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Abstract

Sequential planning portfolios exploit the complementary
strengths of different planners. Similarly, automated algo-
rithm configuration tools can customize parameterized plan-
ning algorithms for a given type of tasks. Although some
work has been done towards combining portfolios and algo-
rithm configuration, the problem of automatically generating
a sequential planning portfolio from a parameterized plan-
ner for a given type of tasks is still largely unsolved. Here,
we present Cedalion, a conceptually simple approach for this
problem that greedily searches for the 〈parameter configu-
ration, runtime〉 pair which, when appended to the current
portfolio, maximizes portfolio improvement per additional
runtime spent. We show theoretically that Cedalion yields
portfolios provably within a constant factor of optimal for the
training set distribution. We evaluate Cedalion empirically by
applying it to construct sequential planning portfolios based
on component planners from the highly parameterized Fast
Downward (FD) framework. Results for a broad range of
planning settings demonstrate that – without any knowledge
of planning or FD – Cedalion constructs sequential FD port-
folios that rival, and in some cases substantially outperform,
manually-built FD portfolios.

Introduction
Over the years the automated planning community has cre-
ated a very large number of different planning algorithms,
and it is well known that none of them dominates all others
on all planning tasks. Since automatically choosing the best
planner for a given task remains a mostly unsolved problem,
many of today’s most successful planners run a sequential
portfolio of individual planners (Coles et al. 2012). For ex-
ample, the winners of both the learning track and the deter-
ministic optimization track of the 2011 International Plan-
ning Competition (IPC), PbP2 (Gerevini, Saetti, and Vallati
2011) and Fast Downward Stone Soup (FDSS) (Helmert,
Röger, and Karpas 2011), as well as the winner of the IPC
2014 deterministic satisficing track, IBaCoP (Cenamor, de
la Rosa, and Fernández 2014), are based on sequential port-
folios. For a more general overview of work on sequential
portfolios in the automated planning community we refer to
Vallati (2012).
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While planning portfolios combine the complementary
strengths of existing planners on a heterogeneous set of
benchmarks, performance on a particular homogeneous type
of instances can often be improved by tuning a planner’s
parameters. Specifically, applied to highly parameterized
planning systems, automated algorithm configuration has
recently been shown to find novel planner instantiations that
are customized to yield the highest available performance on
particular types of benchmark instances (Fawcett et al. 2011;
Vallati et al. 2013).

Due to these successes, several recent lines of work
found in the Satisfiability Testing (SAT) literature use algo-
rithm configuration to construct portfolios of a single pa-
rameterized algorithm based on algorithm selection (Rice
1976) and on parallel execution of solvers (Huberman,
Lukose, and Hogg 1997); see the works by Xu, Hoos, and
Leyton-Brown (2010), Kadioglu et al. (2010), and Hoos et
al. (2012b). However, there does not yet exist a general pro-
cedure for the problem of constructing sequential portfolios
from a highly parameterized algorithm.

In this paper, we introduce Cedalion, a conceptually sim-
ple yet effective procedure for this problem. Cedalion itera-
tively uses an algorithm configurator to add the 〈parameter
configuration, runtime〉 pair to the portfolio that maximizes
portfolio improvement per runtime spent. It does so by mak-
ing the runtimes of the configurations in the portfolio part of
the configuration space.

After discussing background, we give a detailed descrip-
tion of Cedalion and show that it yields theoretical approx-
imation guarantees. In our empirical evaluation we cre-
ate sequential portfolios from the highly parameterized Fast
Downward (FD) framework for various types of planning
tasks.

Background
In this section we discuss the existing work we base our new
algorithm on.

