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Abstract

The problem of planning or discrete control for timed system
has earlier been solved with various constraint-based solution
methods, including Constraint Programming, SAT solvers,
SAT modulo Theories solvers, and Mixed Integer-Linear Pro-
gramming. In this work we investigate the encoding of time
in such constraint-based representations. A main issue with
existing encodings is the necessity to allow arbitrary inter-
leavings of concurrent actions’ starting and ending times. The
complex combinatorics of this can lead to poor scalability of
leading search methods. We show how real or rational time
in temporal models can in many practically important cases
be replaced by integer time, and how this leads to far simpler
encodings of planning as constraints. We demonstrate that
the simplified encodings substantially improve the scalability
of constraint-based planning.

Introduction
Temporal planning, similarly to other important problems
about timed systems, can be reduced to constraint-based
languages such as Constraint Satisfaction Problems (CSP),
Mixed Integer Linear Programming (MILP) and Satisfia-
bility modulo Theories (SMT), and solved with general-
purpose solvers for these languages. Encodings of planning
in SMT are in several respects similar to encodings of classi-
cal planning in SAT, but the far more complex model of time
means that some of the core issues in SMT encodings do not
have a counterpart in SAT encodings. The most central is-
sues we will be addressing in this work are action exclusions
and delayed effects.

Extensions of the SAT problem were first applied to prob-
lems such as planning with numerical state variables more
than 15 years ago (Wolfman and Weld 1999). The model-
ing languages for temporal planning favored by the plan-
ning competition (IPC) community were shown by Shin
and Davis (2005) to be effectively representable in the
SMT framework (Wolfman and Weld 1999; Audemard et al.
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2002). The Shin and Davis framework is very general, ad-
dressing planning in complex timed systems with continu-
ous change and far exceeding both the complexity of typical
temporal planning problems and the capabilities of existing
search methods for timed and continuous systems. This sug-
gests that parts of the generality may impede efficient imple-
mentations, which has motivated various hybrid approaches
that perform action selection in the first phase and action
scheduling in a separate phase. A representative of such
approaches is that of Rankooh and Ghassem-Sani (2012;
2013). Other planners replace the first phase with other
search paradigms (Vidal and Geffner 2006).

Similarly to classical planning (Kautz and Selman 1992;
Rintanen 2009), a problem instance in temporal planning
can be reduced to a sequence of constraint-satisfaction prob-
lems. Each of these problems represents a sequence of steps,
which correspond to those states encountered during the ex-
ecution of a plan in which a (discrete) change takes place
(Shin and Davis 2005). In contrast to classical planning,
temporal planning involves choosing the absolute times for
each of the steps as well as the scheduling of the actions and
their effects to these steps. Most notably, the effects of an
action taken at step i are not necessarily at step i or the most
closely following steps, but could be arbitrarily far, depend-
ing on the duration of the action and the number of other
actions taken before or after. Standard encodings have to al-
low for arbitrary scheduling of actions’ start and end points
on the sequence of all steps. The difficult combinatorics of
this incurs a high computational cost.

In this work we investigate the possibilities of replacing
the real or rational timeline with an integer timeline, and
devise methods for simplifying the encoding of planning as
constraints when the integer timeline can be used. Our ex-
perimental results demonstrate the efficiency gains that are
possible with simpler and more effective encodings.

The structure of the paper is as follows. We first present a
simple yet general model of temporal planning, and sketch
constraint-based encodings for it. As the main result of the
work we prove that for important classes of temporal plan-
ning problems, time can be discretized in the sense that the
continuous or dense real or rational timeline can be replaced
by an integer timeline. Then we show how for actions with
short durations this allows dramatically simpler encodings,
with substantial performance improvements. We conclude
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the paper by pointing further research topics.

A Model of Temporal Planning
The temporal model used by us differs from that of Shin
and Davis (2005), whose use the PDDL, where explicit ex-
clusion holds for action starting points only, and overlap of
actions is handled with state variables so that a variable is
made false in the start of the action, and other exclusive ac-
tions cannot be taken because they require the variable to be
true.

In this paper we use Boolean state variables with values
0 and 1, as well as unary resources that can be used by at
most one action at a time. If x is a state variable, then x and
¬x are literals. The complement l of literal l is defined by
x = ¬x and ¬x = x.

