
tBurton: A Divide and Conquer Temporal Planner

David Wang and Brian Williams
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

Planning for and controlling a network of interacting
devices requires a planner that accounts for the auto-
matic timed transitions of devices, while meeting dead-
lines and achieving durative goals. Consider a planner
for an imaging satellite with a camera that cannot tol-
erate exhaust. The planner would need to determine
that opening a valve causes a chain reaction that ig-
nites the engine, and thus needs to shield the camera.
While planners exist that support deadlines and durative
goals, currently, no planners can handle automatic timed
transitions. We present tBurton, a temporal planner that
supports these features, while additionally producing a
temporally least-commitment plan. tBurton uses a di-
vide and conquer approach: dividing the problem using
causal-graph decomposition and conquering each fac-
tor with heuristic forward search. The ‘sub-plans’ from
each factor are then unified in a conflict directed search,
guided by the causal graph structure. We describe why
this approach is fast and efficient, and demonstrate its
ability to improve the performance of existing planners
on factorable problems through benchmarks from the
International Planning Competition.

Introduction
Embedded machines are being composed into ever more
complex networked systems, including earth observing sys-
tems and transportation networks. The complexity of these
systems require automated coordination, but controlling
these systems pose unique challenges: timed transitions –
after turning a projector off a cool-down period must be
obeyed before the projector will turn on again; periodic
transitions – a satellite’s orbit provides predictable time-
windows over when it will be able to observe a phenomenon;
required concurrency (Cushing et al. 2007), – a communica-
tion channel must be open for the duration of a transmis-
sion. Furthermore, a user may wish to specify when differ-
ent states need to be achieved (time-evolved goals) and may
expect a plan that allows flexibility in execution time (a tem-
porally least-commitment plan).

While there has been a long history of planners devel-
oped for these systems, no single planner supports this com-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plete set of features. Model-based planners, such as Burton
(Williams and Nayak 1997; Chung and Williams 2003), the
namesake of our planner, have exploited the causal struc-
ture of the problem in order to be fast and generative, but
lack the ability to reason over time. Timeline-based plan-
ners, such as EUROPA (Frank and Jónsson 2003) and AS-
PEN (Chien et al. 2000), can express rich notions of met-
ric time and resources, but have traditionally depended on
domain-specific heuristics to efficiently guide backtracking
search. Finally, metric-time heuristic planners (Coles et al.
2010; Benton, Coles, and Coles 2012; Röger, Eyerich, and
Mattmüller 2008) have been developed that are domain-
independent, fast and scalable, but lack support for impor-
tant problem features, such as timed and periodic transitions.

tBurton is a fast and efficient partial-order, temporal plan-
ner designed for networked devices. Our overall approach is
divide and conquer, a.k.a factored planning (Amir and En-
gelhardt 2003), but we leverage insights from model, time-
line, and heuristic-based planning. Like Burton, tBurton fac-
tors the planning problem into an acyclic causal-graph and
uses this structure to impose a search ordering from child to
parent. Associated with each factor is a timeline on which
the plan will be constructed. Timelines help maintain local-
ity of the causal information, thereby reducing the need for
time-consuming threat-detection steps common in partial-
order planning. To find a plan, we use a conflict directed
search that leverages the efficiency of a heuristic-based sub-
planner to completely populate the timeline of a factor, be-
fore regressing the sub-goals of that plan to the timeline of
its parent.

The contributions of this paper are three fold: first, we
introduce a planner for networked devices that supports a
set of features never before found in one planner. Second,
we introduce a new approach to factored planning based
on timeline-based regression and heuristic forward search.
Third, we demonstrate the effectiveness of this approach on
planning benchmarks.

We start by elaborating upon tBurton’s approach in the
context of prior work and introduce a running example. We
then define our notation, before presenting the algorithms
underlying tBurton. Finally, we close with an empirical val-
idation on International Planning Competition (IPC) bench-
marks.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3409

Background
Divide and conquer is the basic principal behind factored
planning, but alone tells only part of the story. A factored
planner must decide how to factor (divide) the problem, how
to plan for (conquer) each factor, and how to unify those
plans.

Divide Key to tBurton’s approach to factored planning is
exploiting the benefits of causal-graph based factoring in
partial-order, temporal planning.

tBurton inherits its causal reasoning strategy from name-
sake, Burton (Williams and Nayak 1997; Chung and
Williams 2003), a reactive, model-based planner developed
for NASA spacecraft. Burton, exploits the near-DAG struc-
ture of its domain and grouped cyclically-dependent factors
to maintain an acyclic causal graph. The causal graph is
then used to quickly determine a serialization of sub-goals.
Even though this strategy is not optimal in the general case,
complexity analysis has shown it is difficult to do better in
the domain independent case (Brafman and Domshlak 2006;
2003).

Despite the lack of optimality, the clustering of variables
identified by an acyclic causal-graph has important ramifi-
cations. Goal-regression, partial-order planners (Penberthy
and Weld 1992; Younes and Simmons 2003) traditionally
suffer from computationally expensive threat detection and
resolution, where interfering actions in a plan must be iden-
tified and ordered. Factoring inherently identifies the com-
plicating shared variables, reducing the number of cases that
must be checked for interference. Furthermore, threat res-
olution is equivalent to adding temporal constraints to or-
der sub-plans during composition – reducing the number
of threats under consideration also reduces the difficulty of
temporal reasoning.

