
Factored MCTS for Large Scale Stochastic Planning

Hao Cui and Roni Khardon
Department of Computer Science

Tufts University
Medford, MA 02155, USA

Alan Fern and Prasad Tadepalli
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331, USA

Abstract

This paper investigates stochastic planning problems
with large factored state and action spaces. We show
that even with moderate increase in the size of exist-
ing challenge problems, the performance of state of the
art algorithms deteriorates rapidly, making them inef-
fective. To address this problem we propose a family
of simple but scalable online planning algorithms that
combine sampling, as in Monte Carlo tree search, with
“aggregation”, where the aggregation approximates a
distribution over random variables by the product of
their marginals. The algorithms are correct under some
rather strong technical conditions and can serve as an
unsound but effective heuristic when the conditions do
not hold. An extensive experimental evaluation demon-
strates that the new algorithms provide significant im-
provement over the state of the art when solving large
problems in a number of challenge benchmark domains.

Introduction
Stochastic planning research has made significant progress
in recent years in terms of algorithms developed, the type
of problems solved, and their scale. The current best ap-
proaches use the idea of online planning to optimize the
action choice in the current state of the Markov decision
process at each time step. Indeed, the two strongest sys-
tems in the last two probabilistic planning competitions are
based on the online algorithms RTDP (real time dynamic
programming) and UCT (a variant of MCTS, Monte Carlo
tree search) (Kolobov et al. 2012; Keller and Eyerich 2012).
Symbolic dynamic programming, the other main approach,
aims to achieve scalability via structured forms of dynamic
programming (with or without online planning) (Hoey et al.
1999; Feng, Hansen, and Zilberstein 2002).

In this paper, however, we argue that the focus on opti-
mization algorithms in recent research is at odds with scala-
bility. If we use exactly the same type of challenge problems
as used in existing work, but increase problem size even
moderately, then the performance of the algorithms deteri-
orates rapidly, making them ineffective. Thus, despite the
great advances and algorithmic insights, the largest solvable
problems are still rather small. We therefore propose that

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

it is useful to follow a complementary approach focusing
directly on large problems, and developing sub-optimal but
scalable algorithms. When full optimization is approachable
such approximate approaches can serve as a useful baseline.
In many cases, however, approximations can provide scal-
able quality solutions for online planning.

The paper makes two contributions motivated by this dis-
cussion. First, we present an experimental study on current
challenge problems and moderately larger problems expos-
ing the above mentioned phenomenon. Second, we develop
novel online planning algorithms that combine sampling (as
in Monte Carlo tree search) with approximation through
symbolic, or algebraic, “aggregation”. In particular, we ex-
tend two algorithms, Rollout (Tesauro and Galperin 1996;
Bertsekas and Tsitsiklis 1996) and MCTS (Browne et al.
2012) to incorporate such approximations. The main nov-
elty in our algorithms is in their use of the symbolic form
of a planning domain model to enable approximate but scal-
able simulation. To the best of our knowledge, this is the first
work to integrate models and sampling in this manner.

Our symbolic approximation is closely related to approx-
imating distributions by their product of marginals, and is
therefore related to other recent efforts in approximate prob-
abilistic inference. Like that work, our algorithms are cor-
rect under some rather strong technical conditions, which
we establish. More importantly, however, they are applica-
ble even when these conditions do not hold. As we demon-
strate in the experiments, the new algorithms provide signif-
icant improvement over the state of the art when problem
size is increased in a number of benchmark domains. These
algorithms can therefore be seen as baselines for large scale
stochastic planning problems. As discussed in the paper, de-
spite these facts, our algorithms are heuristic and they do not
always deliver the same quality performance. Identifying the
scope and applicability of the aggregate methods, and poten-
tial improvements, are important problems for future work.

Background
A Markov Decision Process (MDP) (Puterman 1994) is
specified by {S,A, T,R, γ}, where S is a finite state space,
A is a finite action space, T (s, a, s′) = p(s′|s, a) defines the
transition probabilities, R : S×A→ R is the immediate re-
ward of taking action a in state s, and γ is the discount factor.
A policy π : S→ A is a mapping from a state s to an action

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3261

a, indicating which action to choose at each state. Given a
policy π, the value function V π : S → R is the expected
discounted total reward E[

∑
i γ

iR(si, π(si)) | π], where si
is the ith state visited by following policy π and s0 is the
initial state. The action-value function Qπ : S × A → R is
the expected discounted total reward when taking action a at
state s and following π thereafter.