An action consists of a precondition which determines
whether an action can be taken at a given point of time,
as far as the values of the state variables are concerned, re-
source requirements which determine whether the action can
be taken in temporal relation to other actions, and effects
which determine how and when state variables change after
the action has been taken.

Definition 1 Let X be a finite set of state variables and R a
finite set of resources. An action is a triple 〈p, r, e〉 where
• the precondition p is a propositional formula over X ,
• the resource requirement r consists of triples (t0, t1, v)

where t0 and t1 are rational numbers such that 0 ≤ t0 ≤
t1 and v ∈ R is a resource, and
• the effect e is a set of pairs (t, l) where t ≥ 0 is a rational

number and l is a literal over X .

We define plans as finite sets π ⊆ Q × A of pairs (t, a)
that assign a starting point to a set of actions.

A necessary condition for taking an action at time point
t is that its precondition is true at t. Notice that we allow
an action to have effects at the starting time point 0 where
also the action’s precondition is evaluated. We assume that
the time 0 effects and the precondition don’t share state vari-
ables. Additionally we rule out the possibility of two actions
being taken simultaneously with each satisfying (part of) the
preconditions of the other. We call this our acyclicity as-
sumption for time 0 effects. This assumption is used later in
the proof of Theorem 3. A slightly weaker theorem would
clearly be possible without this assumption, for example one
that assumes that simultaneous preconditions and effects do
not share state variables.

If an action is taken at t0, an effect (t, l) changes the literal
l true at t0 + t.

If an action taken at t has resource requirement (t0, t1, v),
and another action, taken at t′, has the resource requirement
(t2, t3, v), then the actions respectively require the same re-
source at time intervals ]t+ t0, t+ t1[ and ]t′ + t2, t

′ + t3[.
Since a unary resource may be used by at most one action,
taking the second action may not violate the following con-
dition, expressed in terms of a clock c that measures the time
that has passed since taking the first action.

c+ t1 ≤ t2 or t3 ≤ c+ t0 (1)

variable description
x@i, x ∈ X, 0 ≤ i ≤ T state variables
a@i, a ∈ id(A), 0 ≤ i < T actions
τ@i, 0 ≤ i ≤ T absolute time at step i
∆@i, 0 < i ≤ T time difference of steps i− 1, i
ca@i, a ∈ id(A), 0 ≤ i < T clock for action a

Table 1: Variables used in the SMT encodings

Resources (t0, t1, v) with t0 < t1 are interpreted as open
intervals ]t0, t1[, and with t0 = t1 they are interpreted as
closed intervals [t0, t1]. If we limited to durations > 0 only,
it would suffice – from the point of view of allowing con-
secutive actions with a zero-duration gap between them – to
have the intervals half-open. However, intervals [t0, t0] have
important uses, and it sometimes is desirable to allow them
between two open intervals.

Our modeling language is temporally expressive in the
sense of (Cushing et al. 2007) in that it can express problems
that require actions to be taken concurrently. Many tempo-
ral planning problems – both real-world and standard bench-
mark problems – have purely sequential solutions which do
not involve concurrency at all, and these solutions can of-
ten be found with classical planners. In this work we are
not interested in this possibility, as the main reason for mak-
ing time explicit is that finding plans with a short makespan
(the time from the first action until the end of the last) is the
main objective, and plans with the shortest makespan typ-
ically are not sequential. Although some of the most scal-
able search methods are not guaranteed to find the plans with
the shortest possible makespan, all our results preserve the
makespan and allow finding the plans with the shortest pos-
sible makespan. In the following, we call a plan optimal if it
has the shortest possible makespan.

Encoding in SMT
The variables used in an encoding for T steps are listed in
Table 1. Name of an action a ∈ A is denoted by id(a).

The precondition p of an action taken at step i has to be
true at step i.

id(a)@i→ p@i. (2)
Here we denote by p@i the formula p with every state vari-
able x has been replaced by x@i for a step index i.

Since effect axioms depend on the representation of time
delays, we will be describing them in detail in the next two
sections which present two alternative encodings. We will
denote the formula that represents the disjunction of all pos-
sible causes (different actions at different times) of a literal l
becoming true at step i by causesi(l). At this state we simply
express changes in terms of causesi(l) as follows.

causesi(l)→ l@i (3)

Frame axioms describe the conditions under which a state
variable remains unchanged, or alternatively, lists possible
reasons for change from true to false or false to true. They
can be similarly expressed in terms of causesi(l).

