comprehensive introduction to the graph Laplacian and
its variants.

The constraint F>DF = I ensures that the problem is
well posed and removes arbitrary scaling factors in the em-
bedding. Wang and Mahadevan (2009) showed that the d
columns of the embedding matrix F in equation (6) are
equal to the d smallest eigenvectors, the eigenvectors associ-
ated with the smallest non-zero eigenvalues, of the Laplacian
matrix in the generalized eigenvalue problem LF = λDF .

Low Rank Embedding
Low rank embedding (LRE) is a variation on locally lin-
ear embedding (LLE) (Roweis and Saul 2000) that uses low
rank matrix approximations instead of LLE’s nearest neigh-
bor approach to calculate a reconstruction coefficients ma-
trix (Liu, Hao, and Su 2011). LRE is a two part algorithm.
Given a data set X , LRE begins by calculating the recon-
struction coefficients matrix R by minimizing the loss func-
tion

min
R

1

2
||X −XR||2F + λ||R||∗, (7)

where λ > 0, ||X||F =
√∑

i

∑
j |xi.j |2 is the Frobenius

norm, and ||X||∗ =
∑

i σi(X) is the spectral norm, for sin-
gular values σi. In Candès and Tao (2010) it was shown that
the spectral norm is a convex relaxation of the rank mini-
mization problem, and so the solutionXR is a low rank rep-
resentation of the original data matrix X . To solve equation
(7), the alternating direction method of multipliers (ADMM)
(Boyd et al. 2011) is used.

To apply ADMM a new variable Z is introduced and
equation (7) becomes

min
Z,R

1

2
||X −XR||2F + λ||Z||∗, s.t. R = Z. (8)

To solve the constrained optimization problem of equation
(8), the augmented Lagrangian function L̂ is introduced,

L̂(Z,R,G) =
1

2
||X −XR||2F + λ||Z||∗

+ 〈G,R− Z〉+
β

2
||R− Z||2F , (9)
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where G is the Lagrange multiplier and β is the penalty pa-
rameter that controls the convergence of the ADMM algo-
rithm.

The second step of LRE preserves the point-wise linear
reconstruction by holding R fixed while minimizing the re-
construction loss in the embedded space,

min
F (X)

1

2
||F (X) − F (X)R||2F s.t. (F (X))>F (X) = I, (10)

where F (X) is the embedding of X and I is the identity
matrix. The constraint (F (X))>F (X) = I ensures that it
is a well-posed problem. In Saul and Roweis (2003) it was
shown that equation (10) can be minimized by calculating
the d smallest non-zero eigenvectors of the Gram matrix
(I −R)>(I −R).

Low Rank Alignment
Low rank alignment (LRA) is a novel algorithm for the man-
ifold alignment task that uses a variant of LRE to embed the
data sets to a joint manifold space, unlike previous align-
ment methods that have been based on Laplacian eigen-
maps (Belkin and Niyogi 2001; Wang and Mahadevan 2008;
2009) and Isomap (Tenenbaum, De Silva, and Langford
2000; Wang and Mahadevan 2013). These methods rely on
nearest neighbor graph construction algorithms, and are thus
prone to creating spurious inter-manifold connections when
mixtures of manifolds are present. These so-called short-
circuit connections are most commonly found at junction
points between manifolds. In contrast, LRA is able to avoid
this problem, successfully aligning data sets drawn from a
mixture of manifolds. Figure 2 shows an example of this
phenomena using a noisy dollar sign data set.

LRA differs from other manifold alignment algorithms in
several key aspects. While some previous algorithms embed
data using exclusively the eigenvectors of the graph Lapla-
cian to preserve both inter-set correspondences and intra-set
local geometry, LRA uses the eigenvectors of the sum of the
Laplacian and the Gram matrix of low rank representations
to preserve the inter-set correspondences and the intra-set
local linearity. Moreover, previous manifold alignment al-
gorithms require a reliable measure of similarity between
nearest neighbor samples, whereas LRA relies on the lin-
ear weights used in sample reconstruction. Lastly, because
LRA uses the global property of rank to calculate its recon-
struction matrix, it can better discern the global structure of
mixing manifolds (Liu, Hao, and Su 2011).

We now describe the low rank alignment algorithm for
two data sets. It begins with the same setup as manifold
alignment: two data sets X and Y are given, along with
the correspondence matrix C(X,Y ) describing inter-set cor-
respondences (see equation 1). The goal of LRA is to
calculate a set of embeddings F (X) and F (Y ) to a joint,
low-dimensional manifold subspace that best preserves both
inter-set correspondences and intra-set geometries.