Conquer In order to plan for each factor, tBurton uses a
heuristic-based temporal planner. Heuristic-based planners,
and especially heuristic forward search planners have scaled
well (Röger, Eyerich, and Mattmüller 2008; Coles et al.
2010; Vidal 2011), and consistently win top places in the
IPC. Using a heuristic forward search planner (henceforth
sub-planner) allows tBurton to not only benefit from the
state-of-the-art in planning, but to degrade gracefully. Even
if a problem has a fully connected causal-graph, and there-
fore admits only one factor, the planning time will be that of
the sub-planner plus some of tBurton’s processing overhead.

tBurton plans for each factor by first collecting and order-
ing all the goals for that factor along its timeline. The sub-
planner is then used to populate the timeline by first planning
from the initial state to the first goal, from that goal to the
next, and so on. The problem presented to the sub-planner
only contains variables relevant to that factor.

Unify Sub-plans are unified by regressing the subgoals re-
quired by a factor’s plan, to parent factors. Early work in
factored planning obviated the need for unification by plan-
ning bottom-up in the causal-graph. Plans were generated
for each factor by recursively composing the plans of its
children, treating them as macro-actions (Amir and Engel-
hardt 2003; Brafman and Domshlak 2006). This approach

Figure 1: A simple computer-projector system represented
as Timed Concurrent Automata.

obviated the need for unifying plans at the cost of storing
all plans. Subsequent work sought to reduce this memory
overhead by using backtracking search through a hierachi-
cal clustering of factors called a dtree (Kelareva et al. 2007).
While tBurton does not use a dtree, we do extend backtrack-
ing search with plan caching and conflict learning in order
to more efficiently unify plans.

Projector Example A running example we will use in
the remainder of this paper involves a computer, projector,
and connection between them, which are needed to give a
presentation. The computer exhibits boot-up and shutdown
times. The projector exhibits similar warm-up and cool-
down periods, but will also shutdown automatically when
disconnected from the computer. Figure 1 depicts this ex-
ample in tBurton’s native, automata formulation.

Problem Formulation
Timed concurrent automata, the representation tBurton uses
for the planning problem inherits from prior work on extend-
ing Concurrent Constraint Automata (CCA) (Williams and
Nayak 1996) to time (Ingham 2003). Our representation can
be viewed as a variation on timed-automata theory (Alur and
Dill 1994), where transitions are guarded by expressions in
propositional state-logic rather than symbols from an alpha-
bet.

Formally, the planning problem tBurton solves is the tu-
ple, 〈TCA, SPpart〉, where TCA is a model of the system
expressed as a set of interacting automata called Timed Con-
current Automata, and SPpart is our goal and initial state
representation, which captures the timing and duration of de-
sired states as a Partial State Plan. We represent our plan as
a Total State Plan SPtotal, which is an elaboration of SPpart

3410

that contains no open goals, and expresses not only the con-
trol commands needed, but the resulting state evolution of
the system under control.

Timed Concurrent Automata
Definition 1. a TCA, is a tuple 〈L, C,U ,A〉, where:
• L is a set of variables, l ∈ L, with finite domainD(l), rep-

resenting locations within the automata. An assignment to
a variable is the pair (l, v), v ∈ D(l).

• C is a set of positive, real-valued clock variables. Each
clock variable, c ∈ C , represents a resettable counter that
increments in real-time, at the same rate as all other clock
variables. We allow the comparison of clock variables to
real valued constants, c op r, where op ∈ {≤, <,=, >
,≥}, r ∈ R, and assignments of real-valued constants to
clock variables c := r, but do not allow clock arithmetic.
• U is a set of control variables, u ∈ U , with finite domain
D(u)∪⊥. D(u) represents commands users ‘outside’ the
TCA can use to control the TCA. ⊥ is a nullary com-
mand, indicating no command is given.

• A is a set of timed-automata, A∈A.
A TCA can be thought of as a system where the location

and clock variables maintain internal state while the control
variables provide external inputs. The automata that com-
pose the TCA are the devices of our system.
Definition 2. A single timed automaton A is the 5-tuple
〈l, c, u,T, I〉.
• l ∈ L is a location variable, whose values represent the

locations over which this automaton transitions.
• c ∈ C is the unique clock variable for this automaton.
• u ∈ U is the unique control variable for this automaton.
• T is a set of transitions of the form, T = 〈ls, le, g, c :=
0〉, that associates with a start and end location ls, le ∈
D(l), a guard g and a reset value for clock c, c := 0.
The guard is expressed in terms of propositional formulas
with equality, ϕ, where: ϕ ::= true | false | (lo =
v) | (u = v) | (c op r) | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2. The
guard can be expressed only in terms of location variables
not belonging to this automaton, lo ∈ L\l, and the control
and clock variable of this automaton. For brevity, we will
sometimes use the expression l 6=v in place of ¬(l = v).
The automaton is said to instantaneously transition from
ls to le and reset its clock variable when the guard is first
evaluated true.

• I is a function that associates an invariant with each loca-
tion. The invariant takes the form of a clock comparison
c < r or c ≤ r that bounds the maximum amount of
time an automata can stay in that location. The invariant
c ≤ ∞ expresses that an automaton can dwell in the as-
sociated location indefinitely.

