
Preference Planning for Markov Decision Processes

Meilun Li and Zhikun She
School of Mathematics and Systems Science

Beihang University, China

Andrea Turrini and Lijun Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

Abstract
The classical planning problem can be enriched with quan-
titative and qualitative user-defined preferences on how the
system behaves on achieving the goal. In this paper, we
propose the probabilistic preference planning problem for
Markov decision processes, where the preferences are based
on an enriched probabilistic LTL-style logic. We develop
P4Solver, an SMT-based planner computing the preferred
plan by reducing the problem to quadratic programming
problem, which can be solved using SMT solvers such as Z3.
We illustrate the framework by applying our approach on two
selected case studies.

Introduction
Classical planning problem focuses on finding a sequence
of actions leading from initial state to the user-defined set
of goal states. For many problems in reality, however, users
may have preferences over some special actions than other
ones, or willingness to touch some special group of states
before reaching the goal. This leads to the promotion of
preference-based planning to integrate planning with user
preferences (Baier and McIlraith 2009).

Planning with preferences has been studied for decades
and becomes even more attractive in recent years. Many
researchers have proposed preference languages to effec-
tively and succinctly express user’s preferences (Coste-
Marquis et al. 2004; Delgrande, Schaub, and Tompits 2004;
Boutilier et al. 2004), algorithms for designing preference-
based planners corresponding to the different preference lan-
guages, or algorithms to increase planning efficiency (Bac-
chus and Kabanza 2000; Edelkamp 2006; Sohrabi, Baier,
and McIlraith 2009; Tu, Son, and Pontelli 2007; Baier, Bac-
chus, and McIlraith 2009).

The above mentioned work is essentially based on nonde-
terministic transition systems. For most systems in reality,
however, the effect of system actions is often unpredictable.
Even though we cannot precisely know what will follow af-
ter an action, some event is more (or less) frequent than other
events. This motivates incorporating probability to planning
problems to capture this kind of uncertainty. Markov Deci-
sion Processes (MDPs) (Bellman 1957) provide a mathemat-
ical framework for modelling decision making in situations

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1

0.7

0.1

0.05

0.1

0.05

l
n

3

2

1
1 2

3

6

21

Figure 1: The robot MDP

where outcomes are partly stochastic and partly under the
control of a decision maker. It is a unifying model for many
classes of planning problems studied in AI (Boutilier, Dean,
and Hanks 1999).

In this paper, we propose the probabilistic preference-
based planning problem on MDPs, which we refer to as
P4. Derived from probabilistic linear-time temporal logic
(probabilistic LTL) (Hansson and Jonsson 1994; Baier and
Katoen 2008), we propose a preference language allowing
us to specify the goal and preferences in terms of proba-
bilistic formulas. Using the language, we can for instance
express the property “the goal states are eventually reached
with probability at least 0.95” (in probabilistic LTL style,
P≥0.95(F(goal))) and, among all ways, we prefer those
such that “with probability at least 0.99 the system never en-
ters a forbidden state” (P≥0.99(G(¬forbidden))). Further,
we propose P4Solver, a planner for P4, in which we reduce
P4 to a quadratic programming problem. We use the non-
linear real arithmetic of Z3 (de Moura and Bjørner 2008) to
solve the problem, after having encoded it in the SMT-LIB
format (Barrett, Stump, and Tinelli 2010). The experimental
results confirm in general the effectiveness of the approach.

A Motivating Example
As an example of problems our technique addresses, con-
sider a robot moving in one direction on a ring rail sur-
rounded by N loading and unloading areas (or positions),
depicted in Figure 1. The task of the robot is to sortB boxes
between these areas, with B < N . The robot alternates be-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3313

tween two modes: control (mode(c)) and action (mode(a)).
In the control mode, the robot decides what to do next: either
to move on the rail (m) or to use its arm to load/unload boxes
(a). As movement, either it can go to the next area (n), or
it can go quickly 5 areas ahead (l); the actual reached area
depends on the distance: starting from the area i, action n
reaches the area (i+ 1) modN with probability 1 while ac-
tion l reaches the area (i + 5) modN with probability 0.7,
the areas (i+ 4) modN and (i+ 6) modN with probability
0.1 each, and the areas (i + 3) modN and (i + 7) modN
with probability 0.05 each. When the robot faces an area i
containing a box j and it is in action mode, it can pick it
up (p(j, i)) so that it can later drop (d(j, t)) it in the target
area t, if such area is empty. Both operations succeed with
probability 0.95. Only one box can be carried at a time.
Possible user preferences are that the robot moves quickly
at least once, that it drops box 1 somewhere, that a box is
never picked up and dropped in the same area, and so on.

Preliminaries
In this section we introduce Markov Decision Processes
(MDPs) (Bellman 1957) as our model. We fix Σ as the fi-
nite set of atomic propositions. Each state in the MDP is
labelled with only the atomic propositions that are satisfied
in this state1. State evolves to other states as the result of
performing actions that probabilistically decide the state to
transfer to. The formal definition of MDP is as follows.

