
Efficient Bounds in Heuristic Search Algorithms
for Stochastic Shortest Path Problems

Eric A. Hansen and Ibrahim Abdoulahi
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu, ia91@msstate.edu

Abstract

Fully observable decision-theoretic planning problems
are commonly modeled as stochastic shortest path
(SSP) problems. For this class of planning problems,
heuristic search algorithms (including LAO*, RTDP,
and related algorithms), as well as the value iteration
algorithm on which they are based, lack an efficient
test for convergence to an ε-optimal policy (except in
the special case of discounting). We introduce a simple
and efficient test for convergence that applies to SSP
problems with positive action costs. The test can detect
whether a policy is proper, that is, whether it achieves
the goal state with probability 1. If proper, it gives er-
ror bounds that can be used to detect convergence to an
ε-optimal solution. The convergence test incurs no ex-
tra overhead besides computing the Bellman residual,
and the performance guarantee it provides substantially
improves the utility of this class of planning algorithms.

Introduction
Fully observable decision-theoretic planning problems are
commonly modeled as stochastic shortest path (SSP) prob-
lems. For this class of problems, actions can have probabilis-
tic outcomes, and the objective is to find a conditional plan,
or policy, that reaches a goal state from a start state with
minimum expected cost. Classic dynamic programming and
linear programming methods solve such problems for the
entire state space. By contrast, several algorithms developed
in the AI community use heuristic search to focus computa-
tion on relevant states, and can find a conditional plan while
evaluating only a fraction of the state space.

There are two broad strategies for using heuristic search
in solving SSP problems. Real-time dynamic programming
(RTDP) uses trial-based search methods that generalize real-
time heuristic search techniques (Barto, Bradtke, and Singh
1995; Bonet and Geffner 2003b; McMahan, Likhachev, and
Gordon 2005; Smith and Simmons 2006; Sanner et al.
2009). Another strategy employs systematic search methods
that generalize techniques for traditional AND/OR graph
search (Hansen and Zilberstein 2001; Bonet and Geffner
2003a; 2006; Warnquist, Kvarnström, and Doherty 2010).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Both strategies are based on the insight that if the initial
cost-to-go function is an admissible heuristic (that is, if it un-
derestimates the optimal cost-to-go function), then an asyn-
chronous value iteration algorithm that only updates states
that are reachable from the start state under a greedy pol-
icy is guaranteed to converge to the optimal cost-to-go func-
tion in the limit, without necessarily evaluating the entire
state space. Given this guarantee of eventual convergence,
the question we address in this paper is how to detect con-
vergence to an ε-optimal solution after a finite number of
steps, that is, how to detect convergence in practice.

The original RTDP algorithm does not include a con-
vergence test (Barto, Bradtke, and Singh 1995). The first
heuristic search algorithm for SSP problems to include a
test for convergence to an ε-optimal policy is the LAO* al-
gorithm (Hansen and Zilberstein 2001). However, its test
for convergence relies on bounds that are as expensive to
compute as exact policy evaluation, and its approach has
not been used in subsequent algorithms; it is even omitted
in some implementations of LAO*. Bonet and Geffner de-
scribe several related algorithms, including HDP (2003a),
LRTDP (2003b), and LDFS (2006), that adopt a similar
strategy as LAO*, with the addition of a labeling technique
that accelerates convergence. But the algorithms do not at-
tempt to detect convergence to an ε-optimal policy. Instead,
they test for convergence to an ε-consistent cost-to-go func-
tion, which means they test whether the Bellman residual
(the largest change in state value in a given iteration) is less
than some ε > 0. Although this convergence test is much
more efficient than the one proposed for LAO*, it does not
provide a genuine error bound. In fact, it does not guarantee
that a policy found by this approach will reach the goal state.

Another approach to testing for convergence is to com-
pute both lower and upper bounds, and test whether the
gap between the bounds is less than ε. This approach
has been implemented in extensions of RTDP (McMahan,
Likhachev, and Gordon 2005; Smith and Simmons 2006;
Sanner et al. 2009) and LAO* (Warnquist, Kvarnström, and
Doherty 2010), and it has the advantage that it provides
meaningful error bounds. It also has the advantage that if
the upper-bound function is computed in such a way that it
is a monotone upper bound, a greedy policy with respect
to a monotone upper-bound function is guaranteed to be
proper (McMahan, Likhachev, and Gordon 2005). A draw-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3283

back of this approach is that it computes both lower and
upper-bound functions, requiring twice as much computa-
tion. It must also compute an initial monotone upper-bound
function, which is more difficult than computing an initial
lower-bound function, and can require an expensive policy
evaluation step that is performed for the entire state space.