MDPs with large state and action spaces are typically rep-
resented in factored form (Boutilier, Dean, and Hanks 1995;
Raghavan et al. 2012). The state space S is specified by a set
of binary variables {x1, . . . xl} so that |S| = 2l. Similarly,
A is specified by a set of binary variables {y1, . . . ym} so
that |A| = 2m. To simplify the presentation, we use {b1, . . . ,
bl, bl+1, . . . , bl+m} to denote the union of the state variables
(the first l bj’s) and the action variables (the remaining bj’s).

Classical MDP optimization algorithms require enumer-
ation over states and actions making them impractical for
large problems. Symbolic versions of those algorithms have
been developed for factored state spaces (Hoey et al. 1999;
Boutilier, Dearden, and Goldszmidt 1995) and factored ac-
tion spaces (Raghavan et al. 2012; 2013). However, scalabil-
ity is still problematic due to the inherently large description
length of value functions and policies.

Online planning avoids this complexity by focusing on
choosing a high-quality action for the current state and
repeatedly applying this procedure to states visited. The
Rollout Algorithm (Tesauro and Galperin 1996; Bertsekas
and Tsitsiklis 1996) is perhaps the simplest such procedure
which performs one step lookahead from the current state.
In particular, given a state s and baseline policy π the rollout
algorithm calculates an estimate of Qπ(s, a) for each action
a and then picks the a maximizing this value. To estimate
Qπ(s, a) simply use the MDP model (or a simulator) to sam-
ple s′ from p(s′|s, a) and then apply π for h steps where h
is the desired horizon. Repeating this k times and averaging
the total discounted reward we get an estimate for Qπ(s, a).

Monte Carlo Tree Search (MCTS) takes this idea one
step further by building a search tree over states and action
choices where at the leaves we apply the rollout procedure to
estimate the value of the corresponding state. The UCT Al-
gorithm (Kocsis and Szepesvári 2006) is a variant of MCTS
where action selection at internal nodes of the tree is done
by calculating an upper bound on action values and pick-
ing the action that maximizes the upper bound. Following
theoretical analysis (Kocsis and Szepesvári 2006) and em-
pirical success (Gelly and Silver 2008) UCT has attracted
considerable attention and extensions (Browne et al. 2012).
In particular, the PROST system (Keller and Eyerich 2012;
Keller and Helmert 2013) which extends and adapts UCT
with ideas specific to stochastic planning domains, was the
winner in the last two international probabilistic planning
competitions. The ε-greedy action choice is an alternative to
UCT which is known to perform better in some cases (Tolpin
and Shimony 2012).

As illustrated in our experiments, when problem size in-
creases MCTS search is often not very informative, resulting
in significantly reduced performance. This is especially se-
vere for large action spaces where the number of samples per
action at the root node is very small. In such cases, the value

estimates are clearly not reliable. In addition, in extreme
cases there is just one sample per action at the root and the
tree is flat, i.e., equivalent to rollout. Ontañón (2013) makes
a similar point in the context of real-time strategy games
and develops an algorithm that alternates between optimiz-
ing individual action variables and the global assignment.
The algorithm we develop next takes a different route.

Algebraic Rollout Algorithm (ARollout)
This section presents our main algorithmic tool that gener-
ates approximate simulation through an algebraic represen-
tation of the transition function. Consider the rollout process
when estimatingQπ(s, a). The main idea in our algorithm is
to efficiently calculate an approximation of the distribution
on states that would be visited in this process. By estimating
rollout values based on this distribution we can effectively
take into account a large number of “potential trajectories”,
much larger than the number of real trajectories considered
by standard rollouts. This introduces an approximation or
bias but can help reduce variance in the estimates.

More specifically, given p(st), the true distribution over
states at time t, one can calculate Rt the expected reward
at time t and the distribution over the next state p(st+1).
However, these distributions are complex and the calcula-
tions are not feasible. Therefore, in this paper we use fac-
tored distributions where all state variables are assumed to
be independent p(s = b) =

∏
j p(bj). This is reminiscent

of the factored frontier algorithm (Murphy and Weiss 2001)
for state estimation in the filtering context and of approxi-
mations used in variational inference.