In the projector example (Figure 1), the projector has
locations Off, WarmUp, On, Waiting, Confirm, and
CoolDown. The transitions, represented by directed edges
between the locations, are labeled by guards that are a func-
tion of other location variables, clock variables (denoted by
c), and control variables (denoted by cmd). Invariants label

Figure 2: A graphical representation of the possible set of
next-states from the Waiting state of the well-formed and
deterministic Projector automaton.

some states, such as WarmUp, which allows us to encode the
bounded-time requirement that the projector must transition
from WarmUp to On in 30.

An automaton is well formed if there exists a unique next-
state for all possible combinations of assignments to loca-
tion, control, and clock variables. With regards to the transi-
tions, an automaton is said to be deterministic if for any ls
only the guard g of one transition can be true at any time.
Figure 2 depicts the set of next-states from the Waiting
state of the well-formed, deterministic Projector automaton.
Note that there is exactly one possible next-state for each
combination of inputs, and a unique next-state at the upper-
bound of the invariant. In order to produce plans with pre-
dictable behavior, tBurton must plan over TCAmodels con-
sisting of well-formed, deterministic automata.
TCAs make representing problem features such as indi-

rect effects, automatic-timed transitions, and periodic tran-
sitions straight forward. An indirect effect can occur when a
transition in automaton Ac is activated by (the guard of the
transition is evaluated true based on the assignments to) the
locations of other automaton Ap without the need to assign
the control variable of Ac. Automatic-timed transitions can
occur within one automaton when a transition is activated
by the clock variable. Periodic transitions can occur when
a series of automated-timed transitions starts and ends with
the same location (forming a cycle). A combination of these
features can produce more complex interactions: several in-
direct effects could produce a chain-reaction, and indirect
effects with automatic-timed transitions can result in peri-
odic transitions spanning several automaton.

State Plans
To control TCA, we need to specify and reason about exe-
cutions (runs) of the system in terms of state trajectories; we
represent these as state plans. A state plan specifies both the
desired (goal) and required (plan) evolution of the location
and command variables using a set of timelines we refer to
as state histories. The temporal aspect of these histories and
the relationship between events within them are expressed
through simple temporal constraints (Dechter 2003). The
flexibility afforded by simple temporal constraints allows the
state plan to be a temporally least commitment specifica-
tion, which is important in enabling plan executives (Levine
2012; Muscettola, Morris, and Tsamardinos 1998) to adapt
to a range of disturbances without the need to re-plan. tBur-
ton generalizes upon the value and justification episode and
history representation employed in TCP (Williams 1986),

3411

which introduced a least-commitment approach to repre-
senting interactions between timelines. The use differs in
that TCP performs progression on histories through state
constraints, as a form of least-commitment simulation, while
tBurton performs regression on goal histories through timed
concurrent automata, as a form of least-commitment plan-
ning.

Conceptually, a state-plan can be thought of as one large
temporal network which we divide into histories and justifi-
cations. Each history describes the evolution of a particular
location or control variable, while justifications are temporal
constraints that relate the timing of one history to another.
Definition 3. a history H is a tuple 〈EV,EP 〉 where:
EV = {e1, e2, ..., en}, is a set of events ei (that represent
positive, real-valued time points), and
EP = {ep1, ep2,, epm}. is a set of episodes, where each
episode, ep = 〈ei, ej , lb, ub, sc〉, associates with a temporal
constraint lb ≤ ej − ei ≤ ub, a state constraint sc expressed
as a propositional formula over location and control vari-
able assignments. We refer to ei and ej as the start and end
events/times of the episode, respectively, even though their
actual temporal ordering depends on whether lb is positive.
Definition 4. a state plan SP is a tuple 〈GH,VH,J 〉
where:

• GH is a goal history, a type of history in which the state-
constraints of episodes represent the desired evolution of
location and control variables.

• VH is a set of value histories, V H ∈ VH. Each value his-
tory, V H , is a type of history that represents the planned
evolution of locations or control variables. The state con-
straints in a value history are restricted to contain only
variable assignments and only assignments to the vari-
ables to which the value history is associated. As such,
a value history represents the trace of the corresponding
variables.

• J is a justification, a type of episode with a state con-
straint of value true, which is used to relate the tempo-
ral occurrence of events in goal histories to events in value
histories.

For simplicity, we will use the term goal episode to re-
fer to an episode occurring in the goal history, and the term
value episode for an episode occurring in the value history.

As with many partial-order planners, tBurton searches
over a space of partial plans, starting from the partial state-
plan SPpart and elaborating the plan until a valid total plan
SPtotal, in which all goals are closed, is reached. State plans
allow tBurton to not only keep track of the plan (through
value histories), but also keep track of why the plan was
created (goal histories and justifications). This is useful for
post-planning validation, but also allows tBurton to keep
track of open-goals during the planning process.

Figure 3 shows a progression between the initial state plan
and the total state plan for the projector example. Figure 3(a)
depicts the partial state plan from which tBurton starts plan-
ning. The presenter wishes to project for 30 minutes and
leave the room 10 minutes later with projector off and his
computer disconnected. The goal history of the state-plan,

as indicated by the brackets, describes this desired state tra-
jectory. The value histories represent the initial state of the
computer, connection, and projector. Figure 3(a) shows the
output of tBurton, a total state plan, where the histories track
the evolution of each variable’s value. The emphasized com-
mands of ‘connecting the computer and projector’, ‘turning
on the projector’, and then ‘disconnecting the computer and
projector’ represent the actionable control-variable assign-
ments needed to achieve the presenter’s goals.