In this paper, our contribution is to introduce a simple and
efficient convergence test that applies to any SSP problem
for which all action costs are positive. The convergence test
has two steps. The first step detects whether a greedy pol-
icy with respect to a lower-bound function is proper (which
means a goal state is reached with probability 1). If so,
the second step gives error bounds that can be used to test
whether the policy is ε-optimal. The two-step convergence
test can be used in any algorithm for solving SSP problems
that computes a Bellman residual, including LAO*, HDP,
LDFS, LRTDP, related algorithms, and value iteration itself.
Moreover, computing the bounds incurs no extra overhead
besides the overhead for computing the Bellman residual.

The assumption of positive action costs is essential to our
result, but hardly a limiting assumption. It is satisfied in most
practical applications, and the SSP model is often formu-
lated by assuming positive action costs. A more serious lim-
itation is that the bounds we derive are tightest when action
costs are uniform, or nearly uniform, in addition to positive.
But even with this limitation, our results provide excellent
bounds for most decision-theoretic planning problems.

We begin by introducing the convergence test in the con-
text of value iteration for SSP problems. Then we describe
how to integrate it in heuristic search algorithms. Finally, we
report some experimental results that illustrate the behavior
of the bounds and demonstrate their usefulness.

SSP problems and value iteration
A stochastic shortest path (SSP) problem is a discrete-stage
Markov decision process with the following elements:
• S denotes a finite state set of non-goal states, with an ini-

tial state s0 ∈ S, and G denotes a finite and non-empty
set of goal states;

• for each state i ∈ S ∪G, A(i) denotes a non-empty set of
feasible actions, with A(i) assumed to be a singleton set
for each goal state i ∈ G;
• P aij denotes the probability that action a ∈ A(i) taken in

state i results in a transition to state j; and
• gai ∈ < denotes the immediate cost received when action
a ∈ A(i) is taken in state i.

By assumption, goal states are zero-cost and absorbing, that
is, for all i ∈ G, gai = 0 and P aii = 1 for a ∈ A(i). Although
an SSP problem is an infinite-horizon problem, the decision
process effectively terminates once a goal state is reached.

Let M denote a set of deterministic and stationary poli-
cies, where a policy µ ∈ M maps each state i ∈ S to an
action µ(i) ∈ A(i). A policy is said to be proper if it ensures
that a goal state is reached with probability greater than zero
from every state i ∈ S. Under this condition, it follows that
a goal state is reached with probability 1 from every state
i ∈ S. A policy that is not proper is said to be improper.

The cost-to-go function Jµ : S → <∪ {±∞} of a policy
µ gives the expected total cost incurred by following policy
µ starting from any state i, defined as

Jµ(i) = 0, i ∈ G, (1)

Jµ(i) = gai +
∑
j∈S

P aijJµ(j), i ∈ S. (2)

For any proper policy µ, we have Jµ(i) < ∞, i ∈ S. The
optimal cost-to-go function J∗ is defined as

J∗(i) = min
µ∈M

Jµ(i), i ∈ S, (3)

and an optimal policy µ∗ satisfies
J∗(i) = Jµ∗(i) ≤ Jµ(i), ∀µ ∈M, i ∈ S. (4)

For SSP problems, Bertsekas and Tsitsiklis (1991) show that
an optimal policy is proper under the following assumptions:
(i) there is at least one proper policy µ ∈ M , and (ii) any
improper policy incurs positive infinite cost for some ini-
tial state. The second condition is satisfied when all actions
(taken in a non-goal state) have positive cost. In the rest of
the paper, we assume positive-cost actions.

Value iteration
SSP problems can be solved by linear programming, or the
dynamic programming algorithms of value iteration or pol-
icy iteration. We focus on value iteration because all heuris-
tic search algorithms for SSP problems perform a form of
asynchronous value iteration on a cost-to-go function that is
a lower-bound function. (Policy iteration improves a cost-to-
go function that is a monotone upper bound.)

Given an initial cost vector J0, value iteration generates
an improved cost vector Jk each iteration k = 1, 2, 3, . . . by
performing the following dynamic programming update,

Jk(i) = min
a∈A(i)

gai +∑
j∈S

P aijJk−1(j)

 , i ∈ S, (5)

where Jk(i) = 0, i ∈ G. Bertsekas and Tsitsiklis (1991)
prove that for any initial vector J0 ∈ <n, the sequence
of vectors, J1, J2, J3, . . ., generated by value iteration con-
verges in the limit to the optimal cost vector J∗. A greedy
policy with respect to a cost vector Jk−1 is defined as

µk(i) = arg min
a∈A(i)

gai +∑
j∈S

P aijJk−1(j)

 , i ∈ S, (6)

and a greedy policy with respect to the optimal cost vector
J∗ is optimal.

