
Some Fixed Parameter Tractability Results for Planning with
Non-Acyclic Domain-Transition Graphs

Christer Bäckström
Linköping University, SE-58183 Linköping, Sweden.

Email: christer.backstrom@liu.se

Abstract

Bäckström studied the parameterised complexity of planning
when the domain-transition graphs (DTGs) are acyclic. He
used the parameters d (domain size), k (number of paths in
the DTGs) and w (treewidth of the causal graph), and showed
that planning is fixed-parameter tractable (fpt) in these pa-
rameters, and fpt in only parameter k if the causal graph is
a polytree. We continue this work by considering some addi-
tional cases of non-acyclic DTGs. In particular, we consider
the case where each strongly connected component (SCC) in
a DTG must be a simple cycle, and we show that planning is
fpt for this case if the causal graph is a polytree. This is done
by first preprocessing the instance to construct an equivalent
abstraction and then apply Bäckströms technique to this ab-
straction. We use the parameters d and k, reinterpreting this
as the number of paths in the condensation of a DTG, and the
two new parameters c (the number of contracted cycles along
a path) and pmax (an upper bound for walking around cycles,
when not unbounded).

1 Introduction
Identifying tractable classes of planning problems is impor-
tant for several reasons. From a theoretical perspective it
helps us to understand the factors influencing how difficult
it is to plan. From a practical perspective, there are applica-
tions that can be modelled in currently known tractable frag-
ments (cf. Cooper, Maris, and Régnier (2014)). Even more
importantly, tractable fragments have provided the basis for
many successful planning heuristics (cf. Helmert (2004),
Katz and Domshlak (2008), Katz and Domshlak (2010)).

Early work on planning complexity studied mainly syn-
tactical restrictions (Bylander 1994; Bäckström and Nebel
1995). One of the two main avenues for non-syntactical ap-
proaches is to study restrictions on the domain-transition
graphs (DTGs) for the variables (Jonsson and Bäckström
1998a; 1998b). The other one is to study restrictions
on the causal graph. For instance, planning is known to
be NP-complete for forks and inverted forks (Domshlak
and Dinitz 2001), chains (Giménez and Jonsson 2009),
polytrees (Giménez and Jonsson 2008) as well as fences
and polypaths (Bäckström and Jonsson 2013). Also many

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tractable cases exist by imposing further restrictions. Re-
cently, Bäckström (2014) combined these two approaches
by studying combined restrictions on both the DTGs and the
causal graph under parameterised complexity analysis.

While standard complexity only considers the size of the
instance, parameterised complexity is multi-dimensional in
the sense that it allows one or more parameters in addition to
the instance size, treating these parameters as independent.
In standard complexity, a problem is considered tractable if
it can be solved in time O(nc), for some constant c, where
n is the size of the instance. For many problems, like the
NP-complete problems, we do not know of any better way
to solve them than combinatorial search. Somewhat simpli-
fied, we do not know if the problem can be solved faster
than time O(2n). However, in practice the time is often not
exponential in the size of the instance, but in some smaller
part of it. Sometimes we can characterize this smaller part
by some parameter k that does not directly depend on n, and
it may be that the required time is only exponential in k, not
in n. Parameterised complexity uses the more relaxed con-
cept of fixed-parameter tractability (fpt). For example, if a
problem can be solved in time O(2knc), where the parame-
ter k is independent of n, then the problem is fpt in k. This
is intended to have more practical relevance since many fpt
problems can be considered as tractable in practice.

Parameterised complexity is a widely used technique in
many areas of computer science, including many subareas of
AI, like non-monotonic reasoning, constraints, social choice
and argumentation. There is also a growing body of parame-
terised results for planning. For instance, some early results
for STRIPS planning (Downey, Fellows, and Stege 1999)
were followed by parameterised analysis of previously stud-
ied classes using plan length as parameter (Bäckström et al.
2012) as well as using other parameters (Kronegger, Pfan-
dler, and Pichler 2013). Recent studies also include plan
reuse (de Haan, Roubı́cková, and Szeider 2013) and back-
doors (Kronegger, Ordyniak, and Pfandler 2014).

Bäckströms (2014) study assumed that all domain-
transition graphs (DTGs) are acyclic. He considered the pa-
rameters domain size (d), number of paths in the DTGs (k)
and the treewidth of the causal graph (w). He showed that
planning with acyclic DTGs is fpt in these three parameters
and that it is fpt in only k if also the causal graph is a poly-
tree. Although acyclic DTGs may appear very limited, it was

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3232

shown that the results could be used to prove that computing
the delete relaxation heuristic, h+, (Hoffmann 2005) is fpt,
while it is NP-complete under standard analysis.

In this paper, we consider some classes of non-acyclic
DTGs with increasing generality. The most general one
(cycle-DAGs) allows arbitrary DTGs where every strongly
connected component (SCC) is a simple cycle. We prove
that planning when the causal graph is a polytree and all
DTGs are cycle-DAGs is fpt in parameters c, d, k and pmax.
Parameter d is the domain size, while k is the number of
paths in the condensation of a DTG and c is the number of
contracted cycles along the path. We prove that there is a gap
in the sense that we can either go around a cycle any number
of times or there is a specific upper bound that can be deter-
mined in advance. Parameter pmax is the maximum of these
bounds for all cycles that are not unbounded.

Bäckströms (2014) results exploit that the number of
paths in a DTG is bounded by k to build a corresponding
CSP instance with variable domains that are bounded by the
parameters, and then prove that solving this CSP instance is
equivalent to solving the planning instance. We exploit the
gap mentioned above to define an abstract CSP instance, that
does not distinguish values above pmax and prove that this
is equivalent to Bäckströms CSP instance in our case.