Automated Algorithm Configuration & SMAC
Most planning systems have several free parameters that can
be adjusted to optimize performance (e.g., solution cost or
runtime). In recent years, the AI community has developed
dedicated systems for this algorithm configuration problem
(Hutter et al. 2009; Ansótegui, Sellmann, and Tierney 2009;
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Birattari et al. 2010; Hutter, Hoos, and Leyton-Brown 2011).
Formally, the problem can be stated as follows: given a
parameterized algorithm with possible configurations Θ, a
benchmark set Π, and a performance metric m(θ, π) cap-
turing the performance of configuration θ ∈ Θ on instance
π ∈ Π, find a configuration θ ∈ Θ that maximizes m over
Π , i.e., that maximizes

f(θ) =
1

|Π|
∑
π∈Π

m(θ, π).

The most prominent applications of algorithm configura-
tion in the planning literature configured the Fast Downward
planning system (45 parameters, after discretization giving
rise to 2.99×1013 combinations, see Fawcett et al. 2011) and
the LPG planning system (62 parameters, after discretiza-
tion giving rise to 6.5 × 1017 combinations, see Vallati et
al. 2013), achieving average speedup factors in satisficing
planning of up to 23 and 118, respectively. These appli-
cations used the local-search based algorithm configuration
method ParamILS (Hutter et al. 2009), which requires a dis-
cretization of continuous and integer parameters.

Here, we employ the improved sequential model-based
algorithm configuration method SMAC (Hutter, Hoos, and
Leyton-Brown 2011) that no longer requires discretiza-
tion. SMAC uses predictive models of algorithm perfor-
mance (Hutter et al. 2014) to guide its search for good con-
figurations. More precisely, it uses previously observed
〈configuration, performance〉 pairs 〈θ, f(θ)〉 and super-
vised machine learning (in particular, random forests, see
Breiman 2001) to learn a function f̂ : Θ → R that predicts
the performance of arbitrary parameter configurations (in-
cluding those not yet evaluated). In a nutshell, after an ini-
tialization phase, SMAC iterates the following three steps:
(1) use the performance measurements observed so far to fit
a random forest model f̂ ; (2) use f̂ to select a promising con-
figuration θ ∈ Θ to evaluate next, trading off exploration in
new parts of the configuration space and exploitation in parts
of the space known to perform well; and (3) run θ on one or
more benchmark instances and compare its performance to
the best configuration observed so far.

SMAC is an anytime algorithm that interleaves the ex-
ploration of new configurations with additional runs of the
current best configuration to yield both better and more con-
fident results over time. As all anytime algorithms, SMAC
improves performance over time. While SMAC provably
converges for finite configuration spaces, it often only finds
close-to-optimal configurations for realistic time budgets
and challenging configuration problems.

Automated Portfolio Construction & Hydra
Our method for constructing sequential portfolios is closely
related to Hydra (Xu, Hoos, and Leyton-Brown 2010),
which automatically constructs selection-based portfolios.
Given a parameterized algorithm framework with a space
of algorithms Θ, Hydra starts with an empty set of can-
didate algorithms C = ∅ and iteratively calls an algorithm
configuration method to add algorithms θ ∈ Θ that comple-
ment C best. In each iteration, it constructs a portfolio from

the current set C using the portfolio-based algorithm selec-
tor SATzilla (Xu et al. 2008) and measures its performance
m(C, π) on each benchmark instance π ∈ Π (in the first it-
eration, m(∅, π) = −∞). The performance metric Hydra
maximizes via its algorithm configuration method is then

mC(θ, π) := max(m(C, π),m(θ, π));

in words, algorithm configuration searches for a configura-
tion θ that most increases the average performance of the
current portfolio under an oracle that for each instance se-
lects the better of the current portfolio and θ. (Of course,
in practice, the SATzilla algorithm selector performs worse
than an oracle; the assumption is that the error is small
enough to not hurt much.) The configuration θ returned by
algorithm configuration with this metric mC is then added
to the current portfolio and the procedure iterates. Hoos et
al. (2012b) introduced parHydra, a very similar method as
Hydra to determine a subset of parameter configurations to
run in a parallel portfolio.