The rate at which value iteration converges can often be
accelerated by using Gauss-Seidel dynamic programming
updates, defined as follows. For i ∈ S,

Jk(i) =min
a∈A(i)

gai+
i−1∑
j=1

P aijJk(j)+
n∑
j=i

P aijJk−1(j)

, (7)

where Jk(j) is used in place of Jk−1(j) when Jk(j) is avail-
able. Using Gauss-Seidel updates, the cost-to-go function
can improve more in a given iteration than using traditional
updates, especially given an intelligent ordering of states.

3284

Error bounds
In practice, value iteration must be terminated after a finite
number of iterations, and it is useful to be able to bound the
sub-optimality of a solution. Let Jk denote a cost vector that
is the result of a dynamic programming update of the cost
vector Jk−1. In keeping with our interest in heuristic search
algorithms, we assume that both Jk and Jk−1 are lower-
bound functions. Let µk denote a greedy policy with respect
to Jk−1, and recall that Jµk denotes the cost-to-go function
of the policy µk. A policy µk is ε-optimal if Jµk(i)−Jk(i) ≤
ε,∀i ∈ S, where Jk(i) ≤ J∗(i) ≤ Jµk(i),∀i ∈ S. Since
an improper policy has positive infinite cost for some initial
state, only a proper policy can be ε-optimal.

For SSP problems, Bertsekas (2005, p. 413) derives error
bounds for value iteration that take the following form when
the cost vector Jk is a lower-bound function. For all i ∈ S,

Jk(i) ≤ J∗(i) ≤ Jµk(i) ≤ Jk(i) + (Nk(i)− 1) · ck, (8)

where µk is a greedy policy with respect to Jk−1, Nk(i) is
the expected number of stages to reach a goal state starting
from state i and following policy µk, and

ck = max
i∈S
{Jk(i)− Jk−1(i)} , (9)

which we refer to from now on as the Bellman residual.1
Since Jk is a lower-bound function, all we need to bound

the sub-optimality of a solution is to compute either one of
the two upper bounds on the right-hand side of (8). However,
there are difficulties in doing so. First, the upper bounds are
finite only if the policy µk is proper, and there is no guaran-
tee that a greedy policy with respect to a lower-bound func-
tion is proper. It is possible to determine whether a given
policy is proper by analyzing the structure of the directed
graph corresponding to the underlying Markov chain. But
doing so takes linear time in the size of the problem.

Once a policy µk is determined to be proper, one way to
get an upper bound is to compute its cost-to-go function,
Jµk , using policy evaluation. But exact policy evaluation re-
quires solving a system of |S| linear equations in |S| un-
knowns. An upper bound can also be computed using the
inequality J∗(i) ≤ Jk(i) + (Nk(i) − 1) · ck from (8). But
determining Nk(i), which is the expected number of stages
to reach a goal state starting from state i and following pol-
icy µk, requires solving the following system of |S| linear
equations in |S| unknowns,

Nk(i) = 0, i ∈ G, (11)

Nk(i) = 1 +
∑
j∈S

P
µk(i)
ij Nk(j), i ∈ S. (12)

1Bertsekas also defines the quantity

ck = min
i∈S
{Jk(i)− Jk−1(i)} , (10)

which can be used to compute a lower bound. It plays no role in
the bounds we derive in this paper since we assume that Jk is a
lower-bound function, that is, an admissible heuristic. Note that if
ck ≥ 0, then Jk is a monotone lower-bound function, or, equiva-
lently, a consistent heuristic. Our results only depend on Jk being
an admissible heuristic, not a consistent heuristic.

which is as difficult as policy evaluation. “Unfortunately,”
writes Bertsekas (2005, p. 414), the bounds of (8) “are
easily computed or approximated only in the presence of
special problem structure.” The only example of special
problem structure given by Bertsekas is discounting. As is
well-known, any discounted Markov decision problem can
be reduced to an equivalent SSP problem, in which case,
(Nk(i) − 1) = β/(1 − β) for all µ ∈ M, i ∈ S. Except for
the special case of discounting, the bounds of (8) are gener-
ally considered too expensive to be useful in practice.

Instead of using the bounds of (8), standard practice when
using value iteration to solve SSP problems is to test for
convergence by simply testing whether the Bellman resid-
ual is less than some ε > 0. In the terminology of Bonet and
Geffner (2003b), a cost-to-go function that satisfies this con-
dition is said to be ε-consistent. Although useful and easy
to compute, a drawback of this convergence test is that it
gives no real error bound, or even a guarantee that a policy
is proper.