The rest of the paper is organised as follows. Section 2
contains some necessary definitions from graph theory, pa-
rameterised complexity and planning. Section 3 briefly re-
capitulates some results from Bäckström (2014). Section 4
analyses the case where the DTGs are paths or cycles, and
shows how to construct an abstract CSP instance that is
equivalent to the planning instance. Section 5 extends this
result to the more general case where DTGs are cycle DAGs.
This section also contains the fpt results. The paper closes
with a discussion in Section 6.

2 Preliminaries
This section provides some basic definitions for graph the-
ory, parameterised complexity and the planning framework
used in this paper.

2.1 Graphs
If G = 〈V,E〉 is a directed graph, then U(G) =
〈V,EU 〉 is the undirected version of G, where EU =
{{v, w} | 〈v, w〉 ∈ E}. A polytree is a directed acyclic
graphG such thatU(G) is a tree, i.e. if ignoring the direction
of the edges then G is connected and contains no cycles.

A tree decomposition of an undirected graph G = 〈V,E〉
is a tuple 〈N,T 〉 where N = {N1, . . . , Nn} is a family of
subsets of V and T is a tree with nodes N1, . . . , Nn, satis-
fying the following properties: (1) The union of all sets Ni

equals V , i.e. each graph vertex is contained in at least one
tree node. (2) For each v ∈ V , the nodes in N that contain
v form a connected subtree of T . (3) For every edge {v, w}
in the graph, there is a node Ni such that v, w ∈ Ni, i.e. ad-
jacent vertices in G must have a tree node in common. The
width of a tree decomposition is the size of its largest node
Ni minus one. The treewidth of a graph G is the minimum
width among all possible tree decompositions of G. We de-
fine the treewidth of a directed graph G as the treewidth of

the corresponding undirected graphU(G). Hence, a polytree
has treewidth 1 since a tree has treewidth 1.

2.2 Parameterised Complexity
We define the basic notions of parameterised complexity
and refer to other sources (Downey and Fellows 1999;
Flum and Grohe 2006) for an in-depth treatment. A pa-
rameterised problem is a set of pairs 〈I, k〉, the instances,
where I is the main part and k is the parameter. The param-
eter is usually one or more non-negative integers. A param-
eterised problem is fixed-parameter tractable (fpt) if there
exists an algorithm that solves any instance 〈I, k〉 of size n
in time f(k) · nc where f is an arbitrary computable func-
tion and c is a constant independent of both n and k. That
is, the expression can be separated into a function f(k) that
depends only on the parameter(s) and a polynomial func-
tion nc that depends only on the instance size. FPT is the
class of all fixed-parameter tractable decision problems. A
parameter is not the same thing as assuming that the value
is a constant. For instance, although O(nk) is tractable in
the classical sense if k is a constant, the expression is not
fpt when k is the parameter since it is not separable. Al-
though the parameter value is often assumed much smaller
than the instance size, it does not even need to be polynomi-
ally bounded in the instance size. Parameterised complexity
offers a completeness theory, similar to the theory of NP-
completeness, based on a hierarchy of complexity classes
FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ · · · , where the class W[1]
is usually considered as a parameterised analogue of NP, al-
though neither class is included in the other. We will not go
further into this since we primarily prove tractability results
in this paper.

2.3 Planning Framework
We use the SAS+ planning framework (Bäckström

and Nebel 1995). A planning instance is a tuple P =
〈V,D,A, sI , sG〉 where V is a finite set of variables
v1, . . . , vn, each with a finite domain D(vi), defining the
space of total states S(V,D) = D(v1)× . . . ,×D(vn). Fur-
thermore, A is a set of actions and sI , sG ∈ S(V,D) is the
initial state and goal, respectively. The value of a variable
vi in a state s is called the projection of s onto vi and is de-
noted s[vi]. A partial state also allows the undefined value u
and vars(s) denotes the set of variables with a defined value
in a partial state s, i.e. s[vi] 6= u for vi ∈ vars(s). Each ac-
tion a ∈ A has a precondition pre(a) and an effect eff(a),
which are both partial states. An action a is valid in a state
s if pre(a)[vi] = s[vi] for all vi ∈ vars(pre(a)). The result
of a in s is the state t defined such that t[vi] = eff(a)[vi] for
vi ∈ vars(eff(a)) and t[vi] = s[vi] otherwise.

Let s0, s` ∈ S(V,D) and let ω = 〈a1, . . . , a`〉 be a se-
quence of actions. Then ω is a plan from s0 to s` if either (1)
ω = 〈〉 and s` = s0 or (2) there are states s1, . . . , s`−1 ∈
S(V,D) such that for all i (1 ≤ i ≤ `), ai is valid in si−1
and si is the result of ai in si−1. An action sequence ω is a
plan for P if it is a plan from sI to sG.

Projection is extended as follows. Let V ′ ⊆ V . If
s is a state, then s[V ′] is a partial state that agrees

3233

with s on all variables in V ′ and is otherwise un-
defined. If a is an action, then a[V ′] is an action
a′ with precondition pre(a)[V ′] and effect eff(a)[V ′].
For a planning instance P = 〈V,D,A, sI , sG〉, define
P[V ′] = 〈V ′, A[V ′], sI [V ′], sG[V ′]〉, where A[V ′] =
{a[V ′] | a ∈ A and eff(a[V ′]) 6= ∅}, i.e. actions with no
projected effect are ignored. For an action sequence ω =
〈a1, . . . , a`〉, first define the sequence ω′ = 〈a′1, . . . , a′`〉
such that a′i = ai[V

′] for all i (1 ≤ i ≤ `), and then de-
fine ω[V ′] as the subsequence of ω′ that contains only those
a′i where eff(a′i) 6= ∅. This follows common practice in the
literature (cf. Helmert (2004)).