(l@(i− 1) ∧ l@i)→ causesi(l) (4)
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Exclusion of actions is represented by two categories of for-
mulas. The first category prevents the simultaneous execu-
tion of two actions. This can be easily statically determined
by looking at the resource requirements of the actions: if
the resource requirements conflict, the actions cannot be ex-
ecuted at the same time.

¬id(a1)@i ∨ ¬id(a2)@i (5)

These formulas can be derived as follows. Let the actions
allocate the same resource respectively over the intervals
[t0, t

′
0[ and [t1, t

′
1[ relative to the time when the action is

taken. If a0 and a1 were to be taken simultaneously at step
i, the constraint that would have to be satisfied is

(id(a0)@i ∧ id(a1)@i)→ (t′0 ≤ t1) ∨ (t′1 ≤ t0).

As all the constant on the right hand side of the implication
are known at the time the encoding is formed, it can always
be simplified to either

(id(a0)@i ∧ id(a1)@i)→ ⊥

or
(id(a0)@i ∧ id(a1)@i)→ >

where ⊥ and > are respectively false and true. The latter
is redundant and can be ignored. The former is equivalent
to (5). For all actions, this encoding has a quadratic size in
the number of actions. Generalizations of techniques from
encoding classical planning in SAT can (often) be applied to
obtain linear size encodings but it is not clear whether linear
encodings are always possible.

The second category of formulas prevents taking an action
if its resource requirements conflict with those of an action
taken at an earlier step. As these formulas depend on the
encoding of time delays, we will be presenting them in the
next two sections for the two alternative encodings.

Direct Reference to Steps with Absolute Time
The first encoding of temporal planning (with various ex-
tensions, including continuous change) in SMT was by Shin
and Davis (2005). The interesting part is how time delays
for effects and for resources are handled. Absolute times for
all steps i are represented in terms of real variables τ@i. The
variables have to satisfy

τ@(i− 1) < τ@i. (6)

Delays in action effects are represented with direct refer-
ences to absolute time: effect (t, l) (with t > 0) of action
a will take place at step i if there is an earlier step j where
a is executed and the time difference between i and j is t.
This can be encoded by the formula φal @i.

φal @i =
i−1∨
j=0

(id(a)@j ∧ (τ@i− τ@j = t))

The formula causesi(l) is simply the disjunction of all for-
mulas φal @i for different actions a.1

1Immediate effects (0, l) are handled in the trivial way, and we
will not discuss this special case separately here or later.

Additionally, it is required that if an action is taken, then
for every effect (t, l) one later step is t later in absolute time.

id(a)@i→
T∨

j=i

(τ@j − τ@i = t) (7)

Let two actions respectively need the same resource for intervals
]t0, t1[ and ]t2, t3[. We derive a constraint for the second action
when the first action has already executed earlier. This is directly
from Equation 1 and with a disjunction that iterates over all past
steps and tests whether the time c in (1) has passed since taking
action a1.

id(a2)@i→
∨i−1

j=1(id(a1)@j → (t2 ≥ t1 + (τ@i− τ@j)
∨t0 + (τ@i− τ@j) ≥ t3))

(8)

Indirect Reference to Steps through Clocks
We have experimented with a second encoding of time that
uses clocks which represent the time that has passed since an
action was taken. This encoding is an improvement over the
previous one in terms of its size, O(T ) instead of O(T 2).
However, the magnitude of T is typically relatively small,
and the encoding uses a far higher number of real variables
which may negatively impact scalability of SMT solvers.

Initially, clocks are initialized to high values to indicate
that the corresponding actions are not active. We take this
to be 1 + maxa, where maxa is the maximum t for an effect
(t, l) of a or t1 for a resource requirement (t0, t1, v) of a:

ca@0 = 1 + maxa (9)

for all a ∈ A. Similarly, at the last step of the plan no action
may be active.

ca@T >= maxa (10)
Time differences between consecutive steps are positive.

∆@i > 0 (11)

When an action is taken, its clock is reset to zero.

id(a)@i→ (ca@i = 0) (12)

At other steps the clock progresses by ∆.

¬id(a)@i→ (ca@i = ca@(i− 1) + ∆@i) (13)

If action a with an effect (t, l) has been taken, there has to
be a step where the action’s clock has value t. This means
that the value of the clock may not jump past t:

(ca@(i− 1) < t)→ (ca@i ≤ t) (14)

To form the effect and frame axioms 3 and 4, if action a
has effect (t, l), then the action contributes ca@i = t as one
disjunct to causesi(l).