New convergence test and bounds
With this background, we are ready to introduce the main
result of the paper, which is a two-step convergence test
that both (i) tests whether a policy is proper, and, if so, (ii)
bounds its sub-optimality. The first part of the result draws
on a connection between SSP problems and average-cost
Markov decision processes. The second part is based on the
Bertsekas bounds of (8). Both require the assumption that
all actions (taken in a non-goal state) have positive cost.

Surprisingly, the new convergence test incurs no more
overhead than the test for whether a cost-to-go function is
ε-consistent. Both tests simply look at the Bellman residual.
Theorem 1. For an SSP problem where all actions
taken in a non-goal state have positive cost, let g =
mini∈S,a∈A(i) g

a
i denote the smallest action cost, and con-

sider a lower-bound function Jk that is updated by the value
iteration recursion of (5), where ck is the Bellman residual
defined by (9). If ck < g then:

1. a greedy policy µk with respect to Jk−1 is proper, and
2. for each state i ∈ S, an upper bound Jµk(i) on the cost-

to-go Jµk(i) for the greedy policy µk, and thus an upper
bound on the optimal cost-to-go J∗(i), is given by

Jµk(i) =
(Jk(i)− ck) · g

(g − ck)
. (13)

Proof. We prove the two parts of the theorem in turn.
1. Recall that a policy is proper if and only if it ensures

that a goal state is reached with probability greater than zero
from every initial state i ∈ S. It follows that for an im-
proper policy µ, there must be at least one non-goal state
from which a goal state is never reached. Let S′ ⊆ S de-
note the non-empty subset of states from which a goal state
is never reached when following the improper policy µ.

Now consider the average-cost criterion. Let λµ : S → <
denote the average-cost vector for a policy µ, where λµ(i)
gives the average cost per stage of a process that follows pol-
icy µ starting from state i. For any proper policy µ, we have

3285

λµ(i) = 0,∀i ∈ S, since a zero-cost goal state is eventually
reached with probability 1. For any improper policy µ, we
have λµ(i) ≥ g for any state i in S′, since the average cost
per stage cannot be less than g when a goal state is never
reached. In this case, of course, we also have Jµ(i) =∞.

Let λ : S → < denote the average-cost vector for an opti-
mal policy, which means that λµ(i) ≥ λ(i),∀µ ∈M, i ∈ S.
For the sequence of cost vectors {Jk|k ≥ 0} generated by
value iteration, we have for each state i ∈ S (Kallenberg
2002, p. 49, Corollary 2.8):

λ(i) = lim
n→∞

1

n

n∑
k=1

(Jk(i)− Jk−1(i)). (14)

Recall that ck = maxi∈S(Jk(i) − Jk−1(i)) by definition,
and that ck ≤ ck−1 for all k > 0. It follows that ck ≥
maxi∈S λ(i), for all k > 0. Thus the Bellman residual never
decreases below g when µk is an improper policy. (The same
result follows from the error bound for the average-cost cri-
terion given by Bertsekas (2012, p. 329).)

Therefore, if ck < g, where µk is a greedy policy with
respect to Jk−1, it is not possible that λµk(i) ≥ g, for any i
in S, and that means λµk(i) = 0, ∀i ∈ S, which implies that
the greedy policy µk is proper.

2. First note that the upper bound given by the rightmost
inequality of Equation (8) remains valid if Nk(i) is replaced
by an upper bound Nk(i) on the expected number of stages
to reach a goal state from state i following policy µk, where
Nk(i) ≤ Nk(i). Thus we have:

Jk(i) ≤ J∗(i) ≤ Jµk(i) ≤ Jk(i) + (Nk(i)− 1) · ck, (15)

Given that µk is proper, its cost-to-go function Jµk must
be finite, that is, Jµk(i) < ∞,∀i ∈ S. Thus there ex-
ist one or more finite upper-bound functions Jµk such that
Jµk(i) ≤ Jµk(i) <∞, for all i ∈ S. Given an upper-bound
function Jµk and the fact that action costs are positive, we
can derive upper bounds on the expected number of stages
until termination when following policy µk, as follows:

Nk(i) =
Jµk(i)

g
. (16)

Using (16) in the bounds of (15), we can compute another
upper bound J

′
µk(i) as follows:

J
′
µk(i) = Jk(i) +

(
Jµk(i)

g
− 1

)
· ck. (17)

Repeating this procedure recursively would eventually lead
to a fixed point that satisfies the following linear equation:

Jµk(i) = Jk(i) +

(
Jµk(i)

g
− 1

)
· ck. (18)

Solving for the fixed point Jµk(i) directly, we get the upper
bound of Equation (13).

