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Abstract

Many AI applications involve the interaction of multiple au-
tonomous agents, requiring those agents to reason about their
own beliefs, as well as those of other agents. However, plan-
ning involving nested beliefs is known to be computationally
challenging. In this work, we address the task of synthesiz-
ing plans that necessitate reasoning about the beliefs of other
agents. We plan from the perspective of a single agent with
the potential for goals and actions that involve nested beliefs,
non-homogeneous agents, co-present observations, and the
ability for one agent to reason as if it were another. We for-
mally characterize our notion of planning with nested belief,
and subsequently demonstrate how to automatically convert
such problems into problems that appeal to classical plan-
ning technology. Our approach represents an important first
step towards applying the well-established field of automated
planning to the challenging task of planning involving nested
beliefs of multiple agents.

1 Introduction
AI applications increasingly involve the interaction of mul-
tiple agents – be they intelligent user interfaces that interact
with human users, gaming systems, or multiple autonomous
robots interacting together in a factory setting. In the ab-
sence of prescribed coordination, it is often necessary for
individual agents to synthesize their own plans, taking into
account not only their own capabilities and beliefs about the
world but also their beliefs about other agents, including
what each of the agents will come to believe as the con-
sequence of the actions of others. To illustrate, consider the
scenario where Larry and Moe plan to work together on an
assembly task. Each knows what needs to be done and can
plan accordingly. Unbeknownst to Moe, Larry decides to
start the job early. Larry believes that Moe believes that as-
sembly has not yet commenced. As a consequence, Larry’s
plan must include a communication action to inform Moe of
the status of the assembly when Moe arrives.

In this paper, we examine the problem of synthesizing
plans in such settings. In particular, given a finite set of
agents, each with: (1) (possibly incomplete and incorrect)
beliefs about the world and about the beliefs of other agents;
and (2) differing capabilities including the ability to perform
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actions whose outcomes are unknown to other agents; we are
interested in synthesizing a plan to achieve a goal condition.
Planning is at the belief level and as such, while we con-
sider the execution of actions that can change the state of the
world (ontic actions) as well as an agent’s state of knowledge
or belief (epistemic or more accurately doxastic actions, in-
cluding communication actions), all outcomes are with re-
spect to belief. Further, those beliefs respect the KD45n ax-
ioms of epistemic logic (Fagin et al. 1995). Finally, we take
a perspectival view, planning from the viewpoint of a single
agent. We contrast this with traditional multi-agent planning
which generates a coordinated plan to be executed by multi-
ple agents (e.g., (Brenner and Nebel 2009)).

We focus on computational aspects of this synthesis task,
leaving exploration of interesting theoretical properties to
a companion paper. To this end, we propose a means of
encoding a compelling but restricted subclass of our syn-
thesis task as a classical planning problem, enabling us to
exploit state-of-the-art classical planning techniques to syn-
thesize plans for these challenging planning problems. Our
approach relies on two key restrictions: (1) we do not allow
for disjunctive belief; and (2) the depth of nested belief is
bounded. A key aspect of our encoding is the use of an-
cillary conditional effects – additional conditional effects of
actions which enforce desirable properties such as epistemic
modal logic axioms (cf. Section 3), and allow domain mod-
ellers to encode conditions under which agents are mutually
aware of actions (cf. Section 4). By encoding modal logic
axioms as effects of actions, we are using our planner to per-
form epistemic reasoning. As such, our planning machinery
additionally supports answering queries involving the nested
beliefs of agents (cf. Section 5): e.g, “Does Agent 1 believe
that Agent 2 believes they can achieve the goal?”.

Computational machinery for epistemic reasoning has
historically appealed to theorem proving or model check-
ing (e.g., (van Eijck 2004)), while epistemic planning, re-
cently popularized within the Dynamic Epistemic Logic
(DEL) community, has largely focused on theoretical con-
cerns (e.g., (Löwe, Pacuit, and Witzel 2011)). The work
presented here is an important first step towards leverag-
ing state-of-the-art planning technology to address rich epis-
temic planning problems of the sort examined by the DEL
community. Indeed, we can readily solve existing examples
in the DEL literature (cf. Section 6). We further discuss the
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relationship of our work to other work in epistemic reason-
ing and planning at the end of this paper.
Example 1 (Grapevine). We will use a common example to
explain the concepts introduced throughout the paper. Con-
sider a scenario where a group of agents each have their own
secret to (possibly) share with one another. Each agent can
move freely between a pair of rooms, and broadcast any se-
cret they currently believe to everyone in the room. Initially
they only believe their own unique secret. Goals we might
pose include the universal spread of information (everyone
believes every secret), misconception (an agent holds a false
belief about someone else’s belief), etc. We will use 1, 2, · · ·
to represent the agents, and s1, s2, · · · to represent their se-
crets, respectively.