The transition graph for P is the labelled directed graph
TG(P) = 〈S,E〉, where S = S(V,D) and E ⊆ S ×A× S
such that for all s, t ∈ S and a ∈ A, 〈s, a, t〉 ∈ E if a
is valid in s and t is the result of a in s. Obviously, the
paths from sI to sG in TG(P) correspond to the plans for
P. The domain transition graph (DTG) for a variable v ∈ V
is DTG(v) = TG(P[v]), i.e. the paths from sI [v] to sG[v]
in DTG(v) describe all possible ways to go from the initial
state to the goal for this particular variable treated in isola-
tion. Both the transition graph and the DTGs are multigraphs
since different actions can induce different edges between
the same pair of vertices. The causal graph for P is the di-
rected graph CG(P) = 〈V,E〉 where E contains the edge
〈v, w〉 for every pair of distinct vertices v, w ∈ V such that
(1) v ∈ vars(pre(a))∪vars(eff(a)) and (2) w ∈ vars(eff(a))
for some action a ∈ A. The causal graph describes how the
variables of the instance depend on each other, as implicitly
defined by the actions.

3 Acyclic DTGs
Bäckström (2014) has studied the parameterised complex-
ity of planning when all DTGs of an instance are acyclic.
He considered the following three parameters: the maximum
domain size of the variables (parameter d), the maximum
number of paths between the initial and goal values in the
DTGs (parameter k) and the treewidth of the causal graph
(parameter w). He proved that planning is fpt in the parame-
ters d, k and w in the general case and fpt in only parameter
k when the causal graph is a polytree. His results exploited
that a planning instance with acyclic DTGs can be modelled
as an equivalent CSP instance with variable domains that are
bounded by the parameters. We will use the same technique
and thus need to recapitulate some definitions and results.

Definition 1. An instance of the constraint satisfaction
problem (CSP) is a triple C = 〈X,D,C〉, where X is a set
of variables,D is a function assigning a domain to each vari-
able and C is a finite set of constraints. Each constraint is a
tuple 〈t, R〉 where t is a sequence 〈xi1 , . . . , xir 〉 of variables
from X and R is a relation R ⊆ D(xi1) × . . . × D(xir).
A solution for C is a mapping α that maps each xi ∈ X to
an element in D(xi) such that all constraints in C are sat-
isfied, i.e. R(α(xi1), . . . , α(xir)) holds for every constraint
〈〈xi1 , . . . , xir 〉, R〉 in C. When all constraint relations are
binary, the constraint graph for C is the graph G = 〈X,E〉
where E contains the edge {xi, xj} whenever there is some
constraint 〈t, R〉 such that t = 〈xi, xj〉 or t = 〈xj , xi〉.

The following construction defines an equivalent CSP in-
stance for every planning instance.

Construction 2. (Bäckström 2014, Construction 6) Let P =
〈V,D,A, sI , sG〉 be a planning instance and let 〈N,T 〉 be a
tree decomposition of CG(P). Define a corresponding CSP
instance C = 〈X,D,C〉 as follows. The set X contains one
variable xi for each node Ni ∈ N where the domain D(xi)
for xi is the set of plans for P[Ni]. For each pair of adja-
cent nodes Ni, Nj in T such that i < j, define the rela-
tion Ri,j ⊆ D(xi) ×D(xj) such that Ri,j contains exactly
those tuples 〈ωi, ωj〉 where ωi[Ni ∩Nj] = ωj [Ni ∩Nj],
i.e. those tuples where ωi and ωj agree on the actions affect-
ing the common variables.

Lemma 3. Let P = 〈V,D,A, sI , sG 〉 be a planning in-
stance, let 〈N,T 〉 be a tree decomposition of CG(P) and let
C = 〈X,D,C〉 be the corresponding CSP instance accord-
ing to Construction 2. Then, P has a solution if and only if
C has a solution.

Proof. Immediate from Lemma 8 in Bäckström (2014) by
noting that neither acyclic DTGs nor finite CSP domains are
necessary for the proof.

4 Path-or-cycle DTGs
As a first step away from acyclic DTGs we consider plan-
ning instances where every DTG is either a directed path
graph or a directed cycle graph. Although we will later gen-
eralize this, most of the interesting problems arise already
here. Hence, we make a more detailed presentation of this
simpler case and allow ourselves to be more sketchy later.

Let G = 〈V,E〉 be an edge labelled digraph. A sequence
σ = v0, `1, v1, `2, . . . , `n, vn such that 〈vi−1, `i, vi〉 ∈ E
for all i (1 ≤ i ≤ n) is a walk from v0 to vn. Repetitions
of vertices and labels are allowed in a walk. We also de-
fine the corresponding vertex walk V 〈σ〉 = v0, v1, . . . , vn
and label walk L〈σ〉 = `1, `2, . . . , `n, as well as the cor-
responding vertex set V {σ} = {v0, . . . , vn} and label set
L{σ} = {`1, . . . , `n}. We will frequently assume that a
graph has two designated vertices vinit and vgoal, which
may coincide, and we refer to a walk as complete if it is
a walk from vinit to vgoal. In particular, vinit = sI [v] and
vgoal = sG[v] in DTG(v) for a variable v.

