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Abstract

In many practical domains, planning systems are required to
reason about durative actions. A common assumption in the
literature is that the executor is allowed to decide the duration
of each action. However, this assumption may be too restric-
tive for applications.
In this paper, we tackle the problem of temporal planning
with uncontrollable action durations. We show how to gener-
ate robust plans, that guarantee goal achievement despite the
uncontrollability of the actual duration of the actions. We ex-
tend the state-space temporal planning framework, integrat-
ing recent techniques for solving temporal problems under
uncertainty. We discuss different ways of lifting the total or-
der plans generated by the heuristic search to partial order
plans, showing (in)completeness results for each of them.
We implemented our approach on top of COLIN, a state-
of-the-art planner. An experimental evaluation over several
benchmark problems shows the practical feasibility of the
proposed approach.

Introduction
Many planning domains (e.g. aerospace, logistics) require
the ability to reason about durative actions. Over the years,
the problem has received significant attention, and several
interesting approaches, implemented in various practical
planners, have been proposed (Penberthy and Weld 1994;
Younes and Simmons 2003; Coles et al. 2009; 2012a). Com-
mon assumptions are that either the duration of each action
is fixed in the domain or the plan executor is allowed to spec-
ify the start time as well as the duration of the actions. In
many practical applications, however, the duration of actions
cannot be controlled. As an example, consider a navigation
task for an exploratory rover: the duration may vary depend-
ing on unknown operational conditions (e.g. soil, available
power), and can at best be assumed to lie within a given
range. In order to properly reason in these situations, a plan-
ner must be able to take this uncontrollability into account.

In this paper, we tackle the problem of generating strong
time-triggered plans, i.e. plans where the start time of ac-
tions is predetermined, and that guarantee goal achievement
for any admissible value of uncontrollable durations. These
plans are similar to conformant plans in non-determinitic
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planning, but here we allow for uncertainty only in the action
duration and we consider a dense model of time. Similarly
to conformant planning, this problem is important in prac-
tice, even if many instances do not admit a solution. We re-
mark that synthesizing plans that are guaranteed to work un-
der any possible contingency, is valuable in contexts where
safety must be certified.

We make the following contributions. First, we formally
define a framework to express the uncontrollability in the
action durations: we define the strong planning problem with
temporal uncertainty, we present strong time triggered plans
(STTP) as solutions to the defined planning problem, and we
formally define the notion of validity for a given STTP.

Second, we extend forward state-space temporal planning
(FSSTP) (Coles et al. 2009; 2012a) to solve strong planning
problems with temporal uncertainty. The FSSTP framework
relies on the interplay between a discrete planner to generate
a totally ordered plan for an abstraction of the domain, and a
temporal reasoner to check the temporal consistency of the
corresponding Temporal Problem (TP). We retain the gen-
eration of abstract plans, and, to deal with uncontrollability
of action duration, we replace the solver for temporal prob-
lems with a solver for Temporal Problems with Uncertainty
(TPU) (Vidal and Fargier 1999). We consider three differ-
ent ways of creating the temporal problems by lifting the
totally-ordered abstract plans. The first two cases, are both
derived from existing approaches in temporal planning: they
construct a temporal problem relying on a total order (Coles
et al. 2012a) and on a partial order (Coles et al. 2010) among
actions. Both approaches, however, are shown to be incom-
plete in presence of temporal uncertainty. The third case,
called Disjunctive Reordering (DR), achieves completeness
by generating a Disjunctive Temporal Problem with Uncer-
tainty (DTPU) (Peintner, Venable, and Yorke-Smith 2007)
that takes into account all possible sets of valid reorderings
of the given abstract plan.