2 Specification
The general aim of this work is to address problems similar
to DEL planning (Bolander and Andersen 2011) using the
computational machinery of automated planning. We use
DEL to formally specify our planning system. Our presen-
tation below is terse, and we refer interested readers to van
Ditmarsch, van der Hoek, and Kooi (2007) for a more com-
prehensive overview.

Let P, A, and Ag respectively be finite sets of proposi-
tions, actions, and agents. The set of well-formed formulae,
L, for DEL is obtained from the following grammar:

φ ::= p | φ ∧ φ′ | Biφ | [α]φ | ¬φ
in which p ∈ P, α ∈ A, and i ∈ Ag. Biφ should be in-
terpreted as “agent i believes φ.” The semantics is given
using Kripke structures (Fagin et al. 1995). Given a world
w, standing for some state of affairs, such a structure deter-
mines (by means of an accessibility relation) the worlds that
an agent considers possible when at w. (That is, the agent is
unsure which world it is truly in). A model M is the set of
all worlds, an accessibility relation between these worlds for
each agent i, and a function specifying which propositions
are true in each world. Informally, the meaning of formu-
las wrt a pair (M,w) is as follows: p holds if it is true in w,
φ ∧ ψ holds if both φ and ψ hold, ¬φ holds if φ does not
hold at (M,w), Biφ if φ holds in all worlds agent i considers
possible at w, and [α]φ holds if φ holds after applying action
α to (M,w). The semantics is defined formally in terms of
|=, where M,w |= φ means that φ holds in world w for model
M.

As discussed by Fagin et al. (1995), constraints on Kripke
structures lead to particular properties of belief. If the
Kripke structure is serial, transitive, and Euclidean we ob-
tain (arguably) the most common properties of belief:

K Biφ ∧ Bi(φ ⊃ ψ) ⊃ Biψ (Distribution)
D Biφ ⊃ ¬Bi¬φ (Consistency)
4 Biφ ⊃ BiBiφ (Positive introspection)
5 ¬Biφ ⊃ Bi¬Biφ (Negative introspection)

These axioms collectively form the system referred to as
KD45n, where n specifies that there are multiple agents in
the environment. From the axioms, additional theorems can
be derived. For example, in this work, we use the follow-
ing theorems for reducing neighbouring belief modalities in-
volving the same agent into a single belief modality:

BiBiφ ≡ Biφ Bi¬Biφ ≡ ¬Biφ
¬Bi¬Biφ ≡ Biφ ¬BiBiφ ≡ ¬Biφ

We can now define a planning problem as follows:

Definition 1. Multi-Agent Epistemic Planning Problem
A multi-agent epistemic planning (MEP) problem D is a
tuple of the form 〈P,A, Ag,I,G〉, where P, A, and Ag
are as above, I is the initial theory, and G is the goal
condition. Each a ∈ A is assumed to be of the form
〈π, {(γ1, l1), . . . , (γk, lk)}〉, where π is called the precondition
of a, γi is called the condition of a conditional effect, and
li is called the effect of a conditional effect. Finally, we as-
sume G, I, π, γi, and li are all well-formed formulae overL,
excluding the [α] modality.

Following Reiter (2001) and van Ditmarsch, van der
Hoek, and Kooi (2007), the above action formalization can
be expressed as standard precondition and successor state
axioms, which would then define the meaning of [α]φ in
DEL. By extension, we say that given a domain D =
〈P,A, Ag,I,G〉, the sequence of actions a1, . . . , ak achieves
G iff for any (M,w) such that M,w |= I, we have M,w |=
[a1] . . . [ak]G. Thus, the plan synthesis task is one of finding
a sequence of actions ~a that achieves the goal condition G.