Let C be a directed cycle graph with vertices v1, . . . , vn
and edges 〈v1, `1, v2〉, . . . , 〈vn, `n, v1〉. Suppose vinit = v1
and vgoal = vk, for some k (1 ≤ k ≤ n). The walk
v1, `1, v2, . . . , vn, `n, v1 can be written as α, β, v1, where
α = v1, `1, . . . , `k−1, vk and β = `k, vk+1, . . . , vn, `n.
Note that αmust at least contain vertex v1 (in the case where
v1 = vk) while β must always contain at least one label. The
cycle C can be defined by α and β and we will frequently
write C = αβ to make such definitions. Every complete
walk (i.e. from v1 to vk) can be written as α(βα)p for some
p ≥ 0. We refer to p as the signature of the walk and it spec-
ifies how many times we walk around the cycle. We also use
the shorthand Cp = α(βα)p. Note that C and C1 are dif-
ferent; C denotes the actual cycle graph while C1 denotes
the walk αβα in C. There is a one-to-one correspondence
between the natural numbers and the set of complete walks

3234

in C, so the signature of a complete walk is a sufficient de-
scription of it. We also define the signature of a path graph
as 0. This allows for treating paths and cycles alike and it is
logical; if α is a path, then α = α(βα)0 for any β.

We allow the special signature value ∗ to denote an un-
bounded value, and allow arithmetics with this value by
treating ∗ as infinity, that is, for all integers p we have p ≤ ∗,
p 6= ∗, min{p, ∗} = p etc., and we have ∗ = ∗, ∗ ≤ ∗,
min{∗, ∗} = ∗ etc. The set N∗ is defined as N∗ = N ∪ {∗}.

Let σ be a walk in DTG(v) for some variable v. We de-
fine the function Ru〈σ〉 as the sequence of requested val-
ues from another variable u as follows. Assume L〈σ〉 =
a1, . . . , an, which is a sequence of actions. Define the se-
quence ρ = pre(a1)[u], . . . , pre(an)[u] of preconditions
on variable u. First remove all occurences of the unde-
fined value u. Then remove all consecutive repetitions of
values. The resulting sequence is Ru〈σ〉. For instance, if
ρ = x,u, x, y, y, x, y,u, y, then Ru〈σ〉 = x, y, x, y. We also
define Ru{σ} as the set of values occuring in Ru〈σ〉.

A sequence σ is a subsequence of another sequence
σ′ if all symbols in σ appear in the same order
in σ′. For instance, x, y, z, z, y is a subsequence of
w, y, x, w, y, z, x, y, z, w, z, y.

Definition 4. Let P = 〈V,D,A, sI , sG〉 be a planning in-
stance, let u, v ∈ V , let DTG(v) = Cv and let DTG(u) =
Cu. Then:

(1) For all p, q ≥ 0, Cq
u matches Cp

v if Ru〈Cp
v 〉 is a sub-

sequence of V 〈Cq
u〉.

(2) For all q ≥ 0, Cq
u matches C∗v if Cq

u matches Cp
v for

all p ≥ 0.
(3) For all p ≥ 0, C∗u matches Cp

v if Cq
u matches Cp

v for
some q ≥ 0.

(4) C∗u matches C∗v if for every p ≥ 0 there is some q ≥ 0
such that Cq

u matches Cp
v .

Note that if Cq
u matches Cp

v , then Cr
u matches Cp

v for all
r ≥ q. Matching is immediately related to planning in the
following way.

Lemma 5. Let P be a planning instance such that CG(P) is
acyclic, let 〈u, v〉 be an edge in CG(P) and let DTG(u) =
Cu and DTG(v) = Cv , where each of Cu and Cv is a path
or a cycle. Then:

(1) If there is a plan ω for P[{u, v}], such that ω[u] = Cq
u

and ω[v] = Cp
v , then Cq

u matches Cp
v .

(2) If Cq
u matches Cp

v , then there is a plan ω for P[{u, v}]
such that ω[u] = Cq

u and ω[v] = Cp
v .

Proof sketch. (1) Straightforward. (2) Assume that
Ru〈Cp

v 〉 = z1, . . . , zh for some h. Then L〈Cp
v 〉 can

be partitioned into h consecutive blocks α1, . . . , αh such
that Ru{αi} = {zi} for each i (1 ≤ i ≤ h). Simi-
larily, L〈Cq

u〉 can be partitioned into h + 1 consecutive
blocks β1, . . . , βh+1 such that for each i (1 ≤ i ≤ h),
the last action a in βi has eff(a)[v] = zi. Obviously,
β1, α1, . . . , βh, αh, βh+1 is a plan for P[{u, v}].

The following property of matching is crucial for the
forthcoming results. It says that when matching two walks
Cq

u andCp
v , there is a gap such that either p is upper bounded

by q + 1 or unbounded; it cannot be the case that there is a
match for some p > q + 1 but not for all p > q + 1.

Lemma 6. Let P be a planning instance and let 〈u, v〉 be an
edge in CG(P). Let DTG(u) = Cu and DTG(v) = Cv be
cycle graphs. For all q ≥ 0, if Cq

u matches Cq+2
v , then Cq

u
matches C∗v .

Proof. Assume Cq
u matches Cq+2

v . There are two cases:
1) If |Ru{Cv}| ≤ 1, then |Ru{Cv}| = 1 since 〈u, v〉

is an edge in CG(P). There is thus a value x such that
Ru〈Cv〉 = x and the walk Cq

u must include vertex x since
Cq

u matches Cq+2
v . Hence, C1

u must match Cp
v for all p ≥ 0.

2) If |Ru{Cv}| ≥ 2, then there must be at least two dis-
tinct values x and y in Ru{Cv}. Each of x and y must occur
at least q + 2 times in Ru〈Cq+2

v 〉, but since x and y are ver-
tices in Cu each of them can appear at most q + 1 times in
V 〈Cq

u〉. Hence, Cq
u cannot match Cq+2

v so this case is im-
possible.