Finally, we implemented these approaches in a planner,
built extending COLIN (Coles et al. 2012a). Our planner is
able to process an extension of the PDDL 2.1 language that
allows for expressing domains having actions with uncon-
trollable duration. We carried out an experimental evaluation
on several benchmarks, both new and adapted from the 2011
international planning competition (Coles et al. 2012b).
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Related Work. Temporal planning is a vast and diverse
area of research. Solving a temporal planning problem
means to guarantee that the solution plans are causally
sound (they lead to the goal, satisfying action applicability)
and that the timing constraints are satisfied. Many models
and techniques have been proposed to deal with this prob-
lem (Penberthy and Weld 1994; Frank and Jónsson 2003;
Younes and Simmons 2003; Coles et al. 2009; 2012a).

To the best of our knowledge, no previous work ad-
dresses uncontrollable durations in the setting of action-
based temporal planning. The only work tackling planning
with uncontrollable durations is our previous work (Cimatti,
Micheli, and Roveri 2013) in the setting of timeline-based
planning (Frank and Jónsson 2003; Cesta et al. 2009). There
are profound differences between action-based and timeline-
based temporal planning, but discussing them is out of the
scope of this paper. Here suffices to say that in timeline-
based planning (with controllable durations), the domain
description is not action-based, but rather represented by
means of a set of rules on the evolution of “state variables”,
subject to complex synchronization constraints. The pre-
sented approach constructs strong time triggered plans simi-
larly to what we propose in this paper. However, that work is
mainly theoretical and the proposed reduction to (decidable)
first order logic requires to fix a maximum time horizon.

In this paper, we explicitly model temporal uncertainty
in the planning domain and we synthesize plans that are
guaranteed to achieve the goal despite such uncertainty. A
different approach to deal with uncontrollable durations is
based on the idea of “flexible execution” (Cesta et al. 2009;
Muise, Beck, and McIlraith 2013). Instead of modeling un-
certainty in the domain, the planner identifies a suitable set
of actions to achieve the goal, together with a (compactly
represented) set of dependencies (e.g. an STP). The plan ex-
ecutor is then equipped with an online temporal reasoner to
schedule the actions according to observations. We remark,
that this approach does not guarantee goal achievement un-
der all uncontrollable durations, as uncertainty is not mod-
eled, but tries to grant some freedom for the executor of the
plan. We believe that controllability and flexibility are not
mutually exclusive one another: it is possible to conceive
flexible controllable plans (Wilson et al. 2014). This is how-
ever out of the scope of this paper and left for future work.

Background
Temporal reasoning. In temporal planning, we need to
reason not only on the ordering of actions in time, but also
on their metric duration. A common framework to represent
and reason on this kind of constraints is the Temporal Prob-
lem (TP) (Dechter, Meiri, and Pearl 1991; Tsamardinos and
Pollack 2003). A TP is a formalism used to represent tempo-
ral constraints over time-valued variables representing time
points. Each constraint is a disjunction of atoms in the form
x− y ∈ [l, u], where x and y are time points and l, u ∈ R+.
Formally, a TP is a tuple (X,C) where X is a set of time
points andC is a set of temporal constraints. Each time point
is typically used to represent the start or the end of an action;
causal relations are represented as precedence constraints,
forcing an event to happen before another. Finally, metric

constraints allow for the encoding of action durations. A so-
lution to a TP is an assignment of real values to the time
points that fulfills all the constraints. A TP is said to be con-
sistent if it has a solution.

In order to deal with temporal uncontrollability, TP with
uncertainty (TPU) have been proposed (Vidal and Fargier
1999; Peintner, Venable, and Yorke-Smith 2007).
Definition 1. A TPU is a tuple (Xc, Xu, Cc, Cf ), where Xc

and Xu are sets of time points and Cc and Cf are sets of
temporal constraints.

In a TPU some of the time points can be assigned by
the solver (Xc), while the others (Xu) are intended to be
assigned by the environment. Similarly, the constraints are
divided in requirements (called free constraints, Cf ) and
assumptions (called contingent constraints, Cc). As such,
TPUs can be seen as a form of game between the solver and
an adversarial Nature (Cimatti, Micheli, and Roveri 2014).