Finally, constraints for resource conflicts are expressed in
terms of clocks as in Equation 1. Let two actions a1 and a2
respectively need the same resource for intervals ]t0, t1[ and
]t2, t3[. The constraint is as follows.

id(a2)@i→ (t2 ≥ ca1
@i+ t1 ∨ ca1

@i+ t0 ≥ t3) (15)

This completes the encoding with explicit clock variables.
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As is obvious from the above, most of the complexity in
both encodings stems from the fact that the steps where ac-
tion’s effects will take place is not known at the encoding
time, and active actions can be interleaving and nesting ac-
tive actions in multiple possible ways. Similarly, it is not
known how long (in terms of the number of steps) an action
allocates resources. In the next section we propose methods
for reducing this complexity.

Discretization to Integer Time
A problem with both encodings in the previous section is
the need to anticipate arbitrary schedulings of effects to later
steps. In this section we show how in many practically in-
teresting cases this scheduling can simplified, and in the fol-
lowing section we show how this can lead to dramatically
improved SMT encodings. The basic insight is that in many
important cases real or rational time can be discretized to
integer time, and the correspondence between time points
and steps can be determined at the encoding time without
the need of representing all possible such correspondences
in the encoding itself. For example, for many problem types
it can be determined that the effects of an action taken at
step i will be at step i+ n for some small integer n which is
known at the time of reduction to SMT. This often dramati-
cally simplifies the encodings.

Definition 2 An action (p, r, e) has integer time if

• for every (t, l) ∈ e, t is an integer, and
• for every (t0, t1, v) ∈ r, both t0 and t1 are integers.

For our main result we need the following lemmas which
express rather general conditions that guarantees a temporal
separation between two effects or effects and a precondition.

Lemma 1 Let two actions respectively have effects e1 at t1
and e2 at t2, and let the actions respectively allocate the
same resource at the intervals ]ts1, t

e
1[ and ]ts2, t

e
2[.

Let d be any real number. If te1 − ts2 ≥ t1 − t2 + d and
te2 − ts1 ≥ t2 − t1 + d, then in any valid execution with
the actions, there is at least time d between the time points
where the effects e1 and e2 take place.

Proof: Let the two actions be respectively taken at time
points t and t′. Because of the conflicting resource require-
ments, t and t′ have to satisfy one of the following condi-
tions.

t+ te1 ≤ t′ + ts2 (16)
t′ + te2 ≤ t+ ts1 (17)

The first condition says that the first action has to release the
resource at the latest at the same time when the second action
allocates it. The second condition corresponds to the second
action using the resource first. We rewrite these conditions
as follows for later use.

t ≤ t′ + (ts2 − te1) (18)
t′ ≤ t+ (ts1 − te2) (19)

The requirement that the effects e1 and e2 are not closer to
each other than d induces the following two conditions, one
of which has to be satisfied.

t+ t1 + d ≤ t′ + t2 (20)
t′ + t2 + d ≤ t+ t1 (21)

The first condition says that the first action’s effect e1 is at
least d earlier than the second action’s effect e2. The sec-
ond condition is analogous. We rewrite these conditions as
follows.

t ≤ t′ + (t2 − t1 − d) (22)
t′ ≤ t+ (t1 − t2 − d) (23)

Now we can derive a condition on t1, ts1, te1, t2, ts2, te2 and
d that guarantees that the resource requirements prevent the
two effects cannot be closer to each other than d. This con-
dition is obtained by observing the similar form of 22,23
and 18,19, and the fact that if t ≤ t′ + c and c ≤ c′ then
t ≤ t′ + c′: for one of the latter to be satisfied it is sufficient
that both of the following hold.

ts2 − te1 ≤ t2 − t1 − d (24)
ts1 − te2 ≤ t1 − t2 − d (25)

which is what we set out to prove. �

Lemma 2 Let two actions respectively allocate the same re-
source at the intervals ]ts1, t

e
1[ and ]ts2, t

e
2[ and let the first

action have an effect e1 at t1.
Let d be any real number. If te1 − ts2 ≥ t1 and te2 − ts1 ≥

d − t1, then in any valid execution with the actions, The
effect e1 is does not take place during time d after taking the
second action.