It is still possible that Cq
u matches Cq+1

v , without match-
ing C∗v . Let Cv = αβ and Cu = γδ. If Ru{α} = ∅,
|Ru{β}| = 2 and Ru〈β〉 is a subsequence of V 〈γ〉, then
Cq

u matches Cq+1
v but not Cq+2

v for all q ≥ 0.
Algorithm MaxMatch in Figure 1 exploits Lemma 6. It

takes a specified signature q for Cu and computes the max-
imum signature p for Cv such that Cq

u matches Cp
v . The al-

gorithm returns p = ∗ if there is no upper bound on p and it
returns −1 if there is no match even for p = 0.

Algorithm PreProcess in Figure 2 computes the largest
value pv for each v such that Cpu

u matches Cpv
v for all edges

〈u, v〉. The algorithm terminates since a variable can be re-
marked only when its pv value decreases, which can hap-
pen only a finite number of times. Note that the assignment
of pv values does not guarantee that there is a simultaneous
matching for all edges, it only guarantees that if there is such
a matching, then there is one with values qv ≤ pv for all v.
Furthermore, if pv < 0 for any v, then there cannot be a
simultaneous matching.

We define an abstract CSP instance corresponding to a
planning instance by exploiting the gap demonstrated in
Lemma 6. Due to this gap, the signature for every variable is
either bounded or unbounded. Define pmax = maxv∈V pv ,
where the pv values are as computed by algorithm PrePro-
cess. Then pmax is the upper bound for all variables with
bounded signature. We can then define the abstract signature
domain {0, 1, . . . , pmax, ∗}, where the value ∗ is an aggre-
gation of the values {pmax + 1, pmax + 2, . . .}, and use this
to define a CSP instance.

1 MaxMatch(Cu,q,Cv)
2 p := 0
3 while p ≤ q + 2 do
4 if Ru〈Cp

v 〉 is not a subsequence of V 〈Cq
u〉

5 then return p− 1
6 else p := p+ 1
7 return ∗

Figure 1: Find maximal matching signature.

3235

1 PreProcess(G = 〈V,E〉)
2 for all v ∈ V do
3 Mark v
4 if DTG(v) is a path then pv := 0
5 else pv := ∗
6 repeat
7 Choose a marked u ∈ V
8 Unmark u
9 for all outgoing edges 〈u, v〉 do
10 q := MaxMatch(Cu, pu, Cv)
11 if q < pv then
12 pv := q
13 Mark v
14 until all v ∈ V are unmarked

Figure 2: Signature preprocessing for arbitrary CG.

Construction 7. Let P = 〈V,D,A, sI , sG〉 be a planning
instance such that CG(P) is a polytree and DTG(v) is a
cycle or path for each v ∈ V . Let 〈N,T 〉 be an opti-
mal tree decomposition of CG(P). Define a corresponding
CSP instance CA = 〈XA, DA, CA〉 as follows: (1) Let
XA contain one variable xi for each Ni ∈ N . (2) For
each Ni ∈ N , assume Ni = {u, v} and that 〈u, v〉 is an
edge in CG(P). Let DA(xi) = {{〈u, q〉, 〈v, p〉} | q, p ∈
{0, . . . , pmax, ∗} and Cq

u matches Cp
v}. (3) For each pair of

adjacent nodes Ni and Nj in T such that i < j, define
RA

i,j ⊆ DA(xi) × DA(xj) such that RA
i,j contains those

tuples 〈si, sj〉 where si and sj share an identical element.
The restriction to polytree causal graphs guarantees that

the width of T is 1 and that if Ni = {u, v}, then exactly one
of 〈u, v〉 and 〈v, u〉 is an edge in CG(P). We now prove that
this construction is equivalent to Construction 2.
Lemma 8. Let P = 〈V,D,A, sI , sG〉 be a planning in-
stance such that CG(P) is a polytree and DTG(v) is a path
or cycle graph for each v ∈ V . Let 〈N,T 〉 be an optimal
tree decomposition of CG(P). Let C and CA be the corre-
sponding CSP instances. Then C has a solution if and only
if CA has a solution.

Proof. ⇒: Suppose C has a solution α. Tree decomposi-
tions require that all nodes containing a variable v form
a connected subtree, so there is a unique action sequence
ωv for each v ∈ V such that α(xi)[v] = ωv for each
node Ni in T that contains v. Furthermore, ωv = Cqv

v
for some qv ≥ 0. Without losing generality, assume that
qv 6= pmax + 1 for all v ∈ V , which is possible since
all signatures greater than pmax must be unbounded. De-
fine rv = qv if qv ≤ pmax and otherwise rv = ∗.
Construct an assignment αA for CA as follows. For each
Ni = {u, v} in T , assume 〈u, v〉 is an edge in CG(P) and
define αA(xi) = {{〈u, ru〉, 〈v, rv〉}}. Clearly, both ru and
rv are in {0, . . . , pmax, ∗} and Lemma 5 guarantees thatCqu

u
matches Cqv

v since α(xi) is a plan for P[Ni]. It remains to
prove that Cru

u matches Crv
v . The only non-trivial case is

when qu ≤ pmax and qv > pmax, i.e. ru = qu and rv = ∗.
Then qv > pmax + 1, by assumption, so qv ≥ qu + 2 and

it follows from Lemma 6 that Cqu
u matches C∗v and, thus,

that Cru
u matches Crv

v . Hence, αA(xi) ⊆ DA(xi) for all
xi ∈ XA. Thus, for all adjacent Ni, Nj in T with com-
mon variable v, there are si ∈ αA(xi) and sj ∈ αA(xj) s.t.
〈v, rv〉 ∈ si and 〈v, rv〉 ∈ sj , and thus RA