Different kinds of queries can be issued given a TPU. In
this paper, we focus on strong controllability (SC) (Vidal and
Fargier 1999; Peintner, Venable, and Yorke-Smith 2007). A
TPU is strongly controllable if there exists an assignment
(called strong schedule) of real values to each controllable
time point, such that all free constraints are satisfied for ev-
ery possible assignment of the uncontrollable time points
fulfilling the contingent constraints.

Depending on the structure of the constraints, various
classes of TPUs have been identified (Peintner, Venable, and
Yorke-Smith 2007). We focus on two classes of TPUs: Sim-
ple Temporal Problems with Uncertainty (STPU) and Dis-
junctive Temporal Problems with Uncertainty (DTPU). An
STPU is a TPU where each constraint has exactly one dis-
junct (i.e. it is conjunctive), while DTPUs allow for arbitrary
Boolean combinations in the constraints.

Several approaches to check SC of a TPU have been pro-
posed. Vidal and Fargier (1999) show that the strong con-
trollability problem for an STPU is polynomial-time, while
for DTPU it is NP-hard (Peintner, Venable, and Yorke-Smith
2007). Recently, new techniques to solve SC for DTPU have
been presented (Cimatti, Micheli, and Roveri 2014): they
rely on the reduction of SC to a Satisfiability Modulo The-
ory (Barrett et al. 2009) problem.

Temporal planning. Following Ghallab, Nau, and
Traverso (2004), a (STRIPS) classical planning problem is
a tuple (F,O, I,G), where F is the set of fluents, O is a
set of actions, I ⊆ F is the initial state, and G ⊆ F is a
goal condition. A literal is either a fluent or its negation.
Every action a ∈ O is defined by two set of literals: the
preconditions, written pre(a), and the effects, eff(a). A
classical plan χ = (a1, · · · , an) is a sequence of actions. A
plan is valid if and only if it is executable from the initial
state and terminates in a state fulfilling G.

Similarly to Cushing et al. (2007), we define a tempo-
ral planning problem as a tuple (F,DA, I,G), with F , I
and G as before and with DA being a set of durative ac-
tions. A durative action A is given by two classical plan-
ning actions: begin(A), and end(A), an overall condition
overall(A) expressed as a set of literals, and a minimum
δmin(A)∈R+ and maximum δmax(A)∈R+ duration (with
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Algorithm 1 The FSSTP framework
1: procedure FSSTP(P)
2: for all partial χ generated while solving abs(P) do
3: D ← DURATIONS(χ, P)
4: P ← PRECEDENCES(χ, P)
5: if µ← TP.SOLVE((χ,D ∪ P )) then
6: if ISCOMPLETE(χ) then
7: return BUILDTEMPORALPLAN(µ, χ)
8: else CONTINUE( )
9: else REJECT(χ)

10: return ⊥

δmin(A) ≤ δmax(A)). A temporal plan π = {s1, · · ·, sn}
is a set of steps, where each step s is composed of a start-
ing time t(s) ∈ R+, an action action(s) and a duration
δ(s) ∈ [δmin(action(s)), δmax(action(s))]. Due to space
constraints we do not give the precise semantics of a valid
temporal plan: see Fox and Long (2003) for a thorough de-
scription. For this paper we say that a temporal plan is valid
if and only if it can be simulated: starting from the initial
model we apply each step at time t(s) and at the end of the
simulation we obtain a state fulfilling the goal condition.

We focus on a specific approach to temporal plan-
ning among others: forward state-space temporal planning
(FSSTP). The idea of this approach is to create an interplay
between a state-based forward search planner to generate a
plan sketch and a temporal reasoner to check its temporal
feasibility (Coles et al. 2008; 2012a). Each durative action
A is expanded in a pair of classical planning actions called
snap actions: A` corresponding to begin(A), and Aa cor-
responding to end(A). A` and Aa have the preconditions
and the effects of their corresponding classical planning ac-
tions, and the overall condition of A as additional precondi-
tion. We force the planner to instantiate snap actions in pairs
(each start is coupled with exactly one end) and forbid any
action threatening the overall condition of A between the
snap actions for A (Coles et al. 2009).