A crucial point for our algorithm is the fact that we can
use the symbolic planning model to enable this computation,
by translating the MDP model into algebraic expressions. To
facilitate the presentation we consider domain models given
in the RDDL language (Sanner 2010) which is the current
standard for specifying stochastic planning domains.
Example RDDL Domain: We use the following simple
RDDL domain to illustrate the constructions. The state de-
scription includes 4 variables bit(?b) where the initial
state is 0100 (that is bit(b1)=0, bit(b2)=1, etc). The
state also includes the variables automatic(?b) which are
initially 0000. At each step we can take at most two of the
four possible actions, denoted respectively by set(?b). If a
bit is already 1, then it remains 1. Otherwise, if we take the
action to set it or automatic(?b) holds, then with proba-
bility 0.7 it turns into 1. Otherwise it remains 0. In addition,
automatic(?b) is randomly set in each step by some ex-
ogenous process. The reward is a conditional additive func-
tion over state variables. This is captured in RDDL by:
bit’(?b) =
if (˜bit(?b) ˆ (set(?b) | automatic(?b)))

then Bernoulli(0.7)
else if (bit(?b))

then KronDelta(true)
else KronDelta(false)

automatic’(?b) = Bernoulli(0.3)
reward =

if (bit(b2) | bit(b3))
then bit(b1) + 5*bit(b2) + 2*bit(b3)
else bit(b1) + bit(b4)

3262

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
S 8 10 12 22 25 28 42 58 63 68 73 78 100 106 112 138 145 152 182 190
A 3 3 3 6 6 6 9 12 12 12 12 12 15 15 15 18 18 18 21 21
S 10 10 20 20 30 30 40 40 50 50 80 100 120 130 150 160 180 190 200 200
A 10 10 20 20 30 30 40 40 50 50 80 100 120 130 150 160 180 190 200 200
S 18 18 32 32 50 72 72 72 98 98 98 112 128 144 162 180 200 220 242 264
A 4
S 30 32 44 46 50 50 60 60 73 73 72 78 84 81 84 87 88 96 104 112
A 4 4 4 4 4 4 4 4 4 4 9 9 9 12 12 12 16 16 16 16

Table 1: Number of state/action variables in test problems (top to bottom): one-dir-elevators, sysadmin, crossing traffic, traffic.

Preprocessing: translating a RDDL model into an alge-
braic expression: Transitions in RDDL are given by expres-
sions of the form

b′ = [if C1 then E1 else if C2 then E2 . . . else Ek]

where b′ is the value of bit b at the next time step, Ci is
a Boolean expression in terms of {bj} (at the current time
step) and Ei is either a Boolean expression or a Bernoulli
distribution constant as in the example above. For the trans-
lation we support a subset of RDDL where the Boolean por-
tion allows for logical operators ∧, ∨ and ¬ and quantifiers ∀
and ∃ but not summations and comparisons (e.g.,(sum {?b:
bit}[bit(?b)]>5)). Extensions to the full set of RDDL
expressions are possible in a number of ways but are left for
future work. We first translate the expression for b’ into a
disjoint-sum form

(C1 ∗ E1) + ((C1 ∧ C2) ∗ E2) + . . .+ ((. . .) ∗ Ek)
where the logical terms in the sum are mutually exclusive
so that the value is equivalent to the if-then-else expression
above. To guarantee correctness of our algorithm we need to
further simplify each of the terms (e.g., the term ((C1∧C2)∗
E2), where C1 and C2 are arbitrary Boolean expressions)
into a disjoint-sum form where internal terms are mutually
exclusive. Putting these simplified terms together we get a
disjoint sum representation of the entire expression.
Example: In our example, the first step yields (we use b,
bk, sk, ak instead of bit(?b), bit(bk), set(bk),
and automatic(bk)):
b’ = ((˜b ˆ (s | a)) * 0.7) +

((˜(˜b ˆ (s | a)) ˆ b) * 1) +
((˜(˜b ˆ (s | a)) ˆ (˜b)) * 0).

The disjoint-sum representation of the first disjunct is
(˜b ˆ (s | a) * 0.7) =

((˜b ˆ s) | (˜b ˆ a)) * 0.7 =
(a ˆ ˜b ˆ s) * 0.7 + (˜a ˆ ˜b ˆ s) * 0.7 +

(a ˆ ˜b ˆ ˜s) * 0.7

and the second and third terms simplify to b and 0 respec-
tively. The final expression is
b’= (a ˆ ˜b ˆ s) * 0.7 + (˜a ˆ ˜b ˆ s) * 0.7

+ (a ˆ ˜b ˆ ˜s) * 0.7 + b * 1.