Sequential Portfolios
So far, work on constructing sequential portfolios has fo-
cused almost exclusively on the case where the space of al-
gorithms or parameter configurations Θ is small and finite,
and where we already know the runtimes of each θ ∈ Θ for
solving each π ∈ Π. Streeter, Golovin, and Smith (2007)
showed that, even when the |Θ| · |Π| runtimes are known, it
is NP-hard to find an optimal portfolio. They introduced an
algorithm exponential only in |Θ|, and an efficient greedy
algorithm with the best possible approximation ratio (un-
less P=NP). Núñez, Borrajo, and Linares López (2012) de-
rived a mixed integer programming (MIP) representation of
the problem and solved it using the GNU Linear Program-
ming Kit. In a similar spirit, Hoos et al. (2012a) derived an
answer set programming (ASP) representation of the prob-
lem and solved it with the ASP solver Clasp. Of course,
these approaches are not practical for the combinatorial con-
figuration spaces typical in highly parameterized algorithm
frameworks since they require access to the runtimes of all
|Θ| parameter configurations (for reference, in our work
|Θ| = 2.99× 1013). Instead, similar to the Hydra approach,
we will use algorithm configuration to explore this space.

The most prominent sequential portfolio approach for
domain-independent planning is Fast Downward Stone Soup
(FDSS) (Helmert, Röger, and Karpas 2011), for which two
satisficing and two optimal versions exist. Each FDSS port-
folio runs multiple instantiations of the Fast Downward sys-
tem for prespecified time slices. The construction of these
FDSS portfolios relied on substantial domain expertise by
planning experts; we will evaluate our fully automated ap-
proach against this baseline. FDSS showed excellent perfor-
mance in IPC 2011, winning the deterministic optimization
track and coming in second in the satisficing track.

Another recent sequential portfolio construction approach
we compare against is due to Seipp et al. (2012). Their
approach assumes that the benchmark set Π is comprised
of known homogeneous subsets Π = Π1 ∪ · · · ∪ Πn and
uses algorithm configuration to find specialized configura-
tions θ1, . . . ,θn for each of these subsets. Then, in a second
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step, it uses one of several different methods for combining
θ1, . . . ,θn in a sequential portfolio. In contrast, Cedalion
does not require knowledge about homogeneous subsets but
operates directly on Π.

Definitions
Before we present and analyze our portfolio construction al-
gorithm we give some definitions concerning planning tasks,
sequential portfolios and quality metrics.

Informally, a classical planning task π consists of an ini-
tial state, a goal description and a set of operators. Solving
π entails finding an operator sequence that leads from the
initial state to a goal state. In satisficing planning any such
sequence is valid but there is a preference for cheap solu-
tions. On the other hand, in the setting of optimal planning
only solutions with minimal cost are accepted. For agile
planning the task is to find solutions as fast as possible, re-
gardless of the solution cost. The last setting we consider
in this work is the learning setting, which corresponds to
satisficing planning with the difference that planners are al-
lowed to learn on a training set in a first phase, before being
evaluated on a test set in a second phase.

We define c(〈θ, t〉, π) as the cost of the solution a plan-
ning algorithm with configuration θ finds for planning task
π within time t, or as∞ if it does not find a solution in that
time. Furthermore, we let c?(π) denote the minimum known
solution cost for task π (approximated by a set of baseline
planners). Following IPC evaluation criteria, we define the
solution quality qsol(〈θ, t〉, π) = c?(π)

c(〈θ,t〉,π) as the minimum
known solution cost divided by the solution cost achieved
by θ in time t. Note that for optimal planning the quality is
either 0 or 1.

A sequential planning portfolio P is a sequence of pairs
〈θ, t〉 where θ is a configuration of a planning algorithm and
t ∈ N>0 is the time θ is allowed to run for. We denote the
portfolio resulting from appending a component 〈θ, t〉 to a
portfolio P by P ⊕ 〈θ, t〉.