i,j(Si, Sj) holds. It
follows that αA is a solution for CA.
⇐: Suppose CA has a solution αA. Let Ni and Nj be ar-

bitrary adjacent nodes in T with common variable v. Then
there is some qv such that both αA(xi) and αA(xj) contain
〈v, qv〉, since RA

i,j(α
A(xi), α

A(xj)) must hold. Hence, αA

assigns a unique value qv to each v ∈ V , since all nodes
containing v must form a connected subtree of T . Construct
an assignment α for C as follows. For each v ∈ V define
a value rv such that rv = qv if qv 6= ∗ and otherwise set
rv to a suffciently high value. This can be done such that
Cru

u matches Crv
v for all edges 〈u, v〉 in CG(P) since Cqu

u
matches Cqv

v and CG(P) is acyclic. For each Ni = {u, v} in
T , assume that 〈u, v〉 is an edge in CG(P). Let α(xi) assign
values ru to u and rv to v. ThenCru

u matchesCrv
v so accord-

ing to Lemma 5 there is a plan ωi for P[Ni]. For all adjacent
nodesNi andNj in T with common variable v, both αA(xi)
and αA(xj) contain the tuple 〈v, qv〉. Hence, ωi[v] = ωj [v]
for their common variable v. Let α(xi) = ωi for all xi ∈ X .
Then α is a solution for C.

Corollary 9. Let P = 〈V,D,A, sI , sG〉 be a planning in-
stance where CG(P) is a polytree and DTG(v) is a path or
cycle for each v ∈ V . Let 〈N,T 〉 be an optimal tree de-
composition of CG(P). Let CA be the corresponding CSP
instance. Then P has a plan if and only if CA has a solution.

Proof. Combine Lemmata 3 and 8.

5 DTGs with Simple-cycle SCCs
A strongly connected component (SCC) of a directed
(multi)graph G = 〈V,E〉 is a maximal subset C ⊆ V such
that for all u, v ∈ C, v is reachable from u in the subgraph
G|C . The condensation ofG is the graph resulting from con-
tracting each SCC in G into a single vertex.

Definition 10. A directed graph G is a cycle-path graph if
(1) each SCC of G is a simple directed cycle and (2) the
condensation of G is a directed path graph.

Let P be a cycle-path graph with m cycles C1, . . . , Cm,
in that order, where Ci = αiβi for each i. Ev-
ery complete walk in P is then on the form σ =
γ0C

p1

1 γ1C
p2

2 γ2 . . . γm−1C
pm
m γm. Either or both of γ0 and

γm may be empty, in the case P starts and/or ends with a cy-
cle, while γ1, . . . , γm−1 must contain at least one label each,
since two cycles could otherwise share a vertex which would
violate condition 1 of the definition. We define the signature
of σ as 〈p1, . . . , pm〉 and refer to m as the size of the sig-
nature. Since all walks in P must have the same signature
size, we also refer to this as the signature size of the graph
P . For signatures of the same size, we define comparisons
as follows. Let s1 = 〈q1, . . . , qm〉 and s2 = 〈p1, . . . , pm〉.
Then s1 ≤ s2 if qi ≤ pi for all i (1 ≤ i ≤ m) and
s1 = s2 if both s1 ≤ s2 and s2 ≤ s1. We also de-
fine min{s1, s2} = 〈min{q1, pq}, . . . ,min{qm, pm}〉. Also

3236

here there is a one-to-one correspondence between the tu-
ples in Nm and the complete walks for P , so every complete
walk in P can be uniquely characterized by a signature. Also
here, pi = ∗ is allowed in signatures. Note that maximal
matching signatures are no longer unique. For instance, it
may happen that two cycles require the same precondition
values so the sum of walks around these cycles is limited. A
simple method to find an upper bound for signatures is the
following. Assume we are matching Pu with Pv . Compute
the maximal signature pi for cycle Cv,i in Pv by computing
rj = MaxMatch(Cu,j , qj , Cv,i) for each cycle Cu,j in Pu

and then let pi be the maximum of these rj values. Algo-
rithm PreProcess can then be modified to use this matching
method instead of MaxMatch.
Definition 11. Let P = 〈V,D,A, sI , sG〉 be a planning in-
stance, let u, v ∈ V , let DTG(v) = Pv be a cycle path with
m cycles Cv,1, . . . , Cv,m and let DTG(u) = Pu be a cycle
path with n cycles Cu,1, . . . , Cu,n. Then: (1) For arbitrary
s ∈ Nm and t ∈ Nn, P t

u matches P s
v if Ru〈P s

v 〉 is a subse-
quence of V 〈P t

u〉. (2) For arbitrary s ∈ Nm
∗ and t ∈ Nn, P t

u

matches P s
v if P t

u matches Pmin{s,r}
v for all r ∈ Nm.

For instance, if P 〈q1,q2,q3,q4〉u matches P 〈p1,∗,p3,∗〉
v , then

P
〈q1,q2,q3,q4〉
u matches P 〈r1,r2,r3,r4〉v for all r1, . . . , r4 (0 ≤
r1 ≤ p1, 0 ≤ r3 ≤ p3 and r2, r4 ≥ 0). We now arrive at our
final case, which subsumes all the previous ones.
Definition 12. A directed multigraph G is a cycle DAG if
each SCC of G is a simple directed cycle.