Definition 1 A Markov Decision Process is a tuple M =
(S,L,Act , s̄,P) where

• S is a finite set of states,
• L : S → 2Σ is a labeling function,
• Act is a finite set of actions,
• s̄ ∈ S is the initial state, and
• P: S×Act → Dist(S) is the transition probability func-

tion where by Dist(S) we denote the set of probability
distributions over S.

For example, robotAt(2) is the atomic proposition holding
whenever the robot is in area 2. To simplify the exposition,
we use the special action ⊥ to model the stopping of the
computation; for each state s ∈ S, P(s,⊥) = δs where δs
is the Dirac distribution assigning probability 1 to s. We
denote by Act(s) the set of possible actions from state s.
Note that for each s, Act(s) 6= ∅ since ⊥ ∈ Act(s).

A path π in an MDPM is a finite or infinite sequence of
alternating states and actions s0a1s1 . . . starting from a state
s0, also denoted by first(π) and, if the sequence is finite,
ending with a state denoted by last(π), such that for each
i > 0, ai ∈ Act(si−1) and P(si−1, ai)(si) > 0. We denote
the set of all finite paths for a given MDPM by Paths∗M and
the set of all finite and infinite paths by PathsM. We may
drop the subscriptM whenever it is clear from the context.

1In (Bienvenu, Fritz, and McIlraith 2011), fluents and non-
fluent relational formulas are used for characterizing state prop-
erties. The former are of the form f(s, x0, x1, . . .) whose value
depends on the assignment of variables xi in the state s, while the
latter do not depend on the state s.

For a given path π = s0a1s1 . . . , we denote by |π| the
length of π, i.e., the number of actions occurring in π. If
π is infinite, then |π| = ∞. For 1 ≤ i ≤ |π|, we denote
by action(π, i) the action ai; for 0 ≤ i ≤ |π|, we denote
by state(π, i) the state si and by suffix (π, i) the suffix of π
starting from state(π, i).

The nondeterminism of the transitions enabled by a state
is resolved by a policy χ based on the previous history. For-
mally, a policy for an MDPM is a function χ : Paths∗ →
Dist(Act) such that for each π ∈ Paths∗, { a ∈ Act |
χ(π)(a) > 0 } ⊆ Act(last(π)) and if action(π, |π|) = ⊥,
then χ(π) = δ⊥. The last condition ensures that no action
except⊥ can be chosen after the stop action⊥ has occurred.

Given an MDPM, a policy χ and a state s induce a prob-
ability distribution over paths as follows. The basic measur-
able events are the cylinder sets of finite paths, where the
cylinder set of π, denoted by Cπ , is the set {π′ ∈ Paths |
π 6 π′ } where π 6 π′ means that the sequence π is a prefix
of the sequence π′. The probability µχ,s of a cylinder set Cπ
is defined recursively as follows:

µχ,s(Cπ) =

0 if π = t for a state t 6= s,
1 if π = s,
µχ,s(Cπ′) · χ(π′)(a) · P(last(π′), a)(t)

if π = π′at.
Standard measure theoretical arguments ensure that µχ,s ex-
tends uniquely to the σ-field generated by cylinder sets.
Given a finite path π, we define µχ,s(π) as µχ,s(π) =
µχ,s(Cπ) · χ(π)(⊥), where χ(π)(⊥) is the probability of
terminating the computation after π has occurred. The defi-
nition could be extended to a set of finite paths: given a set of
finite paths B, we define µχ,s(B) as µχ,s(B) =

∑
π∈B

µχ,s(π).

As an example of path and its probability, consider the
path π = s0ms1ls2as3p(2, 4)s4 relative to the robot, where
each action is chosen by the policy with probability 1 and
the states have the following meaning:

State Robot at Mode CarryBox Box 2 at
s0 0 c - 4
s1 0 m - 4
s2 4 c - 4
s3 4 a - 4
s4 4 c 2 -

The probability of π is 1 ·1 ·1 ·1 ·0.1 ·1 ·1 ·1 ·0.95 = 0.095.

Probabilistic Preference Planning Problem
In this section we present the Probabilistic Preference Plan-
ning Problem (P4). This is the extension of the classical
preference-based planning problem to probabilistic settings.
In P4, preference formulas and goal formulas are described
with probability, and both are based on the concept of prop-
erty formula.
Definition 2 The syntax of a property formula ϕ is defined
as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | final(ϕ) | occ(a)

| X(ϕ) | U(ϕ,ϕ) | ∀x(ϕ)

where p ∈ Σ is an atomic proposition and a ∈ Act . x is a
variable that can appear only in the terms p and a of occ(a).