The results of Theorem 1 may seem surprising at first be-
cause the Bertsekas bounds of (8) require solving a system
of |S| linear equations in |S| unknowns, whereas the bounds
of Theorem 1 can be computed immediately from Jk and
ck. This simplification is possible because the condition that
all action costs are positive links the problem of computing
Nk(i) to the problem of computing Jµk(i). In fact, when
action costs are uniform, we have Nk(i) = Jµk(i), for all
i ∈ S. Even when action costs are non-uniform, as long as
they are positive, a bound on Nk(i) can be used to bound
Jµk(i), based on (15), and a bound on Jµk(i) can be used
to bound Nk(i), based on (16). It is the link between these
problems that allows the bounds to be computed efficiently.

Although the bounds of Theorem 1 apply whenever ac-
tion costs are positive, they are tightest when action costs
are uniform or nearly uniform. If the smallest action cost g
is much smaller than the average action cost, the bound of
Equation (16) will be looser, making the error bounds looser.

Note also that although the condition ck < g ensures that
a greedy policy µk is proper, it does not follow that µk is
improper when ck ≥ g. It is possible to construct examples
where a greedy policy is proper and yet ck ≥ g.

Finally, the bounds of Theorem 1 remain valid under the
Gauss-Seidel updates of Equation (7), although a poten-
tial increase in ck as a result of Gauss-Seidel updates may
weaken the bounds.

We next formulate a termination condition for value iter-
ation based on the new bounds.

Theorem 2. For an SSP problem where all actions
taken in a non-goal state have positive cost, let g =
mini∈S,a∈A(i) g

a
i denote the smallest action cost, and con-

sider a lower-bound function Jk that is updated by the value
iteration recursion of (5), where ck is the Bellman residual
defined by (9). For any ε > 0, a greedy policy µk with re-
spect to Jk−1 is ε-optimal when both:

1. ck < g, and

2. for all i ∈ S,

ck ≤
ε · g

Jk(i)− g + ε
. (19)

Proof. From Theorem 1, the condition ck < g ensures that
a greedy policy µk is proper. Given the bounds of (13), µk is
ε-optimal when the following condition holds for all i ∈ S:

(Jk(i)− ck) · g
(g − ck)

− Jk(i) ≤ ε. (20)

Solving (20) for ck on the left-hand side gives (19).

The Bellman residual ck that is needed to ensure con-
vergence to an ε-optimal policy depends on maxi∈S Jk(i),
which increases in the course of the algorithm. Thus the
value of ck needed for convergence decreases in the course
of the algorithm, and we don’t know exactly how small ck
needs to be until convergence.

3286

Heuristic search
Theorems 1 and 2 provide bounds and a convergence test for
value iteration. We next discuss how to incorporate them in
heuristic search algorithms for SSP problems.

Whereas value iteration finds a complete policy, that is,
a mapping from every state i ∈ S to an action a ∈ A(i),
heuristic search algorithms find a partial policy that is de-
fined only for a subset of the states that are reachable from
the start state. Reflecting this difference, the concepts of
“proper” and “optimal” policy need to be qualified so that
they are defined with reference to the start state. We say that
a partial policy µ is proper for the start state if it ensures that
a goal state is reached from the start state s0 with probabil-
ity 1. We say that a partial policy µ is optimal for the start
state if it coincides with an optimal policy for all states that
are reachable from the start state s0 under the policy µ.

As with other heuristic search algorithms, we distin-
guish between a set of closed (or expanded) states, denoted
CLOSED, a set of open (or fringe) states, denoted OPEN,
and states that have not yet been visited. For a state in
CLOSED, all of its successor states are in either CLOSED
or OPEN. A cost-to-go function J is only defined for states
in CLOSED, and the value of states in OPEN is given by an
admissible heuristic function h : S → <.

Let Sµs0 ⊆ S denote the subset of open and closed states
that are reachable from the start state s0 under the partial
policy µ. We say that a policy µ is closed if all states in Sµs0
are closed. Otherwise, we say that it is open. Heuristic search
algorithms for SSP problems start with an open policy that
is defined only for the start state, and gradually expand and
improve the policy until it is closed, proper and optimal. Ex-
panding an open policy µ involves identifying open states in
Sµs0 and expanding them, which means evaluating them and
moving them from OPEN to CLOSED. This may change the
best partial policy for the start state s0, in which case a better
policy is identified, and the process continues.