(a) The initial partial state plan for the projector example. Events
are represented as vertices. Episodes as edges. The lower and up-
per time bounds for episodes are labeled using interval notation.

(b) The total state plan for the projector example. The control vari-
ables important to the execution of the state plan as well as the
initial state plan are darkened.

Figure 3: Initial and total state plan for the projector exam-
ple.

Semantics of TCAs and State Plans
Until now, we have used the words run, trace, closed, valid,
least-commitment, and causal graph in a general sense. We
now return to formalize these definitions, starting with the
semantics of TCAs and their relation to state plans.
Definition 5. run. The run of a single timed-automaton,
Aa, can be described by its timed state trajectory, Sa =
((la0, 0), (la1, ta1)..., (lam, tam)), a sequence of pairs de-
scribing the location and time at which the automaton first
entered each state. la0 is the initial assignment to the loca-
tion variable of Aa. We say a run ((lai, tai), (laj , taj)) is le-
gal if two conditions are met. First, if lai has invariant guard
c < r, then taj − tai < r must be true. Second, if there
exists a transition between locations lai to laj , guarded by
g, the first time g became true in the interval from tai to taj
must be at time taj .

3412

Definition 6. trace. A trace in timed automata theory is
usually defined as the timed-trajectory of symbols, a word.
Relative to TCAs, this corresponds to the timed trajectory
of the guard variables. For TCAs, where automata asyn-
chronously guard each other through their location variables,
a trace and run are almost identical, with the exception that
a trace for a TCA would also include the timed state trajec-
tory of control variables used in guards. A trace for a TCA
therefore captures the evolution of all the variables.

Definition 7. closed. A goal-episode with constraint scg
is considered trivially closed if scg evaluates to true, and
trivially un-closable if it evaluates to false. Otherwise, a
goal-episode is considered closed if there is a co-occurring
episode in a value-history whose constraint entails the goal’s
constraint. Formally, a goal-episode 〈egs, ege, lbg, ubg, scg〉
is closed by a value-episode 〈evs, eve, lbv, ubv, scv〉, if
scv |= scg , and the events are constrained such that evs =
egs and eve = ege. A goal appearing in the goal-history
which is not closed is open.

In the context of a state-plan, 〈GH,VH,J 〉: The goal-
episode occurs in the the goal history GH . The value-
episode occurs in a value history, V H ∈ VH. And, we
represent closed by adding two justifications to J , which
constrain the two episodes to start and end at the same time.

Definition 8. valid. In general, SPtotal is a valid plan for
the problem 〈TCA, SPpart〉, if SPtotal has no open goal-
episodes, closes all the goal-episodes in SPpart, and has
value-histories that both contain the value history of SPpart

and is a legal trace of the TCA.

For tBurton, we help ensure SPtotal is a valid plan by in-
troducing two additional requirements. First, we require that
SPpart contains an episode in the value history of each loca-
tion variable, l, whose end event must precede the start event
of any goal on l, thus providing a complete ‘initial state’.
Second we require that SPpart be a subgraph of SPtotal.
These two additional requirements allow us to simplify the
definition of valid: SPtotal is a valid plan if it has no open
goals and is a trace of the TCA. Figure 3(b), which depicts
the total state plan for the projector example, uses bold lines
to emphasize the subset of episodes that came from the par-
tial plan.

To ensure SPtotal is temporally, least commitment, the
state plan must be consistent, complete, and minimal with
respect to the planning problem. A valid state plan is already
consistent and complete in that it expresses legal behavior
for the model and closes all goals. We consider a state plan
to be minimal if relaxing any of the episodes (decreasing
the lower-bound, or increasing upper-bound) in the histo-
ries admit traces of the TCA that are also legal. Structurally,
the definition of a state plan (def. 4) ensures tBurton cannot
return plans containing disjunctive state constraints in the
value histories, nor can the plan contain disjunctive tempo-
ral constraints.

Definition 9. causal graph. The causal graph of a TCA is
a digraph 〈A, E〉 consisting of a set of automata embedded
as vertices and a set of causal edges. A causal edge (A,B)
is a member of E iff A 6= B and there exists a transition in

automaton B guarded by the location variable, l of automa-
ton A. We say A is the parent of B, and equivalently, B is
the child of A.

tBurton Planner
tBurton’s fundamental approach is to plan in a factored
space by performing regression over histories; this is sup-
ported through several algorithms. Practically, tBurton’s
search involves: 1. Deciding which factor to plan for first.
This scopes the remaining decisions by selecting the value
history we must populate and the goal-episodes we need
to close. 2. Choosing how to order the goal-episodes that
factor can close 3. Choosing a set of value-episodes that
should be used to close those goal-episodes. 4. Choosing
the plans that should be used to achieve the value-episodes.
5. And finally, extracting the subgoals of the value history
(guards) required to make the value-history a legal trace of
the automata and adding corresponding goal-episodes to the
goal history. These steps repeat until a plan is found, or no
choices are available.

As a partial order planner, tBurton searches over varia-
tions of the state plan. Since we use the causal graph to
define a search order, and subgoal extraction requires no
search, tBurton only has three different choices with which
to modify SPpart.:

1. Choose a goal ordering. Since actions are not reversible
and reachability checking is hard, the order in which goals
are achieved matters. tBurton must impose a total order-
ing on the goals involving the location of a single automa-
ton. Recall that since an automaton can have no concur-
rent transitions, a total order does not restrict the space of
possible plans for any automaton. Relative to SPpart, im-
posing a total order involves adding episodes to the goal
history of the form ep = 〈ei, ej , 0,∞, true〉, for events
ei and ej that must be ordered.