Definition 2. Given a temporal planning P =
(F,DA, I,G), the abstraction of P (written abs(P)) is a
classical planning problem (F,

⋃
A∈DA{A`, Aa}, I, G).

The pseudo-code of a forward state-space temporal plan-
ner (FSSTP) is shown in Algorithm 1. A classical planner
implemented as a forward state-space search solves the ab-
stract problem abs(P). The planner keeps a totally-ordered
partial plan χ. Each time an action is added to the partial
plan, the scheduling check is invoked to assess the tempo-
ral consistency of the added action. The scheduling check
builds a TP1 that has the steps of χ as time points and has
a set of constraints composed of duration constraints D and
precedence constraints P . Duration constraints (created by
the DURATIONS function) are used to bind pairs of snap ac-
tions (A`, Aa), forcing the duration of each action to obey
the domain specification (Aa−A` ∈ [δmin(A), δmax(A)]).
Precedence constraints (created by the PRECEDENCES func-

1We consider purely temporal planning, other works cope with
numeric fluents and continuous effects by using linear programs
instead of temporal problems (Coles et al. 2012a; 2010).

tion) are used to maintain causality in the plan. If a step a
is needed to achieve a precondition for another step b, we
must impose a precedence among the two steps (a < b).
Similarly, precedence constraints are used to impose that the
overall(A) conditions for an action A are maintained.

When the TP is found to be consistent, two situations can
occur. If χ was a plan achieving the goal in abs(P), we can
terminate the procedure, otherwise we continue the search
in the abstract domain (CONTINUE). To terminate, we build
a temporal plan π from a consistent schedule µ of the TP2:
each pair of snap actions A`, Aa in χ is a step in π, the time
for the step is µ(A`) and the duration is µ(Aa)− µ(A`). If
the TP is not consistent, the classical planner backtracks, as
χ is not temporally sound and cannot be further extended.

Strong Planning With Temporal Uncertainty
In this section, we define the semantics of the strong plan-
ning problem with temporal uncertainty and we show the is-
sues that arise in comparison to temporal planning. The only
syntactic modification we require in the temporal planning
problem is to have a partition of the durative actions DA in
controllable (DAc) and uncontrollable (DAu). Intuitively,
a controllable durative action behaves as in plain temporal
planning: the planner is free to assign both the starting time
and the duration of the action. Instead, an uncontrollable du-
rative action (A ∈ DAu) is started by the planner, but the
duration is not controllable: we only assume that the dura-
tion will be in the [δmin(A), δmax(A)] interval.

Definition 3. A strong planning problem with temporal
uncertainty U = (F,DAc, DAu, I, G) is a tuple where
DAc and DAu are two disjoint sets of durative actions, and
(F,DAc ∪DAu, I, G) is a temporal planning problem.

We call Strong Time Triggered Plan (STTP) a solution to
a strong planning problem with temporal uncertainty.

Definition 4. An STTP σ is a set of steps {r1, · · · , rn}
where each step r is composed of a starting time t(r) ∈ R+,
an action action(r) and, if action(r) ∈ DAc, a duration
δ(r) ∈ [δmin(action(r)), δmax(action(r))].

Syntactically, an STTP is similar to a temporal plan, but we
do not assign the duration of uncontrollable actions. Seman-
tically, an STTP represents a set of temporal plans, one for
each possible duration of each uncontrollable action.

Definition 5. An STTP σ = {r1, · · · , rn} induces a plan
π = {s1, · · · , sn} if for each i, action(si) = action(ri),
t(si) = t(ri) and the following conditions hold.

1. δ(si) = δ(ri), if action(ri) ∈ DAc
2. δ(si)∈ [δmin(action(ri)), δmax(action(ri))], otherwise.