We now define two quality scores q(P, π) that evaluate
the performance of a portfolio P on task π. Satisficing and
optimal portfolios are assigned the maximum solution qual-
ity any of their components achieves, i.e.,

qsol(P, π) = max
〈θ,t〉∈P

qsol(〈θ, t〉, π).

Following IPC evaluation criteria, for agile portfolios the ag-
ile quality is defined as

qagile(P, π) =
1

1 + log10(t(P, π)/t?(π))
,

where t(P, π) is the time that portfolio P needs to solve task
π (note that t(P, π) = ∞ if P fails to solve π) and t?(π) is
the minimum time any planner needs (approximated by a set
of baseline planners). We set qagile(P, π) = 1 if t(P, π) <
t?(π) or t(P, π) < 1.

A portfolio’s score on multiple tasks is defined as the sum
of the individual scores, i.e. q(P,Π) =

∑
π∈Π q(P, π), and

the score of the empty portfolio is always 0.

Algorithm 1 : Cedalion. Construct a sequential portfolio
maximizing the quality score q using a configuration space
Θ for instances Π and total portfolio runtime T .

1: function CEDALION(Θ, Π, q, T )
2: P ← 〈〉
3: tused ← 0
4: while tmax = T − tused > 0 do
5: 〈θ, t〉 ← CONFIGURATOR(P , Θ× [1, tmax], Π, mP , q)
6: if q(P ⊕ 〈θ, t〉,Π) = q(P,Π) then
7: return P
8: P ← P ⊕ 〈θ, t〉
9: if quality metric q is qsol then

10: Π← {π ∈ Π | qsol(P, π) < 1}
11: else
12: Π← {π ∈ Π | t(P, π) =∞}
13: tused ← tused + t
14: return P

Cedalion: A Greedy Construction Algorithm
We now introduce Cedalion, our new approach for con-
structing sequential portfolios from highly parameterized al-
gorithms. Given an algorithm with parameter configuration
space Θ, a set of tasks Π, a quality score q and the total port-
folio runtime T , Cedalion iteratively constructs a sequential
portfolio.

As shown in Algorithm 1, Cedalion starts with an empty
portfolio P (line 2) and then iteratively uses an algorithm
configurator (e.g., SMAC) to find configurations θ and their
runtime t that complement the current portfolio P best
(line 5; see next paragraph for details). If appending the
pair 〈θ, t〉 to P does not change the portfolio quality any-
more, we converged and Cedalion terminates (line 6). Oth-
erwise, the pair is appended to P (line 8) and all tasks that
are solved optimally (line 10) or, in agile planning, solved
at all (line 12) by P , are removed from Π in order to focus
on other instances in the next iteration. This process iterates
until the sum of the runtimes in the portfolio components
exceeds the threshold T (line 4).

Cedalion’s subsidiary algorithm configuration method
CONFIGURATOR (line 5) returns a 〈configuration, runtime〉
pair that maximizes the portfolio improvement per addi-
tional runtime spent. More formally, given a quality score
q it returns a pair 〈θ, t〉 ∈ Θ × [1, tmax] that approximately
maximizes the following portfolio improvement metric mP

for the current portfolio P across all instances π in the re-
maining set of instances Π:

mP (〈θ, t〉, π) =
q(P ⊕ 〈θ, t〉, π)− q(P, π)

t
. (1)

We let the configurator jointly optimize θ and its run-
time t by adding t to the configuration space. Its domain
is bounded from above by the remaining portfolio time
tmax = T − tused. We further discretize t to integer values in
[1, tmax] to account for the fact that CPU limits can usually
be set in units of seconds. As a result the parameter space
for the configurator is Θ× [1, tmax] (line 5).

Note that by plugging in different quality measures q, the
performance metricmP applies to all of satisficing, optimal,
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and agile planning. Per additional time unit spent, for opti-
mal planning it maximizes the new number of tasks solved
optimally; for satisficing planning the increase in solution
quality; and for agile planning the increase in agile quality.