3314

Throughout the paper, we use standard derived operators
such as ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), True = p ∨ ¬p, False =
¬True, F(ϕ) = U(True, ϕ), G(ϕ) = ¬F(¬ϕ), ϕ ⇒
ψ = ¬ϕ ∨ ψ, and ∃x(ϕ) = ¬∀x(¬ϕ).

Remark 1 We allow the property formula to express meta-
description of atomic propositions with variables and their
domains. Take the sorting robot as an example, if we have
the atomic propositions carryBox (1), carryBox (2), . . . ,
carryBox (B) ∈ Σ to represent the fact that the robot is
carrying a specific box, we can express the property ”the
robot is carrying nothing” as ∀x(¬carryBox (x)), and the
domain of x is dom(x) = {1, . . . , B}.

Property formulas are defined on finite paths. Given an
MDP M, a path π and a formula ϕ, we use π |=M ϕ (or
π |= ϕ if M is clear from the context) to represent that
the path π satisfies the property ϕ. The formal semantics of
property formulas is defined inductively as follows:

π |= p if p ∈ L(first(π))
π |= ¬ϕ if π 6|= ϕ
π |= ϕ ∧ ψ if π |= ϕ and π |= ψ
π |= final(ϕ) if last(π) |= ϕ
π |= X(ϕ) if suffix (π, 1) |= ϕ
π |= U(ϕ,ψ) if π |= ψ or π |= ϕ ∧X(U(ϕ,ψ))
π |= occ(a) if action(π, 1) = a
π |= ∀x(ϕ) if π |=

∧
v∈dom(x) ϕ[x→ v]

where dom(x) is the domain of x and ϕ[x → v] represents
the formula where all free occurrences of x in ϕ have been
replaced by v ∈ dom(x).

The formula occ(a) holds on π if the first action of π is
a. Temporal operators X(ϕ) and U(ϕ,ψ) are defined in the
standard way (Vardi 1995). The formula ∀x(ϕ) holds if ϕ
holds on π for all assignments of x in dom(x), where x is a
variable appearing in ϕ.

Example 1 Requiring that the robot never drops a box in
the same position it has picked it up can be expressed as
∀b(∀z(G(occ(p(b, z))⇒ ¬F(occ(d(b, z)))))). The LTL
formula ∀p(G(robotAt(p) ∧ occ(l)⇒ X(¬robotAt(p))))
means that the robot never goes to its starting area while
doing a quick movement.

Along with the definition of property formulas, we denote
by PJ(ϕ) the probabilistic property, where J ⊆ [0, 1] is a
closed interval. Given an MDPM, s ∈ S, and a policy χ,
s |=χ

M PJ(ϕ) (s |= PJ(ϕ) for short if χ andM are clear
from the context) if µχ,s({π ∈ Paths∗M | π |= ϕ }) ∈ J .

For defining the preference formula, we assume a total
order � on the subset of probabilistic properties. For two
probabilistic properties ψ1 and ψ2, we say that ψ1 is more
preferred than ψ2 if and only if ψ1 � ψ2. We now define
preference formula using PJ(ϕ) and�.

Definition 3 A preference formula ΦP is of the form ψ1 �
ψ2 � · · · � ψk, where each ψi (0 < i ≤ k) is a probabilis-
tic property, ψk = P[1,1](True), and for each m,n ≤ k,
m < n implies ψm � ψn.

Definition 3 assigns the order of probabilistic properties
that corresponds to the appearance order of them. Earlier

a formula appears, the more preferred it is. The formula
P[1,1](True) means no preference and it is the least pre-
ferred one. With this notion we introduce the preference
planning problem for the probabilistic setting:

Definition 4 A Probabilistic Preference Planning Problem
(P4) is a tuple (M,ΦG,ΦP) where M is an MDP, ΦG is
a goal formula which is a probabilistic property of the form
ΦG = PJg (final(γ)) where γ is a property formula, and
ΦP = ψ1 � ψ2 � · · · � ψk is a preference formula.

A solution to a P4 problem is a policy χ such that s̄ |=χ
M

PJg (final(γ)). An optimal solution to a P4 is a solution χ∗

such that there exists i ∈ {1, . . . , k} such that s̄ |=χ∗

M ψi and
for each 0 < j < i and each solution χ, s̄ 6|=χ

M ψj .

Since we assume that ψk = P[1,1](True), we have that an
optimal solution for (M,ΦG,ΦP) exists whenever there is
a policy χ such that s̄ |=χ

M PJg (final(γ)). We remark that
different optimal solutions may exist.

We can extend P4 to General Preference Formulas (Bien-
venu, Fritz, and McIlraith 2011) by decorating preference
formulas with values taken from a totally ordered set (V,E)
and by defining� according to E.