Integer time alone is insufficient for discretization. In the
following theorem we need further assumptions to be able
to prove that (optimal) plans are not excluded by discretiza-
tion. The first two assumptions respectively guarantee that
potentially conflicting effects or conflicting effect and pre-
condition will not be moved to the same time point as a re-
sult of discretization. The third assumption guarantees that
actions can be moved to the preceding integer time point one
by one, starting from the earliest actions, without causing re-
source conflicts with later actions.

Theorem 3 Let all actions have integer time. Additionally
assume the following.

1. If actions a and b respectively have effects (ta, x) and
(tb,¬x), then they have resource requirements (tsa, t

e
a, r)

and (tsb, t
e
b, r) for some resource r such that te1 − ts2 ≥

t1 − t2 + 1 and te2 − ts1 ≥ t2 − t1 + 1.
2. If action a has effect (ta, l) and action b has precondition
l, then a and b respectively have resource requirements
(tsa, t

e
a, r) and (0, teb, r) for some resource r such that ei-

ther ta − tsa ≥ 1 or teb ≥ 1.
3. t0 = 0 for all (t0, t1, v) ∈ r.
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Then, if there are plans for the problem instance, then there
is a plan where all actions are scheduled at integer time
points with an at most the same makespan.

Proof: We show that every action can be moved to the pre-
ceding integer time point. These moves can be done inde-
pendently one by one, starting from the earliest actions, and
what is obtained after each move is a valid plan.

Consider a plan π. Assume there is (t, a) ∈ π such that
t is not an integer. Let t0 = btc. We show that the plan
π′ = π\{(t, a)} ∪ {(t0, a)} obtained by moving a to the
immediately preceding integer time point is a valid plan.

Since (t, a) is the earliest non-integer action in the plan,
no other action is taken at any t2 such that t0 < t2 < t. If
another action is taken at t, we can always choose an action
whose precondition was not made true by time 0 effects of a
simultaneous action, which is possible by the acyclicity as-
sumption discussed right after Definition 1. Hence the truth
of the precondition of a in t entails its truth in t0. Similarly,
all resources available at t are available at t0 as well, and by
assumption 3 the action allocates all of its resources starting
at t and not later. Hence a continues to be executable when
moved from t to t0.

It remains to show that moving a earlier does not over-
write the effects of other actions, nor falsifies the precondi-
tions of later actions, nor violates resource requirements.

Consider an effect (t1, l) of a. By assumption 1 and
Lemma 1 there is no action with effect l taking place be-
tween time points t0 + t1 and t+ t1. Hence moving a from
t to t0 cannot overwrite the effects of other actions.

Assume a has an effect (t1, l) at t+t1, and there is another
action with precondition l taken at some time point t2 such
that t0 + t1 ≤ t2 ≤ t + t1. Hence moving a earlier would
falsify the other action’s precondition. There can be no such
action by assumption 2: the second action would require
resource r starting at t2 and a until t+t1, and one of them for
at least one unit of time, making the requirements conflict.
Hence no such action can exist. Hence moving a from t to t0
does not falsify the preconditions of any actions in the plan.

By assumption 3 resource conflicts cannot arise when the
action is moved from t to t0, because resources of all ear-
lier actions are released at integer time points, and for a and
later actions conflict with a at t0 implies conflict with a at t.
Hence moving a from t to t0 is always safe.

The same moves can be done for all actions, one by one,
and as a result we have a plan with integer time points only.
The plan has a makespan at most that of the original plan. �

The next examples show why the assumptions of the the-
orem cannot be substantially relaxed.

First we explain why actions can only overlap if there is a
gap of duration of at least 1 between their conflicting effects.
This justifies assumption 1 of Theorem 3.

Example 1 Consider actions 〈a, ∅, {(1,¬b), (1, c)}〉 and
〈a, ∅, {(1, b)}〉. With an initial state that satisfies a∧¬b∧¬c
there is no unique optimal plan for reaching b ∧ c. The sec-
ond action has to be started a non-zero amount of time later

than the first to avoid the conflict and having its effect b over-
ridden. The shortest plan with integral starting times has the
second action started at time 1, and there are significantly
shorter plans than this one.

The next example shows that an action cannot falsify an-
other action’s precondition if there is only a small gap be-
tween them. This justifies assumption 2 of Theorem 3.