2. Choose a value to close a goal. Since goals can have con-
straints expressed as propositional state-logic, it is possi-
ble we may need to achieve disjunctive subgoals. In this
case, tBurton must select a value that entails the goal.
To properly close the goal, tBurton must also represent
this value selection as an episode added to the value his-
tory of the appropriate automata or control variable, and
introduce justifications to ensure the new episode starts
and ends with goal episode (as described in definition 7).

3. Choose a sub-plan to achieve a value. The sub-plan
tBurton must select need only consider the transitions in
a single automaton, A. Therefore, the sub-plan must be
selected based on two sequential episodes, eps epg , in the
value history of A (which will be the initial state and goal
for the sub-plan), and the set-bounded temporal constraint
that separates them. tBurton can use any black box ap-
proach to select this sub-plan, but we will use a heuristic
forward search, temporal planner. To add this sub-plan to
SPpart, tBurton must represent the sub-plan in the value
history and introduce any new subgoals this sub-plan re-
quires of parent automata as additional goal episodes.

3413

Adding a sub-plan to a value history is a straightforward
process of representing each state in the plan as a sequen-
tial chain of episodes ep1, ep2, ..., epm reaching from the
end event of eps to the start event of epg . Introducing sub-
goals is a bit trickier. Subgoals need to be computed from
all value episodes added to represent the sub-plan, epi, as
well as epg (for which we did not introduce goals as a result
of the previous type of plan-space action, choosing a value
to close a goal). The purpose of these subgoals is to ensure
the parent automata and control variables have traces consis-
tent with the trace (value-history) of A. There are two types
of subgoals we can introduce: One is a maintenance related
subgoal, that ensures A is not forced by any variables it de-
pends on to transition early out of epi. The other expresses
the subgoal required to effect the transition into epi.

To formalize the modifications to SPpart, let ep1 =
〈es1, ee1, lb1, ub1, sc1〉 be an episode eps, epi, or epg in the
value history of the location variable l of A, for which we
need to introduce goals. Let ep2 be the episode that imme-
diately follows ep1. Since ep1 (and similarly for ep2) is in
the value history, we know from definition 4 that sc1 and sc2
are assignments to l. From the TCA model, lets also iden-
tify the set of transitions of the form, T = 〈ls, le, g, c := 0〉
[def. 2], for which sc1 is the assignment l = ls.

Adding a maintenance subgoal for ep2 requires the fol-
lowing additions: A new goal episode for each T where
sc2 is not the assignment l = le, of the form epnew =
〈es1, ee1, 0,∞, l 6= le〉. Adding a subgoal to effect the tran-
sition from ep1 to ep2 requires both a new goal episode
and a justification. We add one goal episode for T where
sc2 is the assignment l = le, of the form epnew =
〈ee1, enew, 0,∞, g〉. We also add a justification of the form
J = 〈ee1, enew, 0,∞〉. These last two additions ensure that
as soon as the guard of the transition is satisfied,A will tran-
sition to its next state.

Making Choices with Backtracking Search
At this point we have described the choices and changes
tBurton must make to traverse the space of partial plans. We
implement tBurton as a backtracking search, but use several
additional algorithms to make this search more efficient: a
subplanner implemented as a wrapper around an ‘off-
the-shelf’ temporal planner, Incremental Total Order (ITO)
to efficiently choose goal orderings, Incremental Temporal
Consistency (ITC) to efficiently check whether the tempo-
ral constraints used in the episodes are temporally consis-
tent, and Causal Graph Synthesis (CGS) to simplify travers-
ing the causal graph by reducing the parent-child relation of
the causal graph to a sequence of numbers. We summarize
the tBurton algorithm in this subsection and then sketch out
each of the component algorithms.

In order to maintain search state, tBurton uses a queue to
keep track of the partial plans, SPpart that it needs to ex-
plore. For simplicity, one can assume this queue is LIFO,
although in practice a heuristic could be used to sort the
queue. To make search more efficient, we make two addi-
tional modifications to the SPpart we store on the queue.
First, we annotate SPpart with both the automaton we are
currently making choices on, as well as which of the three

choices we need to make next. The second involves the use
of ITO. When tBurton needs to choose a goal ordering for
a given partial plan, it could populate the queue with partial
plans representing all the variations on goal ordering. Since
storing all of these partial plans would be very memory in-
tensive, we add to the partial plan a data structure from ITO,
which allows us to store one partial plan, and poll it for the
next consistent variation in goal ordering.

Algorithm 1 provides the pseudo code for tBurton’s high-
level search algorithm. The algorithm reflects the three
choices tBurton makes. In general, backtracking search tra-
verses a decision tree and populates a search queue with all
the children nodes of the expanded node. Since this can be
very memory intensive for plan-space search, we take an al-
ternate approach of populating the queue with the next child
node to explore as well as a single child node representing
‘what not to do’ for the remaining children. Line 17 takes
advantage of the incremental nature of ITO, to queue the
next possible set of goal orderings. Lines 29-30, queue a par-
tial state-plan with a guard representing which value assign-
ments have already been tried. Lines 38-38, queue a state-
plan with new goal episodes which remove already tried sub-
plans. The behavior of the algorithm with a LIFO queue is
to plan for the children automata in the causal graph before
their parents, and to plan in a temporally forward manner for
each automata.