In the first step of LRA, the reconstruction weight ma-
trices R(X) ∈ RNX×NX and R(Y ) ∈ RNY ×NY are calcu-
lated individually according to equation (7). In this step, the
low rank constraint defines a barycentric coordinate for each

Figure 2: Manifold construction on synthetic data. For each
star, the large points are the four neighbors used to define
the manifold. The lines match the stars with their neighbors.
Notice that traditional nearest neighbor construction (on the
left) has short-circuits incorrectly connecting the two man-
ifolds, whereas the low rank construction (on the right) se-
lects points that correctly differentiate the mixed manifolds.

sample that preserves locally linear relationships between
samples. In Favaro, Vidal, and Ravichandran (2011) it is
shown that the low rank representation problem in equation
(7) can be solved in closed form. This avoids the iterative
ADMM calculation found in the original LRE algorithm.

We begin by decomposingX using singular value decom-
position (SVD), X = USV >. Next, the columns of V and
S are partitioned into V = [V1V2] and S = [S1S2] accord-
ing to the sets

I1 = {i : si > 1 ∀si ∈ S} and I2 = {i : si ≤ 1 ∀si ∈ S}.

Then the reconstruction matrix R(X) is calculated as

R(X) = V1(I − S−21 )V >1 . (11)

R(X), R(Y ) are calculated independently and so may be
computed in parallel to reduce compute time. We next define
the block matrices R,C ∈ RN×N as

R =

[
R(X) 0

0 R(Y )

]
and C =

[
0 C(X,Y )

C(Y,X) 0

]
(12)

and F ∈ RN×d as

F =

[
F (X)

F (Y )

]
. (13)

The second step of LRA is to calculate the embedding F
of X,Y by minimizing the loss function

Z(F ) = (1− µ) ‖F −RF‖2F + µ
N∑

i,j=1

||Fi − Fj ||2Ci,j ,

(14)
where µ ∈ [0, 1] is the hyperparameter that controls the im-
portance of inter-set correspondences. The first term of the
sum in equation (14) accounts for the local geometry within
each data set, and the second term accounts for the corre-
spondences between sets. We can reduce this loss function
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to a sum of matrix traces:

Z(F ) = (1− µ)tr((F −RF )>(F −RF ))

+ µ
d∑

k=1

N∑
i,j=1

||Fi,k − Fj,k||22Ci,j

= (1− µ)tr
(

((I −R)F )
>

(I −R)F
)

+ 2µ
d∑

k=1

F>·,kLF·,k

= (1− µ)tr(F>(I −R)>(I −R)F )

+ 2µ tr(F>LF ). (15)

Similarly to LLE and LRE, we introduce the constraint
F>F = I to ensure that the minimization of the loss func-
tion Z is a well-posed problem. Thus, we have

argmin
F :F>F=I

Z = argmin
F :F>F=I

(1− µ)tr(F>MF ) + 2µ tr(F>LF ),

(16)

where M = (I −R)>(I −R). To construct a loss function
from equation (16), we take the right hand side and introduce
the Lagrange multiplier Λ,

L(F,Λ) = (1− µ)tr(F>MF ) + 2µ tr(F>LF )

+ 〈Λ, F>F − I〉. (17)

To minimize equation (17), we find the roots of its partial
derivatives,

∂L
∂F

= 2(1− µ)MF + 4µLF − 2ΛF = 0

∂L
∂Λ

= F>F − I = 0. (18)

From this system of equations, we are left with the matrix
eigenvalue problem

((1− µ)M + 2µL)F = ΛF and F>F = I. (19)

Therefore, to solve equation (16), we calculate the d smallest
non-zero eigenvectors of the matrix

(1− µ)M + 2µL. (20)

This eigenvector problem can be solved efficiently be-
cause the matrix M +L is guaranteed to be symmetric, pos-
itive semidefinite (PSD), and sparse. These properties arise
from the construction,

M + L =

[ (
I −R(X)

)2
0

0
(
I −R(Y )

)2
]

+

[
DX −C(X,Y )(

−C(X,Y )
)>

DY

]
, (21)

where by construction D =

[
DX 0

0 DY

]
is a PSD diag-

onal matrix and C(X,Y ) is a sparse matrix.

The time complexity of LRA is dominated by two oper-
ations: the full singular value decomposition necessary for
step 1 and the sparse eigenvector decomposition in step 2.
The SVD runs in cubic time proportional to the number of
samples. This cost may be somewhat mitigated with a paral-
lel approach, as the reconstruction matrix is calculated sepa-
rately for each data set. The eigenvector decomposition also
runs in cubic time proportional to the number of samples.

Algorithm 1: Low Rank Alignment
Input: data matrices X,Y , embedding dimension d,

correspondence matrix C(X,Y ) and weight µ.
Output: embeddings matrix F .