Planning Algorithm for P4
In this section we introduce a planner P4Solver to solve P4.
To compute the optimal solution to a P4 problem, we start
with the most preferred formula ψ1. If we find a solution,
then it is an optimal solution to this P4. If we fail to reach
a solution, we continue with the next preferred formula, and
after we have enumerated all the property formulas, we con-
clude that P4 has no solution. As said before, this happens
only when the goal formula cannot be satisfied. The scheme
is shown in Algorithm 1.

Algorithm 1 P4Solver
Input: MDP model M, preference formula ΦP , goal for-
mula ΦG
Output: An optimal policy χ∗

1: Parse ΦP to the form ΦP = ψ1 � ψ2 � · · · � ψk
2: χ∗ = ∅
3: for i = 1 to k do
4: χ∗ = PolFinder(ψi,ΦG,M)
5: if χ∗ 6= ∅ then
6: return (χ∗, i)
7: return unsatisfiable

The procedure PolFinder is the core of the algorithm. It
translates P4 to a quadratic programming problem based on
the concept of progression of property formula.

Definition 5 Given a property formula ϕ, a state s, and an
action a, the progression ρsa(ϕ) of ϕ from s through a is
defined as follows.

ρsa(p) =

{
True if s |= p

False otherwise

ρsa(¬ϕ) = ¬ρsa(ϕ)

ρsa(ϕ1 ∨ ϕ2) = ρsa(ϕ1) ∨ ρsa(ϕ2)

3315

ρsa(final(ϕ)) =

final(ϕ) if a 6= ⊥
True if a = ⊥ and s |= ρs⊥(ϕ)

False otherwise

ρsa(X(ϕ)) =

{
ϕ if a 6= ⊥
False otherwise

ρsa(U(ϕ1, ϕ2)) =

ρsa(ϕ2) ∨ (ρsa(ϕ1) ∧U(ϕ1, ϕ2))

if a 6= ⊥
ρs⊥(ϕ2) otherwise

ρsa(occ(a′)) =

{
True if a′ = a

False otherwise

ρsa(∀x(ϕ)) =
∧

v∈dom(x)

ρsa(ϕ[x→ v])

Note that we can simplify the resulting progressed for-
mula with the basic rules of Boolean logic: if ρsa(ϕ2) re-
duces to True, then we can simplify ρsa(U(ϕ1, ϕ2)) =
ρsa(ϕ2) ∨ (ρsa(ϕ1) ∧U(ϕ1, ϕ2)) to True as well.

Intuitively, the progression of a formula ϕ from s through
a is a new property formula that says which parts of ϕ are
still to be satisfied after reaching s and performing a. When
we are in a state s along a path π, the sequence of progressed
formulas encodes what it has been already satisfied while
reaching s and what the remainder of π has to satisfy from
s, so that π |= ϕ. Once we reach the end of the path, the
last progressed formula can be definitely decided, and this is
exactly the satisfaction of π of the original formula ϕ.
Theorem 1 Let π be a path, then

π |= ϕ⇔

{
π |= ρ

first(π)
⊥ (ϕ) if |π| = 0,

suffix (π, 1) |= ρ
first(π)
action(π,1)(ϕ) otherwise.

The proof is a minor adaptation of the one in (Bienvenu,
Fritz, and McIlraith 2011). Note that the value of ρsa(ϕ) may
remain unknown until we reach the last state of the path.
Example 2 Take the rail robot example and assume that
we want to check whether the robot moves quickly at least
once on the path π = s0p(1, 0)s1ns2ls3, represented by
the property formula F(occ(l)). At first we cannot de-
cide whether π |= F(occ(l)) since F(occ(l)) 6= True.
So we use the information of s0 and action p(1, 0) and
get ρs0

p(1,0)(F(occ(l))) = ρs0
p(1,0)(occ(l)) ∨ F(occ(l)) =

False ∨ F(occ(l)) = F(occ(l)), since p(1, 0) 6= l. Now
we need to check whether suffix (π, 1) |= ρs0p1,0(F(occ(l))),
i.e., s1ns2ls3 |= F(occ(l)). In a similar way we can iter-
atively attempt to match all actions of π to l, and finally get
π |= F(occ(l)) since the last second action is l (note that
the last action is ⊥ without explicit notion on a finite path).

We denote by psa the probability to choose action a from
state s, and by µsϕ the probability of state s to satisfy a prop-
erty formula ϕ. Formally, µsTrue = 1, µsFalse = 0, and

µsϕ =
∑

a∈Act(s)

psa ·
∑
s′∈S

P(s, a)(s′) · µs
′

ρsa(ϕ). (1)

Note that when a = ⊥, psa ·
∑
s′∈S P(s, a)(s′) · µs′ρsa(ϕ)

reduces to ps⊥ · µsρs⊥(ϕ) since P(s,⊥) = δs.

When solving a P4, we construct the equations itera-
tively for each µsϕ with the form above until the progres-
sion reaches True or False so we can definitely know the
probability of the formula to be 1 or 0, respectively. If there
exists a solution to the corresponding set of formulas to the
P4, then the values psa induce the solution of P4. So P4
can be converted into a set of non-linear equations (actually,
quadratic equations) whose solution, if any, is the solution
for P4. This conversion is managed by PolFinder .