Subplanner
tBurton’s backtracking search exploits the structure of the
causal graph, but finding a sub-plan for a factor, an automa-
ton in the causal graph, is still hard. In general, we can lever-
age the state-of-the-art in temporal planners to find these
sub-plans. However, there are a few special sub-plans we can
compute without search. When asked to plan for a control
variable u, the sub-plan will involve a single value episode
where the state constraint is ⊥ with temporal constraints
lb = 0, ub = ∞. This sub-plan represents our assump-
tion that there is no transition behavior for commands. When
asked to plan from one location to another for an automaton
A, we can exploit the locality of information from having
automata, and check the set of transitions of A. If there is a
sequence of automatic timed transitions, we can return the
subplan without search. Finally, the subplanner’s functional
behavior, in which it returns a plan, given an automaton, the
initial variable assignment, a goal variable assignment, and
a [lb, ub] duration, is easily memoized.

Incremental Total Order: Unifying Goal Histories
One of the choices that tBurton needs to make is how to or-
der the goals required of an automaton. More specifically,
given a set of goal-episodes, we want to add temporal con-
straints relating the events of those goal-episodes, so any
goal-episodes that co-occur have logically consistent guards.
By computing the total order over all the goal-episodes we
can discover any inconsistencies, where, for example two
goal-episodes could not possibly be simultaneously closed.
In practice, computing the total order of goal-episodes is
faster than computing a plan, so we can discover inconsis-
tencies inherent in the set of goal-episodes faster than we

3414

Algorithm 1: tBurton(TCA, SPpart)
Input: Timed Concurrent Automata TCA = 〈L, C,U ,A〉,

Partial State Plan SPpart

Output: Total State Plan SPtotal

1 // Factor the problem to create the causal graph
2 {A1, A2, ..., An} ← CausalGraphSynthesis(TCA);
3 // Add the partial plan to the queue.
4 Ai is the lowest numbered automaton with a goal in SPpart

5 SPpart ← initITO(SPpart, Ai);
6 Q.push(〈SPpart, Ai, choose goal order〉);
7 while Q 6= ∅ do
8 // remove a partial plan from the queue.
9 〈SPpart, A, choice〉 ← Q.pop();

10 switch choice do
11 case choose goal order
12 if SPpart has no open goals then
13 return SPpart;
14 else
15 SPpart ← ITO(SPpart, A);
16 if SPpart exists then
17 Q.push(〈SPpart, A, choose goal order〉);
18 if ITC(SPpart) then
19 Q.push(〈SPpart, A, choose value〉);

20 else
21 continue;

22 case choose value
23 l or u of A is used in the guard g of open goal

episode epg
24 if g == false then
25 continue;
26 else
27 Choose assignments

∧
(x = v) that entail g,

where x can be l or u of A.
28 // update guard and re-queue.
29 SPpart up = SPpart with new guard

g ← g ∧ ¬
∧
(x = v) ;

30 Q.push(〈SPpart up, A, choose value〉) ;
31 // add chosen values to partial state plan
32 Add

∧
(x = v) as value episodes to SPplan

Q.push(〈SPpart, A, choose subplan〉);

33 case choose subplan
34 eps and epe are sequential value episodes of the

value history for l or u of A in SPpart, separated
by a temporal constraint dur.

35 subplan← subplanner(A,eps.sc,epe.sc,dur);
36 if subplan exists then
37 Add subplan and parent subgoals to SPpart

38 SPpart up = SPpart with negated subplan
as goal-episodes.

39 Q.push(〈SPpart up, A, choose subplan〉) ;
40 if l or u of A is used in open goals of SPpart then
41 Q.push(〈SPpart, A, choose value〉);
42 else
43 Ai is the lowest numbered automaton with a goal in

SPpart

44 SPpart ← initITO(SPpart, Ai);
45 Q.push(〈SPpart, Ai, choose goal order〉);

46 else
47 continue;

48 return failure;

can discover that no plan exists to get from one goal-episode
to the next.

Our incremental total order algorithm builds upon work
which traverses a tree to enumerate all total orders given a
partial order (Ono and Nakano 2005). We modify their algo-
rithm into an incremental one consisting of a data structure
maintaining the position in the tree, an initialization func-
tion, init, and an incremental function, next, which re-
turns the next total order.

Our ITO algorithm is similarly divided into two pieces.
The initITO algorithm creates the ITO data structure by
calling init with SPpart and a particular automaton A.
initITO treats temporal constraints of the episodes as par-
tial orders. ITO can then be called repeatedly to enumerate
the next consistent ordering of goal episodes where the lo-
cation variable l of A is involved.

Causal Graph Synthesis and Temporal Consistency
We use existing algorithms for Causal Graph Synthesis and
Incremental Temporal Consistency (ITC), so we briefly mo-
tivate their purpose and use.

The Causal Graph Synthesis (CGS) algorithm is based on
the algorithm used for Burton (Williams and Nayak 1997),
and is simple to describe. Given a TCA, CGS checks the de-
pendencies of each automaton in TCA and creates a causal
graph. If the causal graph contains cycles, the cycles are col-
lapsed and the product of the participating automata are used
to create a new compound automata. Finally, each automa-
ton in the causal graph is numbered sequentially in a depth-
first traversal of the causal graph starting from 1 at a leaf.
The numbering imposes a search order (with 1 being first),
which removes the need to choose which factor to plan for
next.