Given an STTP σ, we write Iσ to indicate the set of all in-
duced plans {π|π is induced by σ}. Clearly, the set of in-
duced plans for a strong planning problem with temporal
uncertainty is usually infinite.3 This definition, however, al-
lows for the formalization of validity for an STTP exploiting

2We write µ(x) to indicate the value assigned to x by µ.
3We consider dense real-valued time, so the set of possible du-

rations for each uncontrollable action is infinite.
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Figure 1: Example situation for which considering the upper
or the lower bound on each uncontrollable action duration
does not work. We indicate with ?l, !l the fact that literal l is
a precondition, effect resp. for a given action.

the notion of validity for plans in temporal planning prob-
lems without uncertainty. Indeed, an STTP is valid if, for all
possible durations of the uncontrollable actions, the plans
resulting from considering such durations as fixed are valid,
disregarding temporal uncertainty.
Definition 6. An STTP σ is valid for (F,DAc, DAu, I, G)
if and only if each π ∈ Iσ is a valid plan for the temporal
planning problem (F,DAc ∪DAu, I, G).

It is easy to see that, if a strong planning problem with
temporal uncertainty has no uncontrollable actions (DAu =
∅), the semantics of plain temporal plans and STTP coincide.

The strong planning problem with temporal uncertainty
is in some sense similar to a conformant planning prob-
lem (Ghallab, Nau, and Traverso 2004) when actions have
non-deterministic effects. In fact, the duration of an action
can be thought as part of the action effect. The difference
is that here we consider dense real-valued time, so the set
of possible durations is infinite, yielding an infinite set of
possible non-deterministic effects. Nonetheless, we are aim-
ing at a plan that is guaranteed to achieve the goal for every
possible non-deterministic action duration.

At first sight, a possible and simple approach to solve a
strong planning problem with temporal uncertainty could be
to remove uncertainty in the domain, forcing either the upper
or the lower bound on each uncontrollable action. Figure 1
shows an example in which this conjecture fails. In the ex-
ample, actionA sets l to true when it starts and to false when
it terminates; action B is uncontrollable and requires l as an
overall condition and requires p to be true to terminate, in
addition it sets b to true when it starts and g to true when it
ends. Finally, actionC requires b to start and produces p as it
terminates. The problem clearly admits a simple STTP: start
A at time 0 with duration 10, B at time 0.5 and C at time 1
with duration 3. If we consider the plain temporal problem
in which we fix the duration of B as its upper bound (9) we
can get wrong assignments for C as it might be scheduled at
time 3: in this case ifB happens to last for only 5 time units,
we violate the precondition of A, thus fixing the start of C
at time 3 is not an STTP. Similarly, if we set the duration
as the lower bound we can postpone the start of B in such a
way that there exists an execution ofB that violates its over-
all constraint. Nevertheless, there may be cases where this
approach is sound, but this is out of the scope of this paper:
the clear identification of these cases is left as future work.

Algorithm 2 FSSTP for strong planning problem with tem-
poral uncertainty
1: procedure FSSTP(P)
2: for all partial χ generated while solving abs(P) do
3: Xu ← UNCONTROLLABLESTEPS(χ, P)
4: Dc ← CONTROLLABLEDURATIONS(χ, P)
5: Du ← UNCONTROLLABLEDURATIONS(χ, P)
6: P ← PRECEDENCES(χ, P)
7: if µ← TPU.SOLVE((χ−Xu, Xu, Du, Dc∪P )) then
8: if ISCOMPLETE(χ) then
9: return BUILDSTTP(µ, χ)

10: else CONTINUE( )
11: else REJECT(χ)
12: return ⊥

FSSTP with Temporal Uncertainty
In order to solve strong planning problems with temporal
uncertainty, we propose a way to extend FSSTP. We retain
the overall framework but we modify the scheduling check.
The new framework is shown in Algorithm 2.