PolFinder , from the initial state ofM, explores the state
space of M and for each newly reached pair of state and
progressed formula, generates the corresponding instance of
the Equation 1. In the bounded version of PolFinder , we
also consider the number of past actions in the definition of
Equation 1. Obviously, the correctness of P4Solver relies on
the termination of PolFinder . Since we consider only finite
MDPs, PolFinder terminates for sure. As complexity, for
an MDPM and a property formula ϕ, the time complexity
of PolFinder is linear in the size of M and double expo-
nential in the size of ϕ.

Theorem 2 For a P4 (M,ΦG,ΦP), it has an optimal pol-
icy if and only if P4Solver returns a policy χ∗ and the index
i of the satisfied preference formula.

Implementation
We implemented the P4Solver algorithm in Scala and del-
egated to Z3 (de Moura and Bjørner 2008) the evaluation
of the generated quadratic programming problem. We rep-
resent each state of the MDP by the atomic propositions
it is labelled with; for instance, the state of the MDP de-
picted in Figure 1 is represented by the atomic propositions
robotAt(1), carryBox (1), boxAt(2, 6), boxAt(3, 21), and
mode(c), given that the robot is in control mode.

An action a is symbolically encoded as a possibly empty
list of variables, a precondition, and the effects. The
variables bind the condition and the effects to the state s
enabling the action. The precondition is simply a property
formula that has to be satisfied by the state s (or, more
precisely, by the path π = s) in order to have a enabled
in s. The effect of a is a probability distribution mapping
each target state occurring with non-zero probability to
the corresponding probability value. The target states are
encoded by a pair (R,A) of sets of atomic propositions:
those not holding anymore (R) and those now holding
(A). As a concrete example, the action d(b, p) models the
drop of box b at position p: the precondition is mode(a) ∧
robotAt(p)∧carryBox (b)∧¬∃b′(boxAt(b′, p)); the effects
are ({carryBox (b),mode(a)}, {mode(c), boxAt(b, p)})
with probability 0.95 and ({mode(a)}, {mode(c)}) with
probability 0.05.

The preference and goal formulas are encoded according
to the grammars in Definitions 2 and 3, and the probability
intervals by the corresponding bounds.

Each state, action, and formula is uniquely identified by
a number that is used to generate the variables for the SMT
solver: for instance, the scheduler’s choice of action 4 in
state 37 is represented by the variable sched_s37_a4
while sched_s37_stop stands for the probability of

3316

N B Property Nodes tg Vars te Res
5 2 1 279 0.06 333 0.06 sat
5 2 2 329 0.05 348 0.08 sat
5 2 3 1332 0.10 1764 0.73 sat
5 2 4 1690 0.09 1870 0.83 sat
6 2 1 376 0.06 453 0.11 sat
6 2 2 436 0.05 471 0.11 sat
6 2 3 2173 0.15 2884 1.90 sat
6 2 4 2707 0.13 3042 1.89 sat
7 2 1 487 0.07 591 0.15 sat
7 2 2 557 0.06 612 0.15 sat
7 2 3 3304 0.28 4368 10.21 sat
7 2 4 4048 0.20 4606 5.08 sat

Table 1: Performance of P4Solver: Rail Robot

Type Bound Property Nodes tg Vars te Res
np 2 1 28 0.01 41 0.01 sat
np 4 2 533 0.08 268 1.58 sat
np 4 3 533 0.09 270 1.53 sat
np 4 4 533 0.06 265 1.55 sat
np 4 5 533 0.08 290 0.06 sat
np ∞ 1 265 0.04 458 0.06 sat
np ∞ 2 529 0.08 522 0.09 sat
np ∞ 3 —time-out—
np ∞ 4 534 0.06 523 0.08 sat
np ∞ 5 265 0.05 458 0.07 sat
pr 2 1 87 0.01 41 0.01 unsat
pr 4 2 6058 0.19 271 —time-out—
pr 4 3 6058 0.21 284 —time-out—
pr 4 4 6058 0.15 272 —time-out—
pr 4 5 6058 0.08 290 0.09 sat
pr ∞ 1 497 0.05 458 0.06 sat
pr ∞ 2 993 0.09 522 0.08 sat
pr ∞ 3 —time-out—
pr ∞ 4 1002 0.08 523 0.08 sat
pr ∞ 5 497 0.04 458 0.06 sat

Table 2: Performance of P4Solver: Dinner Domain

stopping in state 37. We encode the SMT problem by the
SMT-LIB format (Barrett, Stump, and Tinelli 2010), thus we
can replace Z3 with any other solver supporting such format.
Moreover, it is easy to change the output format to support
solvers like Redlog and Mathematica.