We then replace all remaining logical operators where ∧ is
replaced by ∗ and ¬x is replaced by 1− x.

RDDL expressions for the reward R are similar to the
ones for transitions but the Ei portions can include numeri-
cal expressions over the variables {bj}. The expressions are

translated in exactly the same manner, except that in the last
step numerical operations need not be substituted.
Example: In our example, the initial portion of the reward
if (b2|b3) then b1+5*b2+2*b3 is translated into

((b2 ˆ b3) | (b2 ˆ ˜b3) | (˜b2 ˆ b3))
* (b1 + 5 * b2 + 2 * b3)

which in turn can be evaluated as

(b2 ˆ b3) * (b1 + 5 * 1 + 2 * 1) +
(b2 ˆ ˜b3) * (b1 + 5 * 1 + 2 * 0) +
(˜b2 ˆ b3) * (b1 + 5 * 0 + 2 * 1).

Aggregate simulation: For each state or action variable bj
in {b1, . . . bl+m} we denote by bj,t the value of this variable
at time step t. The current approximate distribution p(st) is
captured by the product over p(bj,t), j ≤ l where at t = 0
the distribution is concentrated at the start state. Exact sim-
ulation to the distribution over next state variables is not al-
ways feasible. Instead, we first estimate the marginal proba-
bilities over action variables p(bj,t) j > l as explained in the
next paragraph. We then substitute p(bj,t) for state and ac-
tion variables bj,t in the expressions calculated in the prepro-
cessing phase of the algorithm. This yields an approximate
value of p(bj,(t+1)) for all state variables. Finally, repeating
this process for all t we get an approximate version of the
rollout procedure, performed over distributions.

The estimation of marginal probabilities over action vari-
ables p(bj,t) depends on the nature of π and on the existence
of constraints over action variables (in the example at most
2 out of the 4 action bits are set to 1 at every step). We con-
sider here 3 types of policies for rollout. First, if the domain
has no action constraints and π is the random policy then
the distribution is simply the uniform distribution over ac-
tion variables. Second, if the policy is constant (i.e., we al-
ways take the same action) then again the setting of p(bj,t)
is easy. Note that, in both of these cases action variables are
independent of the state. This is used below in the analysis.

Third, consider any concrete π, noting that when there are
action constraints, even the random policy can induce state
dependence and correlation between action variables. We
propose two solutions that differ in the type of aggregation
used for the approximation. In the variant which does ag-
gregation over states only (denoted by S in the experiments
below) we pick a concrete state s according to the distribu-
tion over state variables

∏
j p(bj,t). We then use the concrete

action π(s) as the setting for the action variables which are

3263

substituted into the preprocessed expressions. For aggrega-
tion over states and actions (denoted by SA in the experi-
ments below) we pick n random states s1, . . . , sn according
to the distribution over state variables

∏
j p(bj,t) where n is

a parameter of the algorithm. Let {b(i)} = {π(si)} be the
corresponding actions according to π in their binary repre-
sentations. We then set our estimate to be the bitwise average
of these actions, that is, p(bj,t) = 1

n

∑
i b

(i)
j . Clearly aggre-

gation over states only is suboptimal because it picks to use
the same action in all states when going to st+1. But it is se-
mantically meaningful because we are progressing the entire
distribution through this action. On the other hand, aggrega-
tion over states and actions is harder to justify because it uses
“fractional actions”. Nonetheless, as our experiments show
it is quite effective in practice.
Action Selection: The description above specifies how to
perform the simulation part of the rollout algorithm. To pick
an action in s we still need to estimate Qπ(s, a) for all a.
That is, for each a we simulate one step of p(s′|s, a) to pick
s′ and then perform ARollout from s′. Repeating this mul-
tiple times and averaging we get our estimate of Qπ(s, a).
Since our algorithm performs on-line planning, the number
of simulations is determined dynamically from the time per
step allocated to the system. For action choice, when there
are unvisited actions, we select uniformly among these ac-
tions. If all the actions have been tried at least once, we use
the ε-greedy choice (that is we select the greedy action with
probability 1− ε and a random action with probability ε).