We first substitute the TP consistency check with the SC
check of a TPU. As before, we use the steps of χ as time
points for the temporal problem. The TPU is built by first
separating the controllable steps in χ from the uncontrol-
lable ones: for each uncontrollable action A, Aa is consid-
ered uncontrollable, while all the other steps are control-
lable. The duration constraints are built analogously to the
plain temporal case, but are divided in two sets: Dc are the
duration constraints for controllable actions,Du are the ones
for uncontrollable actions.

Building an STTP σ from a strong schedule for the TPU
is analogous to the plain temporal planning case: each pair
of snap actions (A`, Aa) ∈ χ is a step of σ, the time for
the step is µ(A`) and, if A is controllable, the duration is
µ(Aa) − µ(A`). We do not set the duration for uncontrol-
lable durative actions.

The encoding of the precedence constraints P is crucial,
because in presence of uncontrollability not all the tech-
niques presented in the temporal planning literature for the
controllable case (Coles et al. 2012a; 2010) are complete.
In the following, we consider two different encodings pro-
posed in the temporal planning literature and we show that
they are incomplete for solving the strong planning prob-
lem with temporal uncertainty. Then, we borrow the idea of
reordering from Bäckström (1998) and we derive the first
sound and complete approach for the strong planning prob-
lem with temporal uncertainty.

Total Order Encoding. A simple way of building P is
to maintain the total order of the partial plan χ. Forc-
ing this total order, clearly maintains the causal sound-
ness but, as noted in (Coles et al. 2010), is heavily de-
pendent on the order of actions chosen by the classi-
cal planner. Nevertheless, this encoding is complete for
plain temporal planning and is adopted in the COLIN and
CRIKEY 3 planners (Coles et al. 2012a). We call TO
the set of precedence constraints for a given totally or-
dered plan χ = (a1, . . . , an), and we define it as follows:
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Figure 2: Example problem for which the TO and LAD en-
codings cannot find a plan, while an STTP exists.

TO =̇ {ai < ai+1|1 ≤ i ≤ n− 1}.
We highlight that no disjunction is created, hence the encod-
ing results in an STPU. Despite its simplicity, this encoding
is incomplete in presence of temporal uncertainty. Indeed,
at each step of Algorithm 2, it might be the case that no to-
tal order produces a strongly controllable TPU, even if there
exists an STTP for the given problem. Nonetheless, the ap-
proach is sound: if a solution is returned, it is a valid STTP.

As an example, let us consider the situation depicted in
Figure 2. Let us suppose that both actions A and B must
be started at the same time4. Action A is uncontrollable
and B must end between the earliest and the latest possi-
ble ends of A. Literals p and q are initially true and no ac-
tion falsify them. Let us focus on the relative order of Aa
and Ba. If χ = (· · · , Aa, · · · , Ba, · · · ), then we (transi-
tively) impose the constraint Aa < Ba, but this makes
the STPU not SC, because, if A takes longer than 7 time
units, Aa can happen after Ba violating the constraint. If
χ = (· · · , Ba, · · · , Aa, · · · ), then the situation is reversed
and again the STPU is not SC. Therefore, in both cases χ is
rejected and the planner returns ⊥. This is incomplete, be-
cause there exists a simple STTP for the problem: start both
actions at time 0 (the two actions are non-interfering and all
the conditions are satisfied as p and q are never falsified).

Last Achiever Deordering Encoding. Another encoding
that has been proposed, is to lift totally ordered plans to par-
tially ordered plans (Coles et al. 2010). The underlying idea
is to use the greedy algorithm by Veloso, Perez, and Car-
bonell (1990) to reconstruct the causal links as precedence
links. For each action in the plan requiring a literal l as pre-
condition, the algorithm searches for the last achiever of that
literal in the totally ordered plan, and imposes a precedence
link between the two actions. In this way, it builds a par-
tial order plan as a deordering (Bäckström 1998) of χ and
possibly reduces the commit on the specific input ordering.
Also this encoding never introduces disjunctions, hence the
resulting TPU is simple. Due to space constraints we do not
report the full algorithm here, see Coles et al. (2010).