Step 0: Column normalize X & Y (optional but
recommended if X and Y differ largely in scale).
Step 1: Compute the reconstruction coefficient matrices
R(X), R(Y ):
USV > = SVD(X)

R(X) = V1(I − S−21 )V >1
Û ŜV̂ > = SVD(Y )

R(Y ) = V̂1(I − Ŝ−21 )V̂ >1
Step 2: Set F equal to the d smallest eigenvectors of
the matrix in equation (20).

Experimental Results
To evaluate the effectiveness of LRA, experiments were
performed on two very different real-world data sets. For
comparison, we implemented three state of the art align-
ment techniques: (instance-level/non-linear) manifold align-
ment (Wang and Mahadevan 2009), affine matching align-
ment (Lafon, Keller, and Coifman 2006), and Procrustes
alignment (Wang and Mahadevan 2008). All of the meth-
ods evaluated align data sets by embedding the sets into a
shared low-dimensional space. Affine matching and Pro-
crustes alignment can only align two data sets at a time, and
while LRA and manifold alignment do not suffer this lim-
itation, we chose to limit our experimentation to alignment
problems involving pairs of data sets.

All experiments were implemented in Python by the au-
thors, with help from the machine learning library Scikit-
learn (Pedregosa et al. 2011). An implementation of LRA is
available for download on the author’s website. 1

Calibration Transfer
The first data set was a suite of laser-induced break-
down spectra (LIBS) acquired from 100 different geological
samples under Mars-like atmospheric conditions at Mount
Holyoke College. LIBS instruments are spectrometers com-
posed of a high energy laser that pulses a sample to cre-
ate plasma, which is observed by a charge-coupled device
(CCD) that records the energy emitted. This data set was
created in support of the Mars Science Laboratory mission

1https://github.com/all-umass/low_rank_alignment
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for the ChemCam instrument, a LIBS spectrometer on the
rover Curiosity.

The task of this experiment is calibration transfer (CT).
CT is a transfer learning problem well-studied in chemo-
metrics (Feudalea et al. 2002; Zheng et al. 2014; Ridder,
Ver Steeg, and Price 2014), but largely ignored by the ma-
chine learning community. The general setup of the problem
is the following. The spectra of a set of samples (e.g., rock
powders) are recorded on two different instruments or on
the same instrument under two varying conditions. The goal
is to find a mapping or an alignment between the two sets
of spectra. Frequently in all types of spectroscopic studies
there is a need to ensure that possible differences in environ-
mental or experimental conditions are mitigated or negated.
CT provides an excellent solution to the task of reconciling
data in inter- and intra-lab comparisons on Earth and in ex-
traterrestrial applications.

In this experiment, the samples were recorded on the same
instrument under a low and high laser power setting, 3% and
5% power respectively. The spectra were first preprocessed
according to Wiens et al. (2013). The resultant spectra are
5485-dimensional vectors where each feature corresponds
to the response of a particular wavelength channel between
225-925 nm.

Figure 3: Five mineral spectra selected at random from the
LIBS data set. The left hand side shows the spectra recorded
with a low power laser, and the right hand side shows the
corresponding spectra recorded at a high power.

The task of this experiment was to align the set of low
power spectra with the set of high power spectra. A low
power spectrum was considered correctly aligned if the cor-
responding high power spectrum was within its 3-nearest
neighbors in the embedded space.

For all models evaluated, the correspondence weight was
set to µ = 0.8, based upon the ratio of train/test data. All
competing models required an additional nearest neighbor
hyperparameter. This hyperparameter was optimized using
grid search and cross validation. For affine matching and
Procrustes alignment the number of neighbors used was k =
10, and for traditional manifold alignment k = 4. For all of
these competing methods, a binary weight was used in the
graph construction because it proved more accurate than the
heat kernel for this experiment.

The 5-fold cross validation results are shown in Figure

4. In each iteration, correspondences are provided for 80
spectra while the other 20 spectra are used for evaluation.
The experiment was repeated 30 times with a random parti-
tioning of folds. LRA outperformed all other models tested
achieving an accuracy of 46.6% at d = 8, while the next best
performing model, affine matching, had an accuracy of 42%
at d = 7.

The error bars in this experiment (Figure 4) are larger than
those in the following language experiments (Figure 5) due
to the relatively small size of the 100 spectra data set.

Figure 4: Cross validation results of 100 sample spectra
alignment with 1-σ error bars.

In this last test, it was assumed that all of the spectra were
recorded at both power settings, but in reality CT is often
used when only a portion of the sample set is recorded under
both conditions. For example, a researcher may have a large
database recorded at high power that he or she uses to fit a re-
gression model for predicting the chemical compositions (%
weight) of the spectra. As commonly occurs, the researcher
also has a smaller calibration set recorded at both high and
low powers. Unfortunately, an unforeseen instrument mal-
function occurrs allowing the spectrometer to only use low
power. To predict subsequent low power spectra using the
high power database, an alignment must be calculated.