Example 2 Consider actions a1 = 〈a, ∅, {(1,¬a), (1, c)}〉,
a2 = 〈a, ∅, {(1,¬b), (1, d)}〉, a3 = 〈b∧ c, ∅, {(1, e)}〉. With
initial state that satisfies a ∧ b ∧ ¬c ∧ ¬d ∧ ¬e the plan
(0, a1), (0.5, a2), (1, a3) reaches the goal d ∧ e. This is an
optimal plan. Consider a discretized plan. Action a3 cannot
be earlier than 1 because its precondition is produced by a1.
Action a2 cannot be at 0 because it would falsify the precon-
dition of a3, and it cannot be at 1 because its precondition
would be falsified by a1. There are no discretized plans for
this problem.

The theorem shows when action schedules can be limited
to integer time points. Hence plans (with optimal makespan)
can have a particularly simple structure.

• Progression of time can be limited to integers only.

• No other actions or effects take place between an action
with duration 1 and its effects.

• For pairs of actions with unit durations, resource require-
ments can conflict only if the actions start simultaneously.

These properties can be utilized in any search method. Later
we will see how this can substantially simplify SMT encod-
ings of temporal planning.

Extensions for State Resources
Some of the benchmark problems used by the planning com-
munity use over all conditions of PDDL. The general map-
ping of these conditions to our resource-based representa-
tions involves state resources (Baptiste and Le Pape 1996)
which in some cases are allocated for a single time point
(interval [t, t] with duration 0.)

Theorem 3 is stated for unary resources, which induce
pairwise action exclusions. The proof trivially applies to re-
source conflicts caused by two actions allocating the same
state resource in different states. For handling state re-
sources allocated at single time points [t, t] the proof needs
to be extended.

Theorem 4 In addition to the assumptions of Theorem 3,
additionally assume that state resources are allowed and
they fulfill the following properties.

1. All duration 0 allocations of a state resource are for the
same state (that is, mutually non-conflicting).

Proof: Sketch follows. The proof first proceeds exactly as
in Theorem 3, with the duration 0 state resource allocations
completely ignored. Then we argue that in the resulting dis-
cretized plan and execution, there are no new resource con-
flicts with the duration 0 state resources.
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So consider any allocation of a duration 0 state resource
at some time point t. Due to the process of moving all ac-
tions to an integer time point, this allocation will be moved
to some integer time t0 ≤ t. Consider any conflicting alloca-
tion of the same resource. By assumption 1, no other alloca-
tion with duration 0 can conflict with the allocation. Hence
any potentially conflicting allocation is for a non-zero inter-
val ]t1, t2[ such that t0 ≤ t2 ≤ t. Due to the discretization
process, this allocation now is over some absolute interval
]t′1, t

′
2[ such that t′2 = t0. Since this interval is open, it does

not conflict with the duration 0 allocation at t0. �

This theorem allows discretizing most of the standard
benchmark problems with over all conditions.

Utilizing Discretization in SMT Encodings
Theorem 3 shows – for many practically important temporal
planning problems – that actions with unit duration never
need to be interrupted by intermediate events. Hence for any
such action taken at a given step of a plan all of its effects can
take place at the next step. Analogously, actions with small
integer duration n can – under the same conditions – directly
entail their effects n steps later. And, finally, constraints
on conflicting resource usage can similarly directly refer to
action variables at steps that are known at encoding time.
This observation often allows eliminating all or much of the
combinatorially hard parts of existing encodings.

We utilize the theorem as follows. First, as the theorem
is only applicable to a subset of temporal planning prob-
lems, with integer delays and resource allocations, as well
as the additional conditions in Theorem 3, our planner tests
all those conditions, and proceeds with a standard encod-
ing if they are not satisfied. Second, even when the theo-
rem’s conditions are satisfied, reduction of all actions with
a “long” integer duration proceeds with standard encodings
because representing all intermediate steps explicitly would
explode the size of the encoding.

Only actions with integer durations of at most 5 are han-
dled specially. For these actions (which we call short ac-
tions) our encoding is the following.

1. If not all other actions are short, then a short action of
duration n implies duration and time constraints: the next
n time differences between consecutive steps are all 1.
This allows mixing the new compact encoding with the
earlier general encodings for non-short actions.