Comparison to Hydra
Cedalion resembles the Hydra approach for constructing
selection-based portfolios in that it starts with an empty port-
folio P and then iteratively calls a subsidiary algorithm con-
figuration procedure to find complementary configurations
θ ∈ Θ to add to P . However, the resulting portfolios are
suited for different use-cases: while Hydra creates portfo-
lios for algorithm selection, Cedalion constructs a sequential
portfolio. This means that Cedalion solves a more complex
task than Hydra since it not only needs to select the config-
urations to include in the portfolio but also their order and
respective runtimes.

Another important difference is that in the Hydra frame-
work the algorithm configuration procedure evaluates each
candidate configuration θ by running it with the full runtime
budget T . In contrast, in our approach, the evaluation of a
candidate combination 〈θ, t〉 only requires time t. Since t is
typically only a small fraction of T , our subsidiary algorithm
configuration procedure can make much more progress in
the same amount of time than when being used by Hydra.1

Cedalion is also more broadly applicable than Hydra since
it does not require any instance features. Finally, in con-
trast to Hydra, Cedalion comes with theoretical performance
guarantees, which we will discuss next.

Theoretical Analysis
We now analyze our algorithm theoretically, using results
by Streeter et al., who studied the theory of a special case
of Algorithm 1 that takes the time required by every plan-
ner θ ∈ Θ on every planning task π ∈ Π as an in-
put and uses a Θ(|Θ| · |Π|) computation in place of our
use of a configurator (Streeter, Golovin, and Smith 2007;
Streeter and Golovin 2007; Streeter and Smith 2008). Of
course, this approach would not scale to our configuration
space with |Θ| = 2.99 × 1013, but the theoretical results
transfer to Cedalion with quality score qsol (albeit not with
qagile).

We define the expected runtime R(P,Π) of a portfo-
lio P on benchmark set Π as its average time to success
(i.e., to achieving the maximal possible solution quality
for an instance). Defining the prefix portfolio PT of P
as consisting of P ’s first 〈planner, runtime〉 combinations
〈θ1, t1〉, . . . , 〈θ|PT |, t|PT |〉 such that

∑|PT |
j=1 tj ≤ T , we de-

fine the expected quality that portfolio P achieves in time T
on benchmark set Π as

Q(P, T,Π) = Eπ∈Π[ max
〈θ,t〉∈PT

qsol(〈θ, t〉, π)].

1Computational savings by using shorter timeouts in algorithm
configuration have also been exploited in the context of con-
figuring on easy instances with the goal of scaling to hard in-
stances (Mascia, Birattari, and Stützle 2013; Styles and Hoos 2013;
Lindawati et al. 2013).

Finally, we let R∗ = minP R(P,Π) denote the lowest
expected runtime achievable by any sequential portfolio
based on the space of algorithms Θ and let Q∗(T ) =
maxP Q(P, T,Π) denote the maximal quality any such
portfolio can achieve in time T . We then use Theorems 6
and 7 of Streeter and Golovin (2007) to prove:

Theorem 1. Using a configurator that, in iteration j of
Cedalion, returns a solution 〈θ, t〉 within εj of the maxi-
mum of mP (〈θ, t〉,Π) (see Equation 1), for any time t ≤ T ,
the quality Q(P, t,Π) of the portfolio P constructed by
Cedalion is bounded by

Q(P, t,Π) ≥ (1− (1/ exp(1))) ·Q∗(T )−
|PT |∑
j=1

εj · tj .

Simultaneously, the expected runtime of P is bounded by

R(P,Π) ≤ 4R∗ +

|PT |∑
i=1

 i∑
j=1

εj · tj

 .