Note that there cannot be two different edges between the
same SCCs in G with the same label, since this would either
violate the definition or require disjunctive preconditions.
On the other hand, edges with different labels will remain as
separate edges also in the condensation of G, which must be
a multigraph. Hence, there is a one-to-one correspondence
between the cycle-paths in G and the paths in its condensa-
tion. We can thus alternatively characterize G by its set of
cycle paths, which we exploit to construct a CSP instance
for every planning instance with cycle-DAG DTGs.
Construction 13. Let P = 〈V,D,A, sI , sG〉 be a planning
instance such that CG(P) is a polytree and DTG(v) = Gv

is a cycle DAG for each v ∈ V . For each v ∈ V , let
kv be the number of paths in the condensation of Gv and
let mv,h be the signature size for cycle path h in Gv for
each h (1 ≤ h ≤ kv). Let 〈N,T 〉 be an optimal tree
decomposition of CG(P). Define a corresponding CSP in-
stance CA = 〈XA, DA, CA〉 as follows: (1) Let XA con-
tain one variable xi for each node Ni ∈ N . (2) For each
Ni ∈ N , assume Ni = {u, v} and that 〈u, v〉 is an
edge in CG(P). Let DA(xi) = {{〈u, g, s〉, 〈v, h, t〉} | s ∈
{0, . . . , pmax, ∗}mu,g , t ∈ {0, . . . , pmax, ∗}mv,h , 0 ≤ g ≤
ku, 0 ≤ h ≤ kv and P s

u matches P t
v}. (3) For all pairs

of adjacent nodes Ni and Nj in T , define the relation
RA

i,j ⊆ DA(xi) × DA(xj) such that RA
i,j contains those

tuples 〈si, sj〉 where si and sj share an identical element.
Also this construction is equivalent to Construction 2.

Lemma 14. Let P = 〈V,D,A, sI , sG〉 be a planning in-
stance such that CG(P) is a polytree and DTG(v) is a cycle

DAG for each v ∈ V . Let 〈N,T 〉 be an optimal tree de-
composition of CG(P). Let C and CA be the corresponding
CSP instances. Then C has a solution if and only if CA has
a solution.

Proof sketch. Analogous to the proof of Lemma 8, with two
exceptions. 1) Signatures are tuples of integers. 2) D(xi)
contains tuples for all combinations of abstract signatures
and paths for the two variables in Ni. Each tuple is marked
with variable and path index, so RA

i,j still holds if adjacent
nodes share a tuple, i.e. if αA(xi) and αA(xj) specify the
same path and signature for the common variable.

We can, thus, decide if a planning instance P with cycle-
DAG DTGs and a polytree causal graph has a solution by
constructing the corresponding instance CA and solve it.

Theorem 15. Let C be a class of planning instances P such
that CG(P) is a polytree and all DTGs are cycle DAGs. Then
the problem of deciding if an instance of C has a solution is
fpt in the parameters c, d, k and pmax.

Proof. Combining Lemmata 3 and 14 yields that P has a
plan if and only if CA has a solution, so it remains to prove
that constructing and solving CA is fpt.

To find all cycle-paths in a DTG we first identify
the SCCs. This takes polynomial time (Tarjan 1972),
and so does computing the condensation. Finding the
(at most) k paths in the condensation takes time O(k ·
poly(n)) (Bäckström 2014, Lemma 3), so generating all
cycle paths takes time O(k · poly(n)). There are at most
k(pmax +2)c different abstract signatures for each DTG, so
|D(xi)| ≤ k2(pmax+2)2c for each xi. Only bounded cycles
need to be matched exactly. Expanding these in a cycle path
results in a walk of length at most dpmax , so matching all sig-
nature pairs for the two variables in a node Ni to construct
D(xi) takes time O(dpmaxk2(pmax + 2)2c · poly(n)). Con-
structing RA

i,j for two nodes requires comparing all values
in two domains pairwise, which takes time O(c(k2(pmax +
2)2c)2 · poly(n)), since each signature is of size c at most.
Hence, constructing CA is fpt in c, d, k and pmax. Solving a
CSP instance where the constraint graph is a tree takes time
O(D2N), where D is the domain size and N the number
of variables (Dechter and Pearl 1989), so solving CA takes
time O((k2(pmax + 2)2c)2 · poly(n)), which is fpt in c, k
and pmax.

The parameter c is not strictly necessary since c ≤ d, but
using it allows for a more fine-grained analysis. We also get
the corollary that planning for the two previous cases is fpt
in parameters c,d and pmax.

6 Discussion
Katz and Keyder (2012) have previously considered the
number of paths in the condensation of a DTG, but only
for a very particular case and standard complexity analy-
sis. So-called factored planning also uses CSP techniques in
a similar way (cf. Brafman and Domshlak (2013), Fabre et
al. (2010)). However, there the primary goal is to use CSP
techniques to solve planning in general, while our goal is

3237

different and CSP techniques are only used as a tool for the
proofs. This topic is further discussed in Bäckström (2014).

For acyclic DTGs it is also fpt to generate a plan
(Bäckström 2014), but this is not obviously true for non-
acyclic DTGs. There are instances where each DTG is only a
cycle, but where the shortest plans are of exponential length.
It thus takes exponential time to generate a plan. However,
there is one possibility to investigate. There are classes with
exponential shortest plans but where it is still possible to
generate a solution in polynomial time, in the form of a hier-
archical macro plan (Jonsson 2009). Also plan length op-
timisation is fpt in the case of acyclic DTGs (Bäckström
2014), but it is not obvious that this problem is fpt for the
classes studied in this paper. While a bounded walk in a cy-
cle implicitly specifies a certain number of actions, this is
lost in the abstraction where * signatures are allowed.