Algorithm 1 shows pseudocode for a variant of the LAO*
algorithm (Hansen and Zilberstein 2001). In each iteration,
LAO* performs a depth-first traversal of the states reachable
from the start state under the current policy in order to iden-
tify states in the set Sµs0 , and updates the policy and cost-to-
go function for these states. Instead of updating the policy
and cost-to-go function for a state after considering its de-
scendants (that is, in post-order traversal), as in the variant
of LAO* described by Hansen and Zilberstein (2001), Algo-
rithm 1 updates the policy and cost-to-go function for a state
before considering its descendants (in pre-order traversal).
Pre-order updates ensure that the Bellman residual always
reflects the current policy. But post-order updates tend to im-
prove the cost-to-go function faster. Thus Algorithm 1 per-
forms an additional post-order update of the cost-to-go func-
tion. In the pseudocode, Succ(i, a) denotes the set of possi-
ble successor states of state i after taking action a. Since
the Bellman residual is not defined for an open policy, it is
assigned the value nil when the current policy is open.

The primary change from the original algorithm is the
convergence test. Note that the bound only needs to be com-
puted for the start state s0 to test for convergence. By con-
trast, value iteration must compute the bound for all states,

Algorithm 1: LAO∗ with new convergence test
LAO*(s0)
begin

Add s0 to OPEN and let k ← 0
repeat

repeat
k ← k + 1
ck ← LAO*-REC(s0)

until ck 6= nil // nil indicates open policy

if ck < g then
Jµk(s0)← (Jk(s0)− ck) · g/(g − ck)

else
Jµk(s0)←∞

until (Jµk(s0)− Jk(s0)) < ε

LAO*-REC(i)
begin

if i is a goal state then
return 0

if i is in OPEN then
Move i from OPEN to CLOSED
for each action a ∈ A(i) do

for each j ∈ Succ(i, a) do
if j is not in OPEN or CLOSED then

add j to OPEN
Jk(j)← h(j) // h is admissible

return nil

µk(i)← argmina∈A(i)[g
a
i +

∑
j∈S P

a
ijJk−1(j)]

Jk(i)← mina∈A(i)[g
a
i +

∑
j∈S P

a
ijJk−1(j)]

residual← Jk(i)− Jk−1(i) // local variable

for each j ∈ Succ(i, µk(i)) do
if j not already updated this iteration then

r ← LAO*-REC(j)
if (r = nil) then

residual← nil
else if (residual 6= nil) and
(r > residual) then

residual← r

Jk(i)← mina∈A(i)[g
a
i +

∑
j∈S P

a
ijJk(j)]

return residual

or, equivalently, for the state i for which Jk(i) is largest.
Although we use LAO* to illustrate the new convergence

test, it is straightforward to integrate the convergence test
in any algorithm that computes the Bellman residual. For
example, Bonet and Geffner describe two algorithms that
adopt a similar approach as LAO*, called HDP (2003a) and
LDFS (2006), and a related algorithm based on RTDP, called
Labeled RTDP (2003b). All use a solve-labeling procedure
to accelerate convergence. Our bounds and convergence test
can easily be integrated into this solve-labeling procedure.

3287

Figure 1: Bounds for racetrack problem.

Empirical performance of bounds
We implemented the new bounds and convergence test in the
variant of the LAO* algorithm given by Algorithm 1, and
tested its performance in solving some well-known bench-
marks. We used LAO* for our experiments in part because
of its simplicity, but primarily because it updates all states in
Sµs0 each iteration, including the start state s0, which lets us
show how the bounds for the start state improve over succes-
sive iterations of the algorithm. For an admissible heuristic,
we solved a deterministic relaxation of the problem.

Figure 1 shows its performance in solving the racetrack
problem used as a test example by Barto et al. (1995),
Hansen and Zilberstein (2001), and others. The problem has
21,371 states and 9 actions per state, and an optimal policy
for the start state visits only 2,262 states. The problem has
unit action costs, like our other test problems.

For the first 41 iterations of LAO*, the greedy policy is
an open policy except at iterations 34, 35, and 39, where
it is closed, but the residual ck is greater than 1; thus the
greedy policy is not guaranteed to be proper. After 42 itera-
tions, LAO* has found a (provably) proper policy for which
bounds can be computed. After 64 iterations, it has found an
ε-optimal policy with ε = 10−6.

Figure 1 shows three bounds. The top line is the up-
per bound Jµk(s0) of (13). The middle line (which is al-
most indistinguishable from the top line) is the upper bound
Jµk(s0) computed by evaluating the current greedy policy
µk. In practice, we would not compute this bound because
it requires solving a system of linear equations. It is only
included for the purpose of comparison. It shows that al-
though Jµk(s0) is only guaranteed to be an upper bound on
Jµk(s0), it is so tight as to be almost equal to Jµk(s0) for
this problem. The bottom line is the lower bound Jk(s0).