We have run our prototype on a single core of a laptop
running openSUSE 13.1 on a Intelr CoreTM i5-4200M CPU
and 8Gb of RAM. The results for the rail robot and an adap-
tation of the dinner domain (Bienvenu, Fritz, and McIlraith
2011) are shown in Tables 1 and 2, respectively.

For the robot example, we consider N = 5, 6, 7 po-
sitions and B = 2 boxes and four preference formulas
that require to eventually pickup or drop the boxes, placed
in different areas to be sort according to the goal posi-
tions (each box i in position i). As preferences, we have
F(∃B(∃P (occ(p(B,P))))) as preference 1 and 3 (with dif-
ferent initial states), F(∃B(∃P (occ(d(B,P))))) as pref-
erence 2, and F(∃P (occ(d(1, P)))) as preference 4. The
initial state relative to preference 4 has boxAt(1, 1), so the
preference requires to drop the box even if this action is not
needed to reach the goal (asking for boxAt(1, 1) as well).

The goal has to be satisfied with probability in [0.75, 1]
and the preference with probability in [1, 1]. The remaining
columns in the table show the number of nodes (state, for-
mula) of the MDP we generated, the time tg spent by Scala
to generate the SMT problem, the number of variables in the
problem, the time te used by Z3 to solve the problem, and
whether the problem is satisfiable.

For the dinner domain example, we consider two types of
a simplified version, where we have removed some of the
foods available for dinner: “np” for the non-probabilistic
version and “pr” for the probabilistic one. In the former
all actions reach a single state, in the latter an action may
have no effect with non-zero probability. In the column
“Bound” we show the bound on the length of the paths
we used to construct the model: in some cases, the result-
ing model is so large to take too much time to be gen-
erated (30 seconds) or solved (30 minutes). We marked
these cases with “—time-out—”. We are at home with the
kitchen clean as initial state, and our goal state is to be at
home, sated, and with the kitchen clean. As preferences,
let ε be the formula ∃L(F(occ(eat)(pizza, L)) and ι be
occ(drive(home, italianRest)). ε is preference 1, ε∧F(ι)
is preference 2, F(ε∧ι) is preference 3, ι∧ε is preference 4,
and ∀L(occ(drive(home, L))⇒ X(at(italianRest))) is
preference 5. Probabilities for goal and preferences are
again [0.75, 1] and [1, 1], respectively.

It is interesting to observe the “unsat” result for property
1 of the probabilistic bounded version: this is caused by the
fact that the bound prevents to satisfy with enough proba-
bility the preference, while this always happens for the un-
bounded version since it is enough to try repeatedly the ac-
tion until we reach the desired state.

Related Work and Discussion
Related Work. The Planning Domain Definition Lan-
guage (PDDL) was first proposed in (McDermott et al.
2000) and evolves with the International Planning Com-
petition (IPC) to PDDL3 (Gerevini and Long 2005) and
PPDDL (Younes et al. 2005; Younes and Littman 2004).
PDDL3 is an extension of PDDL that includes temporally
extended preferences described by a subset of LTL formu-
las, but it does not consider probabilistic aspects, so it is
not feasible for modelling MDPs. PDDL3 is a quantitative
preference language evaluating plans by optimizing an asso-
ciated numeric objective function, while our preference lan-
guage expresses the preference of the plans by defining an
order on the probabilistic properties the plan has to satisfy.
This order can be easily extended to quantitative preferences
by associating each probabilistic property with a unique ele-
ment taken from a totally ordered set, as in (Bienvenu, Fritz,
and McIlraith 2011). Another difference between PDDL3
and our P4 language is that PDDL3 does not allow us to ex-
press preferences on the occurrence of actions, only a subset
of temporal operators is available, and the nesting of LTL
formulas is limited, while our P4 supports all them. On the
other hand, PDDL3 has some features that are missing in P4:
preference formulas in PDDL3 allow us to make a compari-
son between plans in the degree they violate the preference,

3317

by means of the value optimizing the associated numeric ob-
jective function. This quantitative information can be con-
venient in defining some user’s preferences.

PPDDL extends PDDL with features for modelling prob-
abilistic effects and rewards, so it can be used to model
MDPs. Being based on PDDL2.1 (Fox and Long 2003),
the above considerations about PDDL3 and P4 apply also to
PPDDL since the differences between PDDL2.1 and PDDL3
are only on derived predicates and constraints.

PP and LPP are noteworthy preference languages re-
lated to our work. PP was proposed in (Son and Pon-
telli 2004) with an answer set programming implementation.
LPP was proposed in (Bienvenu, Fritz, and McIlraith 2011)
together with a bounded best-first search planner PPLAN.
The property formula in this paper and Trajectory Property
Formula (TPF) of LPP inherit all features of Basic Desire
Formulas (BDF) of PP : considering the preferences over
states and actions with static properties, and over the trajec-
tories with temporal properties. Both also extend PP to sup-
port first order preferences. LPP inherits General Prefer-
ence of PP and extends structure of preferences with Aggre-
gated Preference Formulas (APF) to support more complex
comparison and comprehension of different preferences.