Not surprisingly, reasoning (and planning) in these logi-
cal frameworks is computationally challenging (Fagin et al.
1995; Aucher and Bolander 2013). In this work, we limit our
attention to a planning framework described using a frag-
ment of epistemic logic. First, we consider reasoning from
the perspective of a single root agent; this is a perspecti-
val view of the world. Second, we do not allow disjunctive
formulae as a belief. Following Lakemeyer and Lespérance
(2012), we define a restricted modal literal (RML) as one
obtained from the following grammar:

φ ::= p | Biφ | ¬φ

where p ∈ P and i ∈ Ag. The depth of an RML is defined
as: depth(p) = 0 for p ∈ P, depth(¬φ) = depth(φ) and
depth(Biφ) = 1+ depth(φ). We will view a conjunction of
RMLs equivalently as a set, and denote the set of all RMLs
with bounded depth d for a group of agents Ag as LAg,d

RML.
We define a restricted perspectival multi-agent epistemic

planning problem (RP-MEP problem) for depth bound d and
the root agent ? ∈ Ag as a MEP problem with the additional
restrictions that: (1) every RML is from the perspective of
the root agent – i.e., it is from the following set:

{B?φ | φ ∈ L
Ag,d
RML} ∪ {¬B?φ | φ ∈ L

Ag,d
RML},

and (2) there is no disjunctive belief: the initial theory, goal
specification, and every precondition are sets of positive
RMLs (i.e., no negated belief), every effect is a single RML,
and every effect condition is a set of RMLs.

We focus on the class of RP-MEP problems with an aim
to extend our work to the more general class in the future.
We address the planning problem from the view of an acting
agent, where the designated root agent? is the one for which
we plan. Intuitively, this means that conditional effects are
formulated in the context of the root agent; e.g., we would
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have a conditional effect of the form ({B?γ}, B?l) for action a
in a RP-MEP problem to capture the fact that the root agent
will believe l if it believed γ before a occurred.

This admits a rich class of planning problems; e.g., it is
reasonable to assume that the root agent’s view of the world
differs from what a particular agent i believes, and so an-
other conditional effect of a might be ({B?γ}, B?Bi¬l) – even
though the root agent believes doing a would make l true if γ
holds, the root agent believes that i will believe ¬l if γ holds.
In particular, this is easily shown to generalize a standard as-
sumption in the literature (Liu and Wen 2011) that all agents
hold the same view of what changes after actions occur.

In the next section, we show how restricted perspectival
multi-agent epistemic planning problems can be represented
as a classical planning problem, where the key insight is to
encode reasoning features (such as deduction in KD45n) as
ramifications realized using ordinary planning operators.

3 A Classical Encoding
In this section, we present our model for planning with
nested belief in a classical planning setting. We assume that
the state of the world represents the mental model of a par-
ticular agent, perhaps an omniscient agent, that perceives an
environment that includes all other agents. As a result, all
reasoning is from the perspective of this single agent. The
fluents that are true in a state correspond to the RMLs that
the agent believes, while the fluents that are false correspond
to the RMLs that the agent does not believe. Action ex-
ecution, then, is predicated on the agent believing that the
preconditions are satisfied. Similarly, the mental model of
the agent is updated according to the effects of an action.
Note that we do not need to enforce a separation of ontic and
epistemic effects – the same action can update belief about
propositions as well as RMLs. This is due to the interpreta-
tion that the state of the world represents the mental model
of a given agent: every effect is epistemic in this sense.

The remainder of the section will proceed as follows:

1. We present the framework for our encoding of an RP-
MEP problem into classical planning.

2. We specify how the state of the world is updated to main-
tain the deductive closure of the agent’s belief.

3. We describe how to address the situation when an agent is
uncertain if a conditional effect fires (e.g. due to lack of
knowledge), and how the agent removes the correspond-
ing beliefs from its knowledge base.

Items 2 and 3, in particular, enable the introspection capa-
bilities and the change in beliefs after actions in standard
epistemic frameworks (Aucher and Bolander 2013).

3.1 Encoding RP-MEP
We begin by providing a quick background on the classical
planning formalism we use. A classical planning problem
consists of a tuple 〈F, I,G,O〉, where F is a set of fluent
atoms, I is a complete setting of the fluents describing the
initial state, G is a set of fluents describing the goal condi-
tion, and O is a set of operators. A state s is a subset of the
fluents F with the interpretation that atoms not in s are false.