Interestingly, the upper bounds do not decrease mono-
tonically. When used with value iteration, the bound Jµk

does decrease monotonically because the Bellman residual
decreases monotonically when it is computed for the entire
state space. But for a heuristic search algorithm like LAO*,
the Bellman residual is only computed for states visited by

Figure 2: Bounds for mountain car problem.

the current greedy policy. It decreases monotonically as long
as the greedy policy does not change. But when it changes,
the policy can visit different states for which the Bellman
residual is larger. The spikes in the graph of Figure 1 cor-
responds to iterations where the greedy policy changes to
a policy that visits different states, and is worse. Since the
upper bound of (13) is not guaranteed to decrease mono-
tonically when used with a heuristic search algorithm like
LAO*, the following update ensures the best possible up-
per bound at each iteration, Juk (i) = min{Juk−1(i), Jµk(i)},
where Juk (i) denotes the best upper bound for state i found
so far. But while Juk is an upper bound on J∗, it does not
bound the sub-optimality of the current greedy policy.

Figure 2 shows the performance of the bounds in solving
the mountain car problem from Wingate and Seppi (2005).
The problem has 250,000 states with two actions per state,
and an optimal policy for the start state visits 82,910 states.
A (provably) proper policy is found at iteration 49, and an
ε-optimal policy (with ε = 10−6) is found at iteration 263.

The closer the residual ck is to g, while still less than g,
the farther apart are the bounds Jµk(s0) and Jµk(s0). This is
illustrated by a comparison of the initial bounds for the race-
track and mountain car problems. For the mountain car prob-
lem, the first residual less than 1 is c49 = 0.83. For the race-
track problem, it is c42 = 0.0036. As a result, the bounds
Jµk(s0) and Jµk(s0) are initially far apart for the mountain
car problem, but close together for the racetrack problem. Of
course, the closer the residual is to 0, the closer are Jµk(s0)

and Jµk(s0), and they are identical when ck = 0.
Figure 3 shows the performance of the bounds in solv-

ing a double-armed pendulum problem from Wingate and
Seppi (2005). The problem has 160,000 states and 2 actions
per state. An optimal policy for the start state visits 146,153
states. A (provably) proper policy is found after 16 itera-
tions, and an ε-optimal policy (with ε = 10−6) is found after
54 iterations. At iteration 16, the Bellman residual is 0.41
and the two upper bounds are 54.1 and 64.9 respectively. At
iteration 21, the residual is 0.05, and the difference between
the two upper bounds is almost indistinguishable after that.

3288

Figure 3: Bounds for double-armed pendulum problem.

Finally, Figure 4 shows the performance of the bounds
in solving instance 10 of the Elevator problem from the
2006 International Planning Competition. For this problem,
14,976 states are reachable from the start state and there are
an average of 5 actions per state. Although an optimal policy
visits only 18 states, LAO* takes 217 iterations to converge
to a (provably) proper policy and 400 iterations to converge
to an ε-optimal policy (with ε = 10−6). Interestingly, af-
ter LAO* first finds a proper policy for which it can com-
pute error bounds, several iterations follow during which the
current greedy policy is not (provably) proper before LAO*
again finds a policy for which it can compute bounds. This is
illustrated by a gap in the upper bounds shown in Figure 4.

Extensions
All of the test problems used in our experiments have unit
action costs, which is characteristic of test problems found in
the literature, or used in the ICAPS planning competitions.
For problems with non-uniform action costs, it is worth not-
ing that Theorem 1 can be reformulated so that its result
depends not on the smallest action cost for the MDP, but
on the smallest cost of any action used in the current pol-
icy µ. When action costs are non-uniform, this reformula-
tion of Theorem 1 could be especially useful for heuristic
search algorithms, which only compute bounds for the states
in Sµs0 . Although this reformulation would require check-
ing in each iteration for the smallest cost of any action used
in the current policy, it has two potential advantages. First,
if the smallest cost of an action used by the current policy
is greater than the smallest action cost for the entire MDP,
the bounds will be tighter. Second, since heuristic search al-
gorithms only explore a small fraction of the state space,
it means the bounds can be computed by only considering
costs in this fraction of the state space, without needing to
identify the smallest action cost in the entire MDP.

It is one of several extensions of this approach that we
plan to consider in future work, including using the bounds
for action elimination, testing the bounds in other algo-
rithms, and potentially generalizing the bounds.