In summary the ARollout algorithm performs approxi-
mate aggregate rollout simulations from the desired state in
order to estimateQπ(s, a). Each such simulation is not exact
but it captures, in aggregate, a large number of potential runs
in one sample. Therefore, we may expect that if the time per
step is not limited then the simple rollout which is not biased
will have more accurate estimates and should be preferred.
On the other hand if the time per step is limited so that the
number of runs per action is small then the aggregate simu-
lation might be better even though it is approximate.
Correctness: Correctness of the computations follows for
the same reasons that model counting is correct for d-DNNF
(Darwiche and Marquis 2002). In particular, from the dis-
cussion above we see that the transition function is a sum
of products in terms of state and action variables where all
summands are mutually exclusive and the products are of
the form (

∏
j1
bj1)(

∏
j2
(1 − bj2)) where the sets of j1, j2

are disjoint. First note that, because summands are mutually
exclusive, replacing ∨ with + is correct. In addition, when
all the random variables in {bj} that are used in the expres-
sion are mutually independent we have that:
p([(

∏
j1

bj1)(
∏

j2
(1-bj2))]=1) = (

∏
p(bj1))(

∏
(1-p(bj2)))

implying that substitution of marginals correctly calculates
the marginal probability of each variable. Similar arguments
hold for the expression for reward. To guarantee that all the
input {bj} are independent, state and action variables must
be independent and next state variables must be condition-
ally independent given state and action, i.e., we cannot allow
synchronic arcs in the DBN. This implies (note that condi-
tion 2 holds for type 1 and 2 discussed above):

Proposition 1. If (1) p(st) is a product distribution, (2) ac-
tion choice is a product distribution over action variables
and is independent of state variables, (3) the set of variables
{bj,(t+1)} is conditionally independent given st, at, (4) the
numerical expression for R satisfies E[R(b1 . . . bl+m)] =
R(E[b1] . . . E[bl+m]) then the the algorithm that aggregates
over states correctly calculates marginal probabilities for
p(st+1) and expectation for R(st, at).
Implementation: The intermediate step of turning disjuncts
into disjoint-sum form can be expensive and our implemen-
tation avoids it instead performing an algebraic substitution
directly on the original RDDL expressions. In this transla-
tion we replace internal disjunctions α ∨ β (where α, β are
not mutually exclusive) by 1−((1−α)∗(1−β)). This intro-
duces an additional approximation but simplifies the trans-
lation process and makes sure that it is efficient.

Algebraic MCTS Algorithm (AMCTS)
Given ARollout, extensions of MCTS algorithms to use al-
gebraic simulation are natural. For example, one can take a
state level MCTS algorithm and simply replace the rollout
at the leaves with algebraic rollouts. Our experiments report
on a different variant which performed better in preliminary
experiments, and which works as follows: (1) Tree nodes
include “aggregate states” (distributions) exactly as in the
rollout representation. (2) Actions in tree nodes are concrete
actions exactly as in MCTS and their transitions are calcu-
lated using the algebraic expressions. (3) Action selection at
tree nodes is done as in ARollout, choosing each action at
least once at first, and then using ε-greedy choice.

Results
We ran experiments on the Tufts UIT research cluster (each
node includes Intel Xeon X5675@ 3GHz CPU, and 24GB
memory). We used five domains for the evaluation. Four do-
mains are from IPPC2011, the elevators domain (where peo-
ple randomly arrive at each floor and go to either top or bot-
tom floor), the sysadmin domain (where failures of comput-
ers depend on their neighbors and one can reboot a number
of computers at each time step), the crossing traffic domain
(where a robot tries to get to the other side of a river with ran-
domly appearing flowing obstacles), and the traffic domain
(where one controls traffic lights to enable traffic flow). The
fifth domain, from the RDDL distribution1 is a variant of the
elevators domain, denoted one-dir-elevators below, (where
the only destination is the top floor). The IPPC provided 10
instances for each domain. To test scalability we added 10
more instances for each domain. Note that we do not change
the nature of the domain dynamics but simply add objects,
their fluents, and decision nodes. We similarly generated 20
instances for one-dir-elevators domain.

We report quantitative results for four of the domains:
one-dir-elevators, sysadmin, crossing traffic and traffic,
which illustrate success of our algorithms. The IPPC2011 el-
evators domain, where our algorithms do not perform well,
is discussed after the quantitative results.