Every operator o ∈ O is a tuple 〈Preo, eff +
o , eff −o 〉, and we say

that o is applicable in s iff Preo ⊆ s. The set eff +
o (resp. eff −o )

contains conditional effects describing the fluent atoms that
should be added (resp. removed) from the state when ap-
plying the operator. Finally, every conditional effect in eff +

o
or eff −o is of the form (C → l) where C is the condition for
the effect and l is a fluent that is the result of the effect. The
condition C consists of a tuple 〈C+,C−〉 where C+ is the set
of fluents that must hold and C− the set of fluents that must
not hold. A conditional effect (〈C+,C−〉 → l) fires in state s
iff C+ ⊆ s and C− ∩ s = ∅. Assuming o is applicable in s,
and eff +

o (s) (resp. eff −o (s)) are the positive (resp. negative)
conditional effects that fire in state s, the state of the world
s′ after applying o is defined as follows:

s′ = s \ {l | (C → l) ∈ eff −o (s)}
∪ {l | (C → l) ∈ eff +

o (s)}

Our account of classical planning mirrors the stan-
dard representation (see, for example, (Ghallab, Nau, and
Traverso 2004)), with the exception that we make explicit
the fluent atoms that are added, deleted, required to be in,
or required to be absent from the state of the world. This
simplifies the exposition when we encode nested beliefs as a
classical planning problem. Intuitively, every RML in LAg,d

RML
will correspond to a single fluent in F (e.g., both B1 p and
¬B1 p will become fluents), and the operators will describe
how the mental model of our root agent should be updated.
Formally, we define the classical encoding of a RP-MEP
problem as follows:

Definition 2. Classical Encoding of RP-MEP
Let Bi andNi be functions that map i’s positive (resp. nega-
tive) belief from a set of RMLs KB to the respective fluents:

Bi(KB) = {lφ | Biφ ∈ KB}
Ni(KB) = {lφ | ¬Biφ ∈ KB}

Given a RP-MEP problem, 〈P,A, Ag,I,G〉 and a bound
d on the depth of nested belief we wish to consider, we de-
fine the classical encoding as the tuple 〈F, I,G,O〉 such that:

F def
= {lφ | φ ∈ L

Ag,d
RML} I def

= B?(I) G def
= B?(G)

and for every action 〈π, effects〉 inA, we have a correspond-
ing operator 〈Preo, eff +

o , eff −o 〉 in O such that:

Preo
def
= B?(π)

eff +
o

def
= {(〈B?(γi),N?(γi)〉 → lφ) | (γi, B?φ) ∈ effects}

eff −o
def
= {(〈B?(γi),N?(γi)〉 → lφ) | (γi,¬B?φ) ∈ effects}

3.2 Maintaining the Deductive Closure
Because of the direct correspondence, we will use the RML
notation and terminology for the fluent atoms in F. The en-
coding, thus far, is a straight-forward adaptation of the RP-
MEP definition that hinges on two properties: (1) there is

3329



a finite bound on the depth of nested belief; and (2) we re-
strict ourselves to representing RMLs and not arbitrary for-
mulae. Crucially, however, we wish to maintain the assump-
tion that the agents are internally consistent with respect to
KD45n. To accomplish this, we define a closure procedure,
Cl, that deduces a new set of RMLs from an existing one
under KD45n:

Definition 3. RML Closure
Given an RML l, we define Cl(l) to be the set of KD45n
logical consequences of l computed as follows:

1. Rewrite l into negation normal form (NNF) (Bienvenu
2009), which is the equivalent formula in which negation
appears only in front of propositional variables. For this
we introduce an operator F s.t. Fiφ ≡ ¬Bi¬φ.

2. Repeatedly apply the D axiom (Biψ ⊃ Fiψ) to the NNF,
resulting in the set of all RMLs that follow logically from
φ using the D axiom. This can be done by simply re-
placing all combinations of occurrences of Bi with Fi;
e.g., for the RML BiF jBk p, the resulting set would be
{FiF jBk p, BiF jFk p, FiF jFk p}.

3. Invert the NNF by replacing all instances of Fiψ with
¬Bi¬ψ and eliminating double negation.

Note that to calculate the closure, we do not apply the
positive (4) or negative (5) introspection actions of KD45n,
due to the equivalences in KD45n mentioned in Section 2.
Proving the completeness of our RML closure is beyond the
scope of this paper, but the soundness follows directly from
the K and D axioms of KD45n, and from the sound NNF
re-writing rule (Bienvenu 2009).