To simulate this situation, we calculated an alignment us-
ing 30 samples at both powers (the calibration set), 50 sam-
ples at only high power (the large database), and 20 sam-
ples at only low power. The 20 low power samples rep-
resent the out-of-sample spectra recorded after instrument
malfunction. To note, this results in a non-square correspon-
dence matrix C(X,Y ).

Next, a multivariate linear regression model was trained
to predict 10 major elements of the minerals (e.g., SiO2,
Al2O3, CaO) using the embedded high power database and
the embedded calibration samples. To evaluate the regres-
sion model, the compositions of the 20 embedded low power
spectra were predicted and compared to ground-truth com-
position values.

Setting d = 8, the experiment was repeated 30 times
with randomized sets. The regression model trained on LRA
achieved on average a 1.8%, 4.8%, and 8.1% improvement
in RMSEP over affine matching, Procrustes alignment, and

2515



traditional manifold alignment, respectively. This shows
that the high accuracy of LRA in alignment translates to im-
proved performance in the final predictive model.

European Parliament Proceedings
In this second set of experiments, we used the transcribed
proceedings of the European Parliament (Koehn 2005) for a
standard cross-language document retrieval task. The task
is simply stated: given a document in one language, find
its matching document in the second language. The parlia-
ment corpus was collected between April 1996 and Novem-
ber 2011 and transcribed into 21 European languages. In
the corpus, each utterance of a speaker was transcribed into
paragraphs of typically 2-5 sentences. This data set is com-
monly used when comparing manifold alignment algorithms
(Wang and Mahadevan 2008; 2013).

In the first experiment, we align the German corpus with
the English corpus, and in the second experiment we align
the Italian corpus with the English corpus. We chose these
languages because each had approximately 1.9 million sen-
tence pairs.

To represent the utterances, a bag-of-words model was
used, where the 2500 most frequently occurring words were
considered, after filtering for stop-words. Unlike methods
like Gale and Church (1993) and Resnik and Smith (2003)
that used domain knowledge in their model preprocessing,
we used a simple statistical model to compare the different
alignment methods more directly. To pare down the data
set for efficient experimentation, only sentences with more
than 45 words were used, resulting in a subset of approx-
imately 2500 sentence pairs for both English/German and
English/Italian experiments. For accurate method compar-
ison, we used 5-fold cross validation. In each fold, 80%
of the sentence correspondences were provided and the re-
maining 20% of the sentences were used for evaluation. To
evaluate a sentence alignment, we define a correct transla-
tion as a sentence embedding where the true correspondence
pair appears within the 10-nearest neighbors in the embed-
ded space.

All methods used the same default correspondence weight
µ = 0.5. Grid search and cross validation were used to tune
the number of nearest neighbors for all competing models.
For affine matching and Procrustes alignment k = 125, and
for manifold alignment k = 5.

The results of the text alignment test are shown in Fig-
ure 5. LRA outperformed all other evaluated models in the
English-German experiment, with an accuracy of 90% at
embedding dimension d = 100 and 88.4% at d = 140.
In contrast, the best accuracy achieved by any competing
method was 63.1% using affine matching. In the English-
Italian test, the accuracy of every method was greater, but
LRA continued to outperform all other methods tested.

Traditional manifold alignment was clearly the worst-
performing model. Affine matching and Procrustes align-
ment are both two-step algorithms in the sense that they rely
on a second transformation after the embedding step. In con-
trast, manifold alignment and LRA are one-step algorithms
that incorporate these constraints into their embeddings and
so could be seen to place more importance on their ability

to recover the shared manifold of the data sets. This skewed
performance between methods suggests that the corpora are
drawn from mixtures of manifolds.

Figure 5: Cross validation results of EU parallel corpus
with 2410 Italian-English sentences pairs and 2110 German-
English sentences pairs.

Conclusion
This paper presents a novel algorithm for manifold align-
ment that can align data sets drawn from a mixture of man-
ifolds. Unlike previous manifold alignment algorithms that
rely on nearest neighbor graph construction, LRA instead
uses a low rank matrix constraint to calculate its reconstruc-
tion weight matrix, which has been demonstrated to be less
prone to short-circuit connections. We have demonstrated
the effectiveness of the algorithm at two diverse real-world
tasks: calibration transfer for spectroscopic data and cross-
language information retrieval. In both tasks, LRA outper-
formed all other evaluated methods.

As manifold learning and alignment techniques are ap-
plied to more complex tasks, the mixture of manifolds prob-
lem has become increasingly apparent. The proposed Low
Rank Alignment is the first such alignment method to grace-
fully handle arbitrary manifold mixtures, a benefit which is
reflected in the task performance comparisons.

In future work, we plan to adapt existing manifold align-
ment methods for mixtures of manifolds and to create novel
mixture-friendly regression methods.
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