The Incremental Temporal Consistency (ITC) algorithm
is used to check whether the partial plan SPpart is tem-
porally consistent, or that the temporal constraints in goal,
value histories, and justifications are satisfied. Since tBurton
will perform this check many times with small variations to
the plan, it is important this check be done quickly. For this
purpose we use the incremental temporal consistency algo-
rithm defined in (Shu, Effinger, and Williams 2005).

Mapping PDDL to TCA
Even though tBurton reasons over TCAs, it is still a capable
PDDL planner. In order to run tBurton on PDDL problems,
we developed a PDDL 2.1 (without numeric fluents) to TCA
translator. Here, we provide only a sketch of this translator.

In order to maintain required concurrency, the translator
first uses temporal invariant synthesis (Bernardini and Smith
2011) to compute a set of invariants. An instance of an in-
variant identifies a set of ground predicates for which at most
one can be true at any given time. We select a subset of these
invariant instances that provide a covering of the reachable
state-space, and encode each invariant instance into an au-
tomaton. Each possible grounding of the invariant instance
becomes a location in the automata.

Each ground durative action is also translated into an au-
tomaton. In Figure 4, three of the transitions are guarded

3415

Figure 4: An example TCA automaton for a generic PDDL
grounded action.

by conditions from the corresponding PDDL action, trans-
lated into propositional state logic over location variables.
Another transition uses ε to denote a small-amount of time
to pass for the start-effects of the action to take effect, prior
to checking for the invariant condition. A fifth transition is
used to reset the action.

Finally, the transitions of each invariant-instance based
automata is labeled with a disjunction of the states of the
ground-action automata that affect its transition.

Inherent in this mapping is an assumption that PDDL du-
rative actions will not self-overlap in a valid plan. Planning
with self-overlapping durative actions in PDDL is known to
be EXPSPACE, while without such actions is PSPACE (Rin-
tanen 2007). This suggests that tBurton may solve a simpler
problem, but the actual complexity of TCA planning with
autonomous transitions has yet to be addressed. In the mean-
time, if the number of duplicate actions can be known ahead
of time, they can be added as additional ground-action au-
tomata.

Results

We benchmarked tBurton on a combination of IPC
2011 and IPC 2014 domains. Temporal Fast Downward
(TFD) from IPC 2014 was used as an ‘off-the-shelf’ sub-
planner for tBurton because it was straight-forward to
translate TCAs to the SAS representation used by TFD
(Helmert 2006). For comparison, we also benchmarked
against YAHSP3-MT from IPC 2014, POPF2 from IPC
2011, and TFD from IPC 2014, the winner or runners up in
the 2011 and 2014 temporal satisficing track (Table 1). Each
row represents a domain. Columns are grouped by planner
and show the number of problems solved (out of 20 for each
domain) and the IPC score (out of 20, based on minimizing
make-span). Rows with interesting results between TFD and
tBurton are italicized, and the best scores in each domain are
in bold. The tests were run with scripts from IPC 2011 and
were limited to 6GB memory and 30 minute runtime.

In general, tBurton is capable of solving approximately
the same number of problems as TFD with the same quality,
but for problems which admit some acyclic causal factoring
(parcprinter, satellite, and TMS), tBurton performs particu-
larly well. On domains which have no factoring, tBurton’s
high-level search provides no benefit and thus degrades to

using the sub-planner. This often resulted in tBurton receiv-
ing the same score as its subplanner, TFD (elevators, park-
ing, openstack). While the same score often occurs when
TFD is already sufficiently fast enough to solve the prob-
lem, there are a few domains where tBurton’s processing
overhead imposes a penalty (floortile, sokoban).

A feature of using tBurton is that it is capable of solv-
ing problems with required concurrency. For TMS, tBurton
is able to consistently solve more problems than the other
planners. However, the IPCScore of tBurton is lower than
POPF, perhaps because the goal-ordering strategy used by
tBurton does not inherently minimize the make-span like the
temporal relaxed planning graph used by POPF.

While benchmarking on existing PDDL domains is a use-
ful comparison, it is worth noting that these problems do not
fully demonstrate tBurton’s capabilities. In particular, none
of these domains have temporally extended goals, and all ac-
tions have a single duration value instead of an interval. We
look forward to more comprehensive testing with both ex-
isting PDDL domains and developing our own benchmarks.

Conclusion
This paper presents tBurton, a planner that uses a novel com-
bination of causal-graph factoring, timeline-based regres-
sion, and heuristic forward search to plan for networked de-
vices. It is capable of supporting a set of problem features
not found before in one planner, and is capable of doing so
competitively. Furthermore, tBurton can easily benefit from
advancements in state-of-the art planning by replacing its
sub-planner. The planning problem tBurton solves assumes
devices with controllable durations, but we often have little
control over the duration of those transitions. In future work
we plan to add support for uncontrollable durations.

Acknowledgments
We thank Seung Cheung for his work extending the origi-
nal reactive Burton planner with qualitative time. His thesis
laid the groundwork for this paper. We would also like to
thank Howard Shrobe for his guidance and Erez Karpas for
his invaluable insights into planning. This work was made
possible through support from the DARPA Mission-oriented
Resilient Clouds (MRC) program.