1http://concurrent-value-iteration.googlecode.com/svn-
history/r133/trunk/rddl/elevators mdp.rddl

3264

Figure 1: Data from experimental evaluation. Rows correspond to domains ordered as one-dir-elevators, sysadmin, crossing
traffic and traffic from top to bottom. Left: comparing rollout algorithms. Middle: comparing MCTS variants of the rollout
algorithms. Right: comparing rollout algorithms as a function of time per step on one concrete problem (problem 15) in each
domain.

3265

The number of state and action variables in the 20 in-
stances of the four problems is listed in Table 1 where the
new instances are listed as problems 11-20. In the plots given
in Figure 1 each point represents the average and standard
deviation in 20 runs on the same problem.

For the evaluation, we manually wrote a policy for each
domain. The idea was not to spend too much time to opti-
mize the policy but simply to get a baseline for comparison.
A second baseline is given by the random policy. Any rea-
sonable planning algorithm should be better than the random
policy and, depending on the amount of human effort in de-
veloping the specialized policy, get close to or even be better
than the specialized policy. In addition, we normalize all re-
sults using a linear transformation so that the random policy
stands for average reward of 0 and the hand-coded policy
stands for reward of 1. This puts all problems on the same
scale, and thus facilitates comparisons across problems. A
third baseline is given by PROST (Keller and Eyerich 2012),
which implements a variant of UCT on concrete states.

We evaluate both rollout and MCTS algorithms. The
first group includes algorithms based on rollout: Con-
crete(Random) is the standard algorithm, S(Random) is
ARollout with state aggregation only, and SA(Random) is
ARollout with state and action aggregation. The second
group includes the AMCTS extension where as above we
vary the rollout at the leaves. Tree-Concrete(Random) sam-
ples a concrete state from the product distribution at the leaf
and uses standard rollout, Tree-S(Random) uses state aggre-
gation only, and Tree-SA(Random) uses state and action ag-
gregation. In all the algorithms the rollout policy is the ran-
dom policy which respects action constraints in the domain.
Note that this violates the assumptions in the analysis due to
the action constraints.

The settings of the algorithms are as follows. For PROST
we use the IPPC2011 setting except that the allocated time
per step is explicitly set. For the most difficult sysadmin
problems, PROST failed to complete preprocessing after 5
hours and no results are reported. For our algorithms, as
mentioned above, the number of samples per action a for
the estimate of Qπ(s, a) is determined dynamically. The pa-
rameter n that controls the number of action samples when
aggregating over actions is set to min{10, 0.6 ∗ |A|}. This
reflects the fact that when the action space is small we do
not need a large number of samples for the estimates. The
simulation depth in ARollout and the depth of the MCTS
tree are set to half of the horizon used in evaluation time.
We use ε = 0.5 for the ε-greedy action choice in all algo-
rithms. In our main comparison, all the algorithms including
PROST are allowed 60 seconds per step. Our second com-
parison shows how the results change as a function of the
time per step for one specific problem in each domain.

The left column in Figure 1 shows the comparison among
the variants of the simple rollout algorithms and PROST. For
all the domains except crossing traffic SA(Random) is better
than S(Random) and neither algorithm dominates in cross-
ing traffic. A possible explanation is the fact that we did not
increase the action space in this domain (all problems have
4 action variables). For all the four domains, S(Random)
is better than Concrete(Random). This illustrates that, even

though our assumptions are not valid, in practice aggrega-
tion does improve the performance over simple rollouts. We
can also see that the algorithm without aggregation, Con-
crete(Random), performs significantly worse on larger prob-
lems whereas SA(Random) appears to maintain its perfor-
mance across problem sizes. Finally, the performance of
PROST degrades significantly for the large problems and SA
always dominates its performance.

The middle column in Figure 1 shows a similar compari-
son over the MCTS algorithms where the relations between
the algorithm remains qualitatively similar. Comparing the
levels of performance between the two columns we see that
the tree search does not improve performance significantly
over simple rollouts, except for some smaller problems. This
agrees with intuition because for problems with large action
spaces the tree algorithm will spend most of its time sam-
pling unique actions at the top level and may not have much
chance to go beyond simple rollouts.

The right column in Figure 1 shows how the performance
of the algorithms changes as a function of the time per step
for problem 15 from each domain. As the plots demonstrate,
although there is some variation, the relations observed be-
tween algorithms are stable across the time range.