Thus, given a perfect configurator, Cedalion simultane-
ously achieves a (1 − (1/ exp(1))) approximation for the
quality achievable at any given time t ≤ T , and a 4-
approximation to the optimal runtime. Suboptimal configu-
rators yield worse results but small errors εj do not escalate.
This is important because with configuration spaces includ-
ing 40+ categorical parameters it cannot be expected that
blackbox configuration procedures can find the truly optimal
configuration in realistic time. However, at least for some
scenarios with few and discretized parameters, the SMAC
configurator has empirically been shown to yield close to
optimal performance in reasonable time (Hutter, Hoos, and
Leyton-Brown 2011).

We also note that Theorem 1 only provides a performance
guarantee for the set (or distribution) of benchmarks Π used
for training the portfolio. We can use the same techniques as
Hutter et al. (2009) to show that, given large enough training
sets Π, we recover guarantees for an independent test set
sampled from the same distribution as Π.

Experiments
We now study our automated portfolio construction algo-
rithm empirically by building portfolios for the satisficing,
optimal, agile and learning settings. For our experiments,
we set the total portfolio limit T to 30 minutes for the sat-
isficing, optimal and learning settings and to 1 minute for
the agile setting and abort each component planner if it uses
more than 2 GB of memory. Due to space reasons we list
the found portfolios in a separate technical report (Seipp et
al. 2014).

Configuration Space and Baselines In our experiments
we consider the configuration space of Fast Downward
(Helmert 2006) which allows us to compare Cedalion
to the manually constructed Fast Downward Stone Soup
(FDSS) (Helmert, Röger, and Karpas 2011) and to the most
closely related works by Seipp et al. (2012) and Fawcett et
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al. (2011). For comparability of results we use exactly the
same reduced configuration space (see Fawcett et al. 2011)
as these works. Since a fair evaluation requires that all com-
pared approaches are able to choose from the same set of
planners, we do not compare to any planners outside this
space.

Benchmarks In order to determine training and test sets
for the satisficing, optimal and agile settings, we first se-
lected all instances of the corresponding IPC 2011 track (we
used the tasks from the satisficing track in the agile setting)
for which a set of baseline planners could find a solution
and grouped them by domain. For each group we performed
stratified sampling by dividing the instances evenly into two
parts, one of which became part of our training set. The
other half and additionally half of the instances which the
baseline planners could not solve were added to the test set.
We only trained on tasks solved by at least one baseline plan-
ner in order to avoid spending time on tasks that are probably
too hard to solve in reasonable time anyway.

Algorithm Configuration We used 10 parallel SMAC
runs in each iteration of Cedalion and chose the
〈configuration, runtime〉 pair that maximized the perfor-
mance metric on the current instance set. Each of the SMAC
runs was given a wall-clock time budget of 10h in all settings
except optimal planning, where we used 30h to account for
the fact that optimal planning is generally harder than satis-
ficing planning.

SMAC-uniform In order to establish a fair comparison to
the most closely related approach by Seipp et al. (2012) we
relearned their uniform portfolio for the new training set
with SMAC instead of ParamILS. We used a time budget
of 30h for the configurator. Although the authors only cre-
ated portfolios for satisficing planning we also learned a uni-
form portfolio of optimal planners. Following their method-
ology, we grouped the tasks from our training set by domain
and configured Fast Downward with SMAC for the 14 sets
of tasks individually. The resulting satisficing and optimal
portfolios, dubbed “SMAC-uniform”, then run the respec-
tive 14 configurations sequentially with equal time shares.

Quality Evaluation We note that, as done by Helmert,
Röger, and Karpas (2011) and Seipp et al. (2012), we eval-
uate all portfolios as anytime-search algorithms, where each
iteration except the first uses the cost of the solution from the
previous iteration as a maximum bound on g-values during
search, thus possibly improving the overall quality. We do
not, however, exploit this extension during the portfolio con-
struction process in order to keep planning runs independent.
All reported qualities take into account the solution costs of
a set of baseline planners in addition to the planners in the
respective tables.