This encoding is able to find a plan in many situations
even in presence of uncertainty, but it does not work in gen-
eral. For example, it fails on the problem of Figure 2: the
encoding greedily assumes that the last achiever is the one
that must be preserved in the form of a causal link; in real-
ity there may be other achievers that could be used instead.
Just as in the previous case, if χ = (· · · , Aa, · · · , Ba, · · · ),

4We just need that the end of B is forced to overlap with the
interval in which A can uncontrollably end.

then we impose the constraint Aa < Ba because Aa is
the last achiever of p (required by Ba). Instead, if χ =
(· · · , Ba, · · · , Aa, · · · ), we impose the constraintBa < Aa
because Ba is the last achiever of q (required by Aa).

Disjunctive Reordering Encoding. In order to obtain a
sound and complete reasoning, we need to relax the total or-
der produced by the state-space search, retaining the prece-
dence constraints needed to ensure plan validity. However,
we must be careful in not over-constraining the TPU, other-
wise we may discard valid plans. A solution is to consider all
the reorderings (Bäckström 1998) of the given plan that are
causally sound: we build a set of (disjunctive) precedence
constraints in such a way that all the orderings fulfilling the
constraints are causally sound. We call Disjunctive Reorder-
ing (written DR) such a set of constraints. We show that,
given a partial plan χ, using DR to construct the precedences
in Algorithm 2, yields a complete technique for the strong
planning problem with temporal uncertainty.

Given a literal l, we denote with f(l) the set {a ∈ χ|l ∈
eff(a)} of actions that achieve l. Given a literal l and a
pair of actions a and r, we define the temporal constraint
ρ(l, a, r) =̇ (a < r ∧

∧
ai∈f(l)\{a,r}(ai < a ∨ ai > r)).

Intuitively, for a literal l, if a is an achiever of l and r is
an action having l as precondition, ρ(l, a, r) holds if a was
the last achiever of l before r. We now define DR. Using
a common trick in partial order planning, we consider two
fictitious actions, a0 and an+1, representing the initial state
and the goal condition, respectively. Action a0 has no pre-
conditions and has the initial state I as effect. Action an+1

has the goal as precondition and no effect.
Definition 7. Given χ = (a0, · · · , an+1), DR is as follows.
For each 1 ≤ i ≤ n, {(a0 < ai), (ai < an+1)} ⊆ DR.
For each a ∈ χ and for each l ∈ pre(a), the following
constraints belong to DR:

1.
∨
aj∈f(l)\{a} ρ(l, aj , a);

2.
∧
aj∈f(l)(ρ(l, aj , a)→

∧
at∈f(¬l)\{a}(at < aj∨at > a)).

For each a` ∈ χ and for each l ∈ overall(a), the following
constraint is in DR:
3.

∧
aj∈f(¬l)((aj < a`) ∨ (aj > aa)).

Intuitively, constraint 1 says that at least one action aj
having as effect the precondition l of action a, should occur
before a. Constraint 2 says that, if aj is the last achiever for
the precondition l of action a, between aj and a there must
be no action falsifying l. Invariants are treated as precondi-
tions that cannot be canceled until the end of the action (con-
straint 3). The following theorem states that DR is sound and
complete. 5

Theorem 1. Given a strong planning problem with temporal
uncertainty admitting a valid STTP σ, if DR is used, Algo-
rithm 2 terminates with a valid STTP.
The intuition is that in DR the disjunctions encode all re-
orderings that are causally sound in the form of a DTPU, al-
lowing the scheduler to re-arrange the actions independently
of the total ordering of χ.

5The proof can be found in the additional material available at:
https://es-static.fbk.eu/people/roveri/tests/aaai15.
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Figure 3: Results for the experimental evaluation. The “TO” and “MO”lines indicate the time-out and the memory-out respec-
tively. Red circles are points where compared solvers agree, while blue squares are when they disagree, due to incompleteness.