2. The contributions of effects (t, l) ∈ e of short actions a =
(p, r, e) to causesi(l) are particularly simple, because the
step indices are known at encoding time. We simply have
id(a)@j for some j < i as a disjunct of causesi(l).

3. Formulas for resource constraints directly refer to action
variables in the relevant steps. Essentially, we reformulate
(15) by replacing the real interval for the clock variable by
a disjunction of action variables for different steps.

id(a2)@i→
max(0,min(bt3−t0c,i−1))∧

j=max(0,min(dt2−t1e,i−1))

¬id(a1)@j (26)
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some short XXXXXXX XXXXXX
all short XXX XXX X
all unit X X

Table 2: Properties of problems

C Cd ITSAT
2008-pegsol 30 30 30 30
2008-sokoban 30 5 13 16
2011-floortile 20 5 18 20
2011-matchcellar 10 5 8 10
2011-parking 20 7 8 10
2011-turnandopen 20 10 16 20
2008-crewplanning 30 10 9 30
2008-elevators 30 4 7 15
2008-transport 30 0 4 E
2011-tms 20 8 8 20
2008-openstacks 30 1 1 24
2008-openstacks-adl 30 2 3 E
2011-storage 20 0 0 E
total 320 87 125 195

Table 3: Numbers of problems solved in 30 minutes

Experiments
We have translated IPC benchmark sets (2008 and 2011)
for temporal planning into our modeling language. This is
mostly straightforward. Parcprinter was excluded, due to its
complexity. Table 2 classifies these problems according to
whether the problem is discretizable (Theorems 3 and 4),
whether some or all of discretizable actions are short (dura-
tion at most 5), and whether all actions have unit durations.
The last two cases are particularly interesting: encodings in
those cases do not contain real variables, and the result is a
pure SAT problem. Further, in these two cases plans with the
smallest possible number of steps have optimal makespan.

Then the translations from earlier in this work were ap-
plied to produce input for SMT solvers. Temporal invariants
(Rintanen 2014) were included in the SMT encodings. Table
3 gives numbers of problem instances solved for a number
of benchmark problems by our planners Cd and C in 1800
seconds of SMT solving time (the Z3 SMT solver on a Intel
Xeon E3-1230 at 3.2 GHz). C is our baseline planner, with
a Shin&Davis style encoding of steps for all actions.2 Cd
is the same planner with the encoding using discretization
as presented in the previous section. Both planners increase
the number of steps by 3 after the SMT solver determines the

2The clock-based encodings – though much more compact –
perform clearly worse, and are not included in the experiments.
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current formula to be unsatisfiable. For instances with short
durations Cd therefore is guaranteed to always find plans
with makespan at most 2 from optimal.

The column ITSAT presents runtimes for the ITSAT plan-
ner (Rankooh and Ghassem-Sani 2013). Some domains
were not solved because of internal errors, marked with
E. ITSAT is one of the strongest temporal planners over-
all. It is based on a reduction to SAT with encodings for
classical planning (Rintanen, Heljanko, and Niemelä 2004;
Wehrle and Rintanen 2007). The SAT encodings used in
ITSAT allow far more parallelism than SMT encodings for
temporal planing, which is likely to be the main reason for
the excellent performance of ITSAT in comparison to our
planners. A smaller difference may be that ITSAT uses the
Precosat SAT solver, which performs extraordinarily well
for planning problems, whereas the Z3 SMT solver used
by us is based on the MiniSAT solver, which performs
worse than Precosat with planning problems. Unlike our
SMT encodings for discretizable problems with short action
durations, the methods applied in ITSAT cannot be easily
adapted to find plans with optimal makespan, due to the SAT
encodings being unaware of durations.

Conclusions
We have developed and proved correct a general condition
that allows limiting to integer-valued schedules instead of
arbitrary real or rational valued schedules for plans in tem-
poral planning. Although our experimental evaluation lim-
its to constraint-based methods, our main result is equally
applicable to other search methods including partial-order
planning (Vidal and Geffner 2006) and the temporal variant
of traditional explicit state-space search. Our experiments
showed substantial improvement in scalability over state-
of-the-art encodings for temporal planning in SMT. Future
work includes investigation of additional methods for im-
proving the scalability of temporal planning. Same ideas
that have dramatically improved the scalability of classical
planning (Rintanen 2012a; 2012b) are clearly applicable to
temporal planning as well. A focus of future research is on
topics specific to temporal planning.
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