Satisficing Planning
Table 1 compares the training and test performance of
our satisficing Cedalion portfolio to that of LAMA 2011

LAMA FDSS SMAC Cedalion

Quality 1 2 uniform 10h

Sum training (130) 111.86 104.46 99.25 119.32 123.90

barman (10) 8.57 7.94 7.92 9.95 9.58
elevators (10) 5.69 6.48 6.59 7.00 9.60
floortile (10) 2.08 3.13 2.80 4.68 5.98
nomystery (10) 5.84 6.61 6.63 9.00 9.98
openstacks (10) 8.46 7.78 7.66 8.69 8.45
parcprinter (10) 9.73 9.90 8.77 9.83 9.95
parking (10) 8.78 7.63 7.87 7.91 7.51
pegsol (10) 10.00 9.49 7.38 9.95 10.00
scanalyzer (10) 8.50 9.67 8.79 9.72 9.42
sokoban (10) 8.18 8.54 7.20 9.81 8.97
tidybot (10) 8.84 7.08 7.27 8.35 7.68
transport (10) 8.75 5.85 6.90 9.78 7.57
visitall (10) 8.04 1.84 1.37 9.98 10.00
woodworking (10) 7.39 9.99 9.84 8.33 9.20

Sum test (140) 108.84 101.93 96.99 122.98 123.89

Table 1: Quality scores on the training and test set
for LAMA 2011, satisficing FDSS, the uniform portfolio
trained with SMAC and Cedalion trained with budget 10h.

(Richter, Westphal, and Helmert 2011), satisficing FDSS
and the SMAC-uniform portfolio. We included LAMA 2011
since it won the IPC 2011 satisficing track and because its it-
erations can be considered a portfolio, even though they are
not assigned maximum runtimes.

Not only did Cedalion achieve the highest overall quality
on the training set (123.90), but it also had the highest score
on the test set (123.89). While SMAC-uniform achieved an
only slightly lower total quality (119.32 and 122.98), the
quality gap to the other planners is substantial on both the
training and test set.

Optimal Planning

Next, we evaluate Cedalion for optimal planning. We com-
pare the generated portfolio to the optimal variants of FDSS
and SMAC-uniform. The baseline planners that we used for
creating the training set in this setting were the components
of the FDSS 1 portfolio. Table 2 shows that the FDSS 1
portfolio solved all 94 tasks that were solved by any of its
configurations. Unfortunately, this means that we cannot im-
prove upon FDSS’s coverage on the training set. Nonethe-
less, our Cedalion portfolio managed to solve 93 tasks which
is only one task less than FDSS 1’s coverage and on par with
FDSS 2. The SMAC-uniform portfolio solved the lowest
number of tasks (90) on the training set. The results on the
test set were similar. The FDSS portfolios solved 93 and 92
tasks whereas Cedalion and SMAC-uniform solved 90 and
89 tasks, respectively.

We believe that the automatic methods have a hard time
surpassing the hand-picked FDSS portfolios in the optimal
planning setting since there are relatively few qualitatively
different configurations for optimal planning in Fast Down-
ward.
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FDSS SMAC Cedalion

Coverage 1 2 uniform 30h

Sum training (94) 94 93 90 93

floortile (10) 3 3 3 4
parking (10) 4 4 2 2
tidybot (10) 7 7 7 6
woodworking (10) 6 5 4 5
Remaining domains (100) 73 73 73 73

Sum test (140) 93 92 89 90

Table 2: Number of solved tasks on the training and test set
for optimal FDSS, the uniform portfolio trained with SMAC
and Cedalion trained with budget 30h. We group the do-
mains where all portfolios had the same coverage.
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Figure 1: Coverage over time for Cedalion, LAMA 2011
and FD-FF on the test set. The crosses represent the times at
which Cedalion switches to the next configuration.