Several planners have been proposed for solving the
preference planning problem in non-probabilistic systems.
HPLAN-P (Baier, Bacchus, and McIlraith 2009) is a
bounded planner that computes optimal plans performing
at most a given number of actions. It can deal with tem-
porally extended preferences (TEPs) by compiling them to
parametrized finite automata by using the TLPlan’s ability to
deal with numerical functions and quantifications (Bacchus
and Kabanza 2000). HPLAN-P is equipped with heuristics
to prune the search space during the computation. SG-
PLAN5 (Hsu et al. 2007) is another search-based planner
with the ability to plan with TEPs. It uses a constraint
partitioning approach to split the problem of planning in
sub-problems, by taking advantage of local optimal values.
This permits to reduce in several cases the makespan of the
plan. MIPS-XXL (Edelkamp, Jabbar, and Nazih 2006) and
MIPS-BDD (Edelkamp 2006) are two well performing plan-
ners that compile the given TEPs into Büchi automata that
are then synchronized with the model under consideration.
MIPS-XXL targets very large systems and it combines in-
ternal weighted best-first search and external cost-optimal
breadth-first search to control the pace of planning. MIPS-
BDD does symbolic bread-first search on state space en-
coded to binary decision diagram (BDD). We refer to (Baier
and McIlraith 2009) and (Bienvenu, Fritz, and McIlraith
2011) for a more comprehensive comparison.

For MDPs, there are some related works on planning. In
(Boutilier, Dean, and Hanks 1999), the authors introduce
many MDP-related methods and show how to unify some
planning problems in such framework in AI. It presents a
quantitative preference based on reward structure on MDPs
and shows how to compute a plan with the means in
Decision-Theoretic Planning, such as value iteration and
policy iteration. To specify uncontrollable behaviours of
systems, it introduces exogenous events in the MDP. As
mentioned above, the preference formula defined in our

work extends probabilistic LTL. It is intuitively possible to
take great advantage of the algorithms in decision-theoretic
planning. Another similar work in this line is (Younes 2003),
which extends PDDL for modelling stochastic decision pro-
cesses by using PCTL and CSL for specifying Probabilis-
tic Temporally Extended Goals (PTEG). It encodes many
stochastic effects in PDDL and discusses the expressiveness
of those effects in different kinds of MDP models. The
essential difference of the above work to our framework
is on the preference language. Our preference language is
qualitative which could specify the properties along the se-
quences of behaviors, whereas the quantitative preference
in (Boutilier, Dean, and Hanks 1999) can not capture those
properties. And even though in (Younes 2003) PTEG is able
to deal with temporal properties on real time, it lacks flexi-
bility to express various features and can not handle prefer-
ences over actions.

Discussion. There are some other possible approaches to
P4 based on model checking methods. One is to use the cur-
rent planners on deterministic models: planners like MIPS-
XXL, MIPS-BDD and HPLAN-P first translate the LTL for-
mula to an automaton and then find the plan in the prod-
uct. Whereas it works nicely for models without probability,
this approach cannot be adapted in a straightforward way to
MDPs. The main bottleneck is the fact that a “determin-
istic” automaton may be needed. (In the model checking
community, this classical automaton approach for MDPs al-
ways involves determination, see for details (Baier and Ka-
toen 2008).) Unfortunately, a deterministic automaton for an
LTL formula is double exponential, as shown in (Courcou-
betis and Yannakakis 1995). In addition, this approach faces
some other challenges, such as (i) the preference formula
has to be satisfied before the goal formula, (ii) the matching
of the desired probability intervals for both preference and
goal formulas under the same plan, and (iii) the plan is not
required to maximize/minimize the probability of the formu-
las. Besides, our method to build the equations is an on-the-
fly construction of the product of LTL and MDP, wherein we
avoid explicit representation of the whole product.

Another approach tries to solve P4 with current proba-
bilistic planners capable to make plans with soft preferences.
These planners support the Relational Dynamical Influence
Diagram Language (RDDL) (Sanner 2010) used for the last
ICAPS’11 and ICAPS’14 International Probabilistic Plan-
ner Competitions. RDDL is a uniform language to model
factored MDPs and corresponding reward structures which
could be regarded as quantitative preferences. It is influ-
enced by PPDDL and PDDL3 and it is designed to be a
language that is simple and uniform where the expressive
power comes from the composition of simple constructs. In
particular, it aims at representing problems that are difficult
to model in PPDDL and PDDL. In its current specification,
RDDL does not support temporal state/action goal or pref-
erences. A direct encoding of our preference formulas in
the reward structure is not obvious which we leave as future
work.