Despite these successes, our algorithms do not perform
well on the IPPC2011 elevators domain, which is the only
domain to date where we have found them to fail. In this
domain the reward function includes a large penalty for peo-
ple in the elevator who move away from their top or bottom
floor destination, expressed as two terms “person-going-up-
in-elevator and elevator-going-down” and “person-going-
down-in-elevator and elevator-going-up”. Now, the fact that
elevator-going-down and elevator-going-up are mutually ex-
clusive is lost in the product distribution of the aggregate
states, with the result that the penalty is applied whenever
there is a person in the elevator. In turn this yields a bad
approximation of values in this domain. This is clearly a
case where the bias from our approximation is too strong.
We note that the same happens for simple rollout of the ran-
dom policy because the penalty from random actions violat-
ing these conditions dominates value estimates. Therefore in
this case deep trees are required even with simple rollouts.

Discussion
The paper presents a new approach for approximate aggre-
gate simulation through algebraic representation of the tran-
sition function. Empirical evaluation demonstrated that this
works well across a number of challenging benchmarks even
when our assumptions do not hold. This yields new baselines
for large scale stochastic planning problems.

On the other hand, our algorithms did not perform well in
the elevators domain where the interaction between the re-
ward and the correlated state variables was not approximated
well through the product distributions. Analyzing when ex-
actly the algebraic method will succeed and potential im-
provements is an important direction for future work.

A second limitation of our algorithms is that, just like ba-
sic rollouts, they must evaluate Qπ(s, a) for each a explic-
itly. Efficient estimation ofQπ(s, a) without enumeration of
actions is necessary for scaling to very large action spaces.

3266

Acknowledgments
This work was partly supported by NSF under grants IIS-
0964457 and IIS-0964705. We are grateful to Scott Sanner
for use of the RDDL software, to Thomas Keller for use
of the PROST system, and to both for answering numerous
questions about the setup and use of these systems.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning un-
der uncertainty: Structural assumptions and computational
leverage. In Proceedings of the Second European Workshop
on Planning, 157–171.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting structure in policy construction. In International
Joint Conference on Artificial Intelligence.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte
Carlo tree search methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Feng, Z.; Hansen, E. A.; and Zilberstein, S. 2002. Sym-
bolic generalization for on-line planning. In Proceedings of
the Nineteenth conference on Uncertainty in Artificial Intel-
ligence.
Gelly, S., and Silver, D. 2008. Achieving master level play
in 9 x 9 computer go. In AAAI Conference on Artificial In-
telligence, volume 8, 1537–1540.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of the Fifteenth conference on Uncertainty in
Artificial Intelligence.
Keller, T., and Eyerich, P. 2012. PROST: probabilistic plan-
ning based on UCT. In International Conference on Auto-
mated Planning and Scheduling.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon MDPs. In International Conference
on Automated Planning and Scheduling.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Proceedings of the European Conference
on Machine Learning. Springer. 282–293.
Kolobov, A.; Dai, P.; Mausam, M.; and Weld, D. S. 2012.
Reverse iterative deepening for finite-horizon MDPs with
large branching factors. In Twenty-Second International
Conference on Automated Planning and Scheduling.
Murphy, K., and Weiss, Y. 2001. The factored frontier algo-
rithm for approximate inference in DBNs. In Proceedings of
the Seventeenth conference on Uncertainty in artificial intel-
ligence, 378–385. Morgan Kaufmann Publishers Inc.
Ontañón, S. O. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In

AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment.
Puterman, M. L. 1994. Markov decision processes: Discrete
stochastic dynamic programming. Wiley.
Raghavan, A.; Joshi, S.; Fern, A.; Tadepalli, P.; and
Khardon, R. 2012. Planning in factored action spaces
with symbolic dynamic programming. In Twenty-Sixth AAAI
Conference on Artificial Intelligence.
Raghavan, A.; Khardon, R.; Fern, A.; and Tadepalli, P. 2013.
Symbolic opportunistic policy iteration for factored-action
MDPs. In Advances in Neural Information Processing Sys-
tems.
Sanner, S. 2010. Relational dynamic influence dia-
gram language (rddl): Language description. Unpublished
Manuscript. Australian National University.
Tesauro, G., and Galperin, G. 1996. On-line policy improve-
ment using monte-carlo search. In International Conference
on Neural Information Processing Systems.
Tolpin, D., and Shimony, S. E. 2012. MCTS based on sim-
ple regret. In Twenty-Sixth AAAI Conference on Artificial
Intelligence, 570–576.

3267