Agile Planning

The next experiment studies our performance in the agile
setting, comparing Cedalion with two Fast Downward con-
figurations: greedy best-first search with deferred evaluation
using the FF heuristic (Hoffmann and Nebel 2001) and pre-
ferred operators (FD-FF); and LAMA 2011 (Richter, West-
phal, and Helmert 2011), winner of the IPC 2011 satisficing
track. We chose to compare to these two planners since they
are the fastest Fast Downward configurations we know.

On the training set Cedalion achieved an agile quality
score of 117.62, outperforming both LAMA (105.03) and
FD-FF (65.00). Similarly, on the test set Cedalion reached
a score of 113.65 compared to 108.02 and 57.00 for LAMA
and FD-FF, respectively. Cedalion was also the single best
performer in 4 out of 14 domains and among the best in 6
additional domains.

Figure 1 shows that the number of tasks that Cedalion
could solve within a given time is almost always higher than
the corresponding numbers for LAMA 2011 and FD-FF.

FD-Autotune FD-Autotune-SMAC Cedalion

Quality q s q s 10h

Sum training (540) 460.58 431.93 506.03 438.50 533.68

barman (60) 59.33 50.41 59.70 49.76 58.61
blocksworld (60) 28.10 27.56 34.18 27.56 60.00
depots (60) 39.26 56.65 57.17 57.34 59.57
gripper (60) 59.75 50.12 59.86 50.41 59.33
parking (60) 53.27 34.80 59.09 39.31 58.69
rover (60) 52.79 57.43 55.98 58.36 59.63
satellite (60) 57.71 48.65 57.44 49.62 59.38
spanner (60) 60.00 60.00 60.00 60.00 60.00
tpp (60) 52.79 43.44 58.03 43.77 58.21

Sum test (540) 463.00 429.04 501.46 436.14 533.41

Table 3: Quality scores for FD-Autotune.{q,s}, FD-
Autotune-SMAC.{q,s} and Cedalion (with budget 10h) on
the training set from Fawcett et al. (2011) and the test set
using the same task distribution.

Learning Setting
To evaluate Cedalion in the learning setting we learned port-
folios for the nine domains of the IPC 2011 learning track
optimizing for solution quality. We used the tasks that
Fawcett et al. (2011) generated to train FD-Autotune for
that competition as training instances: 60 tasks per domain
that take between seconds and minutes to solve. As a test
set we generated 60 new instances using the same task dis-
tribution for each domain and made sure that the training
and test set did not overlap. For each domain Fawcett et
al. (2011) performed two configuration experiments with
ParamILS (each of them using 10 ParamILS runs of 5 CPU
days each), configuring for quality (FD-Autotune.q) and
speed (FD-Autotune.s), respectively. In order to allow for
a fair comparison, we re-ran their experiment with 5 SMAC
runs of 5 CPU days each (FD-Autotune-SMAC.{q,s}).

Table 3 shows aggregated training performance of the five
planners in the first row and detailed test performance in the
bottom part. The total quality scores of both the training and
test set show that in this scenario configuring with SMAC
is more effective than with ParamILS and configuring for
quality in fact achieves higher quality scores compared to
when optimizing for speed.

Despite the fact that each domain is quite homogeneous
and might thus intuitively not “need” a portfolio, Cedalion
performed substantially better than even the best of the other
planners (FD-Autotune-SMAC.q) on both the training and
the test set with a total quality score of 533.68 vs. 506.03
and 533.41 vs. 501.46. Our portfolio was the single best
performer in 5 out of 9 test domains and tied with the other
planners in another.

Conclusion
We presented Cedalion, a novel algorithm that combines
the strengths of sequential planning portfolios and algorithm
configuration to automatically find portfolios of highly pa-
rameterized planners. At the core of our method lies the
idea to make the time slices of sequential portfolios part
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of the configuration space. Cedalion requires no domain-
knowledge and automatically finds portfolios that improve
upon state-of-the-art portfolios on training benchmark sets
and similarly-distributed sets in several planning scenarios.

In future work we would like to use Cedalion in other
settings such as SAT.
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