3318

Conclusion
In this paper we have proposed a framework for probabilistic
preference-based planning problem on MDPs. Our language
can express rich properties, and we have designed a planning
algorithm. Our algorithm is via reduction to a quadratic pro-
gramming problem. We presented two case studies.

As future work we plan to enhance the algorithm for im-
proving the efficiency. We would also like to investigate the
possibility of combining model checking methods with P4.
Finding k-optimal path-based policy with approximation is
also a promising way to reduce the complexity.

Acknowledgments
Zhikun She is supported by the National Natural Sci-
ence Foundation of China under grants 11422111 and
11371047. Lijun Zhang (Corresponding Author) is sup-
ported by the National Natural Science Foundation of China
under grants 61472473, 61428208, and 61361136002, and
by the CAS/SAFEA International Partnership Program for
Creative Research Teams.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 16:123–191.
Baier, C., and Katoen, J.-P. 2008. Principles of Model Check-
ing. The M.I.T. Press.
Baier, J. A., and McIlraith, S. A. 2009. Planning with prefer-
ences. Artificial Intelligence 173:593–618.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A heuristic
search approach to planning with temporally extended prefer-
ences. Artificial Intelligence 173:593–618.
Barrett, C.; Stump, A.; and Tinelli, C. 2010. The SMT-LIB
standard: Version 2.0. In SMT.
Bellman, R. 1957. A Markovian decision process. Indiana
University Mathematics Journal 6:679–684.
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2011. Spec-
ifying and computing preferred plans. Artificial Intelligence
175:1308–1345.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.; and
Poole, D. 2004. CP-nets: A tool for representing and reasoning
with conditional ceteris paribus preference statements. Journal
of Artificial Intelligence Research 21:135–191.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research 11:1–94.
Coste-Marquis, S.; Lang, J.; Liberatore, P.; and Marquis, P.
2004. Expressive power and succinctness of propositional lan-
guages for preference representation. In Proceedings of the 9th
International Conference on Knowledge Representation and
Reasoning, 203–121.
Courcoubetis, C., and Yannakakis, M. 1995. The complexity of
probabilistic verification. Journal of the ACM 42(4):857–907.
de Moura, L. M., and Bjørner, N. 2008. Z3: An efficient SMT
solver. In TACAS, volume 4963 of LNCS, 337–340.
Delgrande, J. P.; Schaub, T.; and Tompits, H. 2004. Domain-
specific preferences for causual reasoning and planning. In

Proceedings of the 9th International Conference on Knowledge
Representation and Reasoning, 673–682.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-scale
optimal PDDL3 planning with MIPS-XXL. In 5th International
Planning Competition Booklet (IPC-2006).
Edelkamp, S. 2006. Optimal symbolic PDDL3 planning with
MIPS-BDD. In 5th International Planning Competition Book-
let (IPC-2006).
Fox, M., and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning problems. Journal of
Artificial Intelligence Research 20:61–124.
Gerevini, A., and Long, D. 2005. Plan constraints and prefer-
ences in PDDL3: The language of the fifth international plan-
ning competition. Technical report, University of Brescia.
Hansson, H., and Jonsson, B. 1994. A logic for reasoning about
time and reliability. Formal Aspects of Computing 6(5):512–
535.
Hsu, C.; Wah, B. W.; Huang, R.; and Chen, Y. 2007. Con-
straint partitioning for solving planning problems with trajec-
tory constraints and goal preferences. In Proceedings of the
20th International Joint Conference on Artificial Intelligence,
1924–1929.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 2000. PDDL—the
planning domain definition language. Technical report, Yale
Center for Computational Vision and Control.
Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (RDDL): Language description. Unpublished ms. Aus-
tralian National University.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2009. HTN plan-
ning with preferences. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence, 1790–1797.
Son, T. C., and Pontelli, E. 2004. Planning with preferences
using logic programming. In Proceedings of the 7th Interna-
tional Conference on Logic Programming and Nonmonotonic
Reasoning, 247–260.
Tu, P.; Son, T.; and Pontelli, E. 2007. CPP: A constraint logic
programming based planner with preferences. In Proceedings
of the 9th International Conference on Logic Programming and
Nonmonotonic Reasoning, 290–296.
Vardi, M. Y. 1995. An automata-theoretic approach to linear
temporal logic. In Logics for Concurrency - Structure versus
Automata (8th Banff Higher Order Workshop), volume 1043 of
LNCS, 238–266.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL 1.0: An
extension to PDDL for expressing planning domains with prob-
abilistic effects. Technical Report CMU-CS-04-167, Carnegie
Mellon University.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and Asmuth,
J. 2005. The first probabilistic track of the international plan-
ning competition. Journal of Artificial Intelligence Research
24:851–887.
Younes, H. 2003. Extending PDDL to model stochastic deci-
sion processes. In Proceedings of the ICAPS-03 Workshop on
PDDL, Trento, Italy, 95–103.

3319