References
Alur, R., and Dill, D. L. 1994. A theory of timed automata.
Theoretical computer science 126(2):183–235.
Amir, E., and Engelhardt, B. 2003. Factored planning. In
IJCAI, volume 3, 929–935. Citeseer.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In ICAPS, volume 77, 78.
Bernardini, S., and Smith, D. E. 2011. Automatic synthesis
of temporal invariants. In SARA.
Brafman, R. I., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. J. Artif. Intell.
Res.(JAIR) 18:315–349.

3416

Domain YAHSP3-MT (2014) POPF (2011) TFD (2014) tBurton+TFD
#Solved IPCScore #Solved IPCScore #Solved IPCScore #Solved IPCScore

CREWPLANNING (2011) 20 19.88 20 20.00 20 19.85 20 20.00
DRIVERLOG (2014) 3 1.77 0 0.00 0 0.00 0 0.00
ELEVATORS (2011) 20 11.20 3 2.10 20 18.95 20 18.95
FLOORTILE (2011) 11 9.29 1 0.89 5 5.00 3 3.00
FLOORTILE (2014) 6 5.83 0 0.00 0 0.00 0 0.00
OPENSTACKS (2011) 20 14.47 20 16.59 20 19.84 20 19.84
PARCPRINTER (2011) 1 1.00 0 0.00 10 9.67 13 11.98
PARKING (2011) 20 15.74 20 17.42 20 19.14 20 19.14
PARKING (2014) 20 17.96 12 9.16 20 16.18 20 16.18
PEGSOL (2011) 20 18.52 19 18.77 19 18.42 18 17.38
SATELLITE (2014) 20 17.46 4 3.67 17 12.57 19 16.26
SOKOBAN (2011) 10 8.69 3 2.54 5 4.94 3.00 2.54
STORAGE (2011) 7 6.54 0 0.00 0 0.00 0 0.00
STORAGE (2014) 9 8.41 0 0.00 0 0.00 0 0.00
TMS (2011) 0 0.00 5 5.00 0 0.00 6 3.77
TMS (2014) 0 0.00 0 0.00 0 0.00 1 1.00
TURNANDOPEN (2011) 0 0.00 9 8.47 19 16.53 20 17.03
TURNANDOPEN (2014) 0 0.00 0 0.00 6 6.00 6 6.00
TOTALS: 187 156.74 116 104.61 181 167.09 189 173.07

Table 1: Benchmark results on IPC domains

Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In AAAI, volume 6, 809–814.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett,
T.; et al. 2000. ASPEN–automated planning and scheduling
for space mission operations. In Space Ops, 1–10.
Chung, S., and Williams, B. 2003. A decomposed sym-
bolic approach to reactive planning. Master’s thesis, Mas-
sachusetts Institute of Technology, Department of Aeronau-
tics and Astronautics, Cambridge, MA.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In ICAPS, 42–49.
Cushing, W.; Kambhampati, S.; Weld, D. S.; et al. 2007.
When is temporal planning really temporal? In Proceedings
of the 20th international joint conference on Artifical intel-
ligence, 1852–1859. Morgan Kaufmann Publishers Inc.
Dechter, R. 2003. Constraint processing. Morgan Kauf-
mann.
Frank, J., and Jónsson, A. 2003. Constraint-based attribute
and interval planning. Constraints 8(4):339–364.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Ingham, M. D. 2003. Timed model-based program-
ming: Executable specifications for robust mission-critical
sequences. Ph.D. Dissertation, Massachusetts Institute of
Technology.
Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
Factored planning using decomposition trees. In IJCAI,
1942–1947.
Levine, S. J. 2012. Monitoring the execution of temporal
plans for robotic systems. Ph.D. Dissertation, Massachusetts
Institute of Technology.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Refor-
mulating temporal plans for efficient execution. In In Princi-
ples of Knowledge Representation and Reasoning. Citeseer.
Ono, A., and Nakano, S.-i. 2005. Constant time genera-
tion of linear extensions. In Fundamentals of Computation
Theory, 445–453. Springer.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound, com-
plete, partial order planner for adl. In proceedings of the
third international conference on knowledge representation
and reasoning, 103–114. Citeseer.
Rintanen, J. 2007. Complexity of concurrent temporal plan-
ning. In ICAPS, 280–287.
Röger, G.; Eyerich, P.; and Mattmüller, R. 2008. TFD: A nu-
meric temporal extension to fast downward. ipc 2008 short
pape rs.
Shu, I.; Effinger, R.; and Williams, B. 2005. Enabling fast
flexible planning through incremental temporal reasoning
with conflict extraction. Proce. ICAPS-05, Monterey.
Vidal, V. 2011. YAHSP2: Keep it simple, stupid. The 2011
International Planning Competition 83.
Williams, B., and Nayak, P. 1996. A model-based approach
to reactive self-configuring systems. In Proceedings of the
National Conference on Artificial Intelligence, 971–978.
Williams, B., and Nayak, P. 1997. A reactive planner
for a model-based executive. In International Joint Con-
ference on Artificial Intelligence, volume 15, 1178–1185.
LAWRENCE ERLBAUM ASSOCIATES LTD.
Williams, B. C. 1986. Doing time: Putting qualitative rea-
soning on firmer ground. In Proceedings of the National
Conference on Artificial Intelligence, 105–113.
Younes, H. L., and Simmons, R. G. 2003. Vhpop: Versatile
heuristic partial order planner. J. Artif. Intell. Res.(JAIR)
20:405–430.

3417