One obvious continuation of this work is to consider in-
stances with cycle-DAG DTGs but arbitrary causal graphs.
Another way forward is to consider more relaxed types of
SCCs. For instance, one may use the number of vertices or
the number of cycles in an SCC as a parameters. There may
also be cases where the whole DTG is strongly connected,
but where it is possible to find some recursive structure in
it. For instance, one might find a simple cycle that can be
viewed as an ’outer cycle’, treating all other vertices as ’inte-
rior’. This interior subgraph is not necessarily strongly con-
nected, so one may consider it recursively and identify its
SCCs. Finding such interior structure may provide a new
way to study DTGs.

Acknowledgments
The reviewers provided very detailed and useful comments.

References
Bäckström, C., and Jonsson, P. 2013. A refined view of causal
graphs and component sizes: SP-closed graph classes and be-
yond. J. Artif. Intell. Res. 47:575–611.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computat. Intell. 11:625–656.
Bäckström, C.; Chen, Y.; Jonsson, P.; Ordyniak, S.; and Szeider,
S. 2012. The complexity of planning revisited - a parameter-
ized analysis. In Proc. 26th AAAI Conf. Artif. Intell. (AAAI-12),
Toronto, ON, Canada, 1735–1741.
Bäckström, C. 2014. Parameterising the complexity of plan-
ning by the number of paths in the domain-transition graphs.
In Proc. 21st European Conf. Artif. Intell. (ECAI-14), Prague,
Czech Republic, 33–38.
Brafman, R. I., and Domshlak, C. 2013. On the complexity of
planning for agent teams and its implications for single agent
planning. Artif. Intell. 198:52–71.
Bylander, T. 1994. The computational complexity of proposi-
tional STRIPS planning. Artif. Intell. 69(1–2):165–204.
Cooper, M.; Maris, F.; and Régnier, P. 2014. Monotone tempo-
ral planning: Tractability, extensions and applications. J. Artif.
Intell. Res. 50:447–485.
de Haan, R.; Roubı́cková, A.; and Szeider, S. 2013. Parame-
terized complexity results for plan reuse. In Proc. 27th AAAI
Conf. Artif. Intell. (AAAI-13), Bellevue, WA, USA.

Dechter, R., and Pearl, J. 1989. Tree clustering for constraint
networks. Artif. Intell. 38(3):353–366.
Domshlak, C., and Dinitz, Y. 2001. Multi-agent off-line coordi-
nation: Structure and complexity. In Proc. 6th European Conf.
Planning (ECP-01), Toledo, Spain.
Downey, R. G., and Fellows, M. R. 1999. Parameterized Com-
plexity. Monographs in Computer Science. New York: Springer.
Downey, R.; Fellows, M.; and Stege, U. 1999. Parameter-
ized Complexity: A Framework for Systematically Confronting
Computational Intractability, volume 49 of DIMACS Series in
Disc. Math. Theor. Comput. Sci. 49–99.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-optimal factored planning: Promises and pitfalls. In Proc.
20th Int’l Conf. Automated Planning and Scheduling (ICAPS-
10), Toronto, ON, Canada, 65–72.
Flum, J., and Grohe, M. 2006. Parameterized Complexity The-
ory, volume XIV of Texts in Theoretical Computer Science. An
EATCS Series. Berlin: Springer.
Giménez, O., and Jonsson, A. 2008. The complexity of plan-
ning problems with simple causal graphs. J. Artif. Intell. Res.
31:319–351.
Giménez, O., and Jonsson, A. 2009. Planning over chain causal
graphs for variables with domains of size 5 is NP-hard. J. Artif.
Intell. Res. 34:675–706.
Helmert, M. 2004. A planning heuristic based on causal graph
analysis. In Proc. 14th Int’l Conf. Automated Planning and
Scheduling (ICAPS-04), Whistler, BC, Canada, 161–170.
Hoffmann, J. 2005. Where ’ignoring delete lists’ works: Local
search topology in planning benchmarks. J. Artif. Intell. Res.
24:685–758.
Jonsson, P., and Bäckström, C. 1998a. State-variable planning
under structural restrictions: Algorithms and complexity. Artif.
Intell. 100(1-2):125–176.
Jonsson, P., and Bäckström, C. 1998b. Tractable plan existence
does not imply tractable plan generation. Ann. Math. Artif. In-
tell. 22(3-4):281–296.
Jonsson, A. 2009. The role of macros in tractable planning. J.
Artif. Intell. Res. 36:471–511.
Katz, M., and Domshlak, C. 2008. New islands of tractability
of cost-optimal planning. J. Artif. Intell. Res. 32:203–288.
Katz, M., and Domshlak, C. 2010. Implicit abstraction heuris-
tics. J. Artif. Intell. Res. 39:51–126.
Katz, M., and Keyder, E. 2012. Structural patterns beyond
forks: Extending the complexity boundaries of classical plan-
ning. In Proc. 26th AAAI Conf. Artif. Intell. (AAAI-12), Toronto,
ON, Canada, 1779–1785.
Kronegger, M.; Ordyniak, S.; and Pfandler, A. 2014. Backdoors
to planning. In Proc. 28th AAAI Conf. Artif. Intell. (AAAI-14),
Québec City, QC, Canada., 2300–2307.
Kronegger, M.; Pfandler, A.; and Pichler, R. 2013. Parameter-
ized complexity of optimal planning: A detailed map. In Proc.
23rd Int’l Joint Conf. Artif. Intell. (IJCAI-13), Beijing, China,
954–961.
Tarjan, R. E. 1972. Depth-first search and linear graph algo-
rithms. SIAM J. Comput. 1(2):146–160.

3238