Figure 4: Bounds for elevator problem.

Conclusion
We have introduced a simple and efficient method for com-
puting bounds for value iteration when solving SSP prob-
lems. Because the method assumes the cost-to-go function
is a lower bound, it is especially useful in heuristic search
algorithms that improve an admissible evaluation function.
Although Bertsekas (2005, pp. 413–414) derives closely-
related bounds for SSP problems, including the bounds
of (8), his bounds require solving a system of |S| equations
in |S| unknowns, severely limiting their usefulness, whereas
our bounds do not require any extra computation besides
computing the Bellman residual. In a paper that comple-
ments our results, Hansen (2011) derives bounds that can
also be computed efficiently for SSP problems with pos-
itive action costs, but only if the cost-to-go function is a
monotone upper bound. By contrast, our approach applies
when the cost-to-go function is a lower bound, allowing it
to be used in heuristic search algorithms for SSP problems.
Bonet (2007) considers SSP problems with positive action
costs and identifies the problem of bounding the suboptimal-
ity of a greedy policy with respect to a cost-to-go function,
based only on the Bellman residual, as an “important open
problem.” Our results provide a simple solution.

In the past, heuristic search algorithms for SSP problems
have either not provided meaningful bounds, or have only
provided them at significant extra expense. A common test
for convergence is a test for ε-consistency; the algorithm ter-
minates when the Bellman residual is less than some ε > 0.
Although this convergence test provides no guarantee of so-
lution quality, as we have already pointed out, it often works
very well in practice because there is, in fact, a problem-
dependent ε > 0 such that a solution is “good enough”
when the Bellman residual is less than ε. Our contribution
is to provide a principled and efficient way of determining
how small the Bellman residual needs to be to ensure that a
greedy policy is both proper and ε-optimal.

Acknowledgements This research was partially sup-
ported by NSF grant IIS-1219114.

3289

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intelli-
gence 72(1):81–138.
Bertsekas, D., and Tsitsiklis, J. 1991. Analysis of stochas-
tic shortest path problems. Mathematics of Operations Re-
search 16(3):580–595.
Bertsekas, D. 2005. Dynamic Programming and Optimal
Control, Vol. 1. Belmont, MA: Athena Scientific, 3rd edi-
tion.
Bertsekas, D. 2012. Dynamic Programming and Optimal
Control, Vol. 2. Belmont, MA: Athena Scientific, 4th edi-
tion.
Bonet, B., and Geffner, H. 2003a. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI-03), 1233–1238. Morgan Kaufmann.
Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming. In
Proc. of the 13th Int. Conf. on Automated Planning and
Scheduling (ICAPS-03), 12–21. AAAI Press.
Bonet, B., and Geffner, H. 2006. Learning depth-first search:
A unified approach to heuristic search in deterministic and
non-deterministic settings, and its application to MDPs. In
Proc. of the 16th Int. Conf. on Automated Planning and
Scheduling (ICAPS-06), 142–151. AAAI Press.
Bonet, B. 2007. On the speed of convergence of value iter-
ation on stochastic shortest-path problems. Mathematics of
Operations Research 32(2):365–373.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1–2):139–157.
Hansen, E. 2011. Suboptimality bounds for stochastic short-
est path problems. In Proc. of the 27th Conf. on Uncertainty
in Artificial Inteliigence, 301–310. AUAI Press.
Kallenberg, L. 2002. Finite state and action MDPs. In Fein-
berg, E., and Shwartz, A., eds., Handbook of Markov Deci-
sion Processes: Methods and Applications. Boston: Kluwer
Academic Publishers.
McMahan, H. B.; Likhachev, M.; and Gordon, G. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
Proc. of the 22nd Int. Conf. on Machine Learning (ICML-
05), 569–576. ACM.
Sanner, S.; Goetschalckx, R.; Driessens, K.; and Shani, G.
2009. Bayesian real-time dynamic programming. In Proc.
of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI-
09), 1784–1789. AAAI Press.
Smith, T., and Simmons, R. G. 2006. Focused real-time
dynamic programming for MDPs: Squeezing more out of a
heuristic. In Proc. of the 21st National Conf. on Artificial
Intelligence (AAAI-06), 1227–1232. AAAI Press.
Warnquist, H.; Kvarnström, J.; and Doherty, P. 2010. Itera-
tive bounding LAO*. In Proc. of 19th European Conference
on Artificial Intelligence (ECAI-10), 341–346. IOS Press.

Wingate, D., and Seppi, K. 2005. Prioritization methods for
accelerating MDP solvers. J. of Machine Learning Research
6:851–881.

3290