Solving the SC of a DTPU is a NP-Hard problem (Peint-
ner, Venable, and Yorke-Smith 2007), thus the use of this
encoding is quite costly; however, DR is important as it over-
comes the incompleteness limitation of the other encodings.

Implementation and Experiments
Implementation. We implemented the approaches de-
scribed in the previous section as an extension of
COLIN (Coles et al. 2012a). COLIN can handle temporal do-
mains expressed in PDDL 2.1, and its temporal reasoning
component is modular w.r.t. the rest of the code base: it has a
clear notion of scheduler for checking temporal consistency.

The parser and the internal structures of COLIN were
modified to support the processing of an extension of PDDL
2.1 with actions with uncontrollable durations. We added
three new schedulers, each implementing one of the defined
encodings. We write SC-TO to refer to the encoding based
on total ordering, SC-LAD for the Last Achiever Deordering
and SC-DR for the Disjunctive Reordering. The heuristic for
the forward search planner was left unchanged. The tempo-
ral solvers for SC were implemented in C++, following the
approach in (Cimatti, Micheli, and Roveri 2014), and using
the MathSAT (Cimatti et al. 2013) SMT solver.

Setup. We considered all planning problems from the tem-
poral track of the IPC 2011 (Coles et al. 2012b): we modified
them by declaring some actions uncontrollable and by en-
larging the duration intervals of actions. 6 We also analyzed
the problems from Cimatti, Micheli, and Roveri (2013), and
the examples presented in this paper. Overall, this resulted
in a benchmark set of 563 problems. Given that there are
no other planners able to deal with actions with uncontrol-
lable durations, we compared the search time of our three
approaches: SC-DR, SC-LAD, and SC-TO. The experiments
were executed on a Scientific Linux 64 bit, 12 cores Intel
Xeon at 2.67GHz, with 96GB RAM. We used a timeout of
5 minutes, and a memory limit of 8GB.

6The tool and the benchmark set can be downloaded from: https:
//es-static.fbk.eu/people/roveri/tests/aaai15.

Results. The results for the comparisons are reported in
Figure 3. The left plot compares SC-DR and SC-TO; the
center plot SC-DR and SC-LAD and the right plot SC-LAD
and SC-TO. We recall that SC-DR is complete, while the
others are not. Nonetheless, all the approaches are sound:
if a plan is returned, it is valid. We observe that in most
cases, the incomplete approaches are faster than SC-DR: the
reason is that checking strong controllability of STPUs is
much cheaper than checking strong controllability of DT-
PUs. However, in a number of points, SC-DR terminates
where SC-LAD and SC-TO do not. These are the examples
where they cannot build a plan due to incompleteness, while
a valid STTP exists. The right plot compares the two incom-
plete techniques and shows that, although in few cases SC-
TO is better than SC-LAD, there are many cases where SC-
TO goes timeout while SC-LAD is able to find a solution in
the time limits. This is because of the strong commitment of
SC-TO to the specific order produced by the classical plan-
ner. In presence of uncontrollability it is often the case that
SC-TO builds over-constrained TPUs that are rejected, while
SC-LAD is able to accept the same partial plan thanks to its
partial order. In fact, there are also some cases where SC-TO
says that there is no solution, while SC-LAD is able to find an
STTP. Hence, there is no pay off in using SC-TO instead of
SC-LAD for problems with uncontrollable action durations.
As side remark, we report that we solved the benchmarks
of Cimatti, Micheli, and Roveri (2013) in less than a second
instead of about two minutes.

Conclusions and future work
In this paper, we defined the problem of strong planning
with temporal uncertainty, and we proposed the first sound
and complete planning algorithm. We implemented the pro-
posed approach, and we carried out an experimental evalua-
tion showing its feasibility. As future work, we will investi-
gate ways to mitigate the cost of the DR approach retaining
its completeness, possibly by defining dedicated heuristics
for the planner. In addition, we would like to extend our ap-
proach to handle numeric fluents and continuous change.
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