Along with the requirement that an agent should never
believe an RML and its negation, we have the following state
constraints for the encoded planning problem:

φ ∈ s⇒ ¬φ < s
φ ∈ s⇒ ∀ψ ∈ Cl(φ), ψ ∈ s

The enforcement of such state constraints can either be
achieved procedurally within the planner, or representa-
tionally. We choose the latter, appealing to a solution to
the well-known ramification problem (e.g., (Pinto 1999;
Lin and Reiter 1994)), representing these state constraints
as ancillary conditional effects of actions that enforce the
state constraints. The correctness of the resulting encoding
is predicated on the assumption that the domain modeller
provided a consistent problem formulation. The ancillary
conditional effects for operator o are as follows:

(C → l) ∈ eff +
o ⇒ (C → ¬l) ∈ eff −o (1)

(C → l) ∈ eff +
o ⇒ ∀l′ ∈ Cl(l), (C → l′) ∈ eff +

o (2)
Example 2. Returning to our example, consider the effect
of agent 1 telling secret s1 to agent 2. Assuming there is no
positive or negative condition for this effect to fire, the effect
would be (〈∅, ∅〉 → B2s1) ∈ eff +. Using (1) would create
(〈∅, ∅〉 → ¬B2s1) ∈ eff − and (2) would create (〈∅, ∅〉 →
¬B2¬s1) ∈ eff +. Subsequently, (1) would fire again creating
(〈∅, ∅〉 → B2¬s1) ∈ eff −. We can see already, with this
simple example, that effects may cascade to create new ones.

3.3 Uncertain Firing and Removing Beliefs
To complete the faithful transformation of a RP-MEP prob-
lem to a classical problem, we must also consider the axioms
that hold when updating the state due to the occurrence of
an action. In particular, the following two issues remain: (1)
the frame problem is solved only partially when we use the
procedure listed above for updating a state in the encoded
domain, and (2) removing belief about an RML may invali-
date the state from being closed under KD45n (e.g., remov-
ing ¬Bi¬p while Bi p currently holds).

For the first issue, we appeal to a common technique
in planning under uncertainty (e.g., (Petrick and Levesque
2002; Palacios and Geffner 2009)): when the conditions of
a positive conditional effect are not believed to be false, the
negation of the effect’s result can no longer be believed. In-
tuitively, if an agent is unsure whether a conditional effect
fires then it must consider the condition’s effect possible, and
thus no longer believe the negation of the effect. We create
the following additional conditional effects for operator o:

(〈C+,C−〉 → l) ∈ eff +
o ⇒

(〈∅, {¬φ | φ ∈ C+} ∪ C−〉 → ¬l) ∈ eff −o (3)

The second issue is to ensure the state remains closed un-
der KD45n. If we remove an RML l, we should also remove
any RML that could be used to deduce l. To compute the set
of such RMLs, we use the contrapositive: ¬l′ will deduce l
if and only if ¬l deduces l′ (i.e., l′ ∈ Cl(¬l)). We thus have
the following additional conditional effects for operator o:

(C → l) ∈ eff −o ⇒ ∀l′ ∈ Cl(¬l), (C → ¬l′) ∈ eff −o (4)

Example 3. Consider a conditional effect for the action of
agent 1 sharing their secret that stipulates if we, the root
agent, think agent 1 is trustworthy (denoted as t1), then
we would believe agent 1’s secret: (〈{t1}, ∅〉 → s1) ∈
eff +. Using (3), we would derive the new negative ef-
fect (〈∅, {¬t1}〉 → ¬s1) ∈ eff −. Intuitively, if we are un-
sure about agent 1’s trustworthiness, then we are unsure
about their secret being false. On the other hand, con-
sider the effect of an action informing us that we should no
longer believe that agent 1 does not believe agent 2’s secret:
(〈∅, ∅〉 → ¬B1s2) ∈ eff −. Using (4), we would have the ad-
ditional effect (〈∅, ∅〉 → B1¬s2) ∈ eff −. If B1¬s2 remained
in our knowledge base, then so should ¬B1s2 assuming that
our knowledge base is deductively closed.

With these extra conditional effects, we have a faithful
encoding of the original RP-MEP problem.
Theorem 1. Our encoding is sound and complete with re-
spect to RP-MEP. That is, a plan ~o will be found for a
goal G from initial state I using our encoding if and only
if M,w |= I implies M,w |= [~a]G for any (M,w), where M
satisfies KD45n and ~a is the action sequence corresponding
to ~o.

Space precludes a formal proof, but this result follows
from (1) the correctness of the newly added conditional ef-
fects, (2) the soundness and completeness of the Cl proce-
dure, and (3) the use of a solution to the ramification prob-
lem to compile the properties into conditional effects.
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4 Conditioned Mutual Awareness
Our specification of a RP-MEP problem and the subsequent
encoding into classical planning allow us to specify a rich
set of actions. Unlike traditional approaches that compile
purely ontic action theories into ones that deal with belief
(e.g., the work on conformant planning by Palacios and
Geffner (2009)), we allow for arbitrary conditional effects
that include nested belief both as conditions and as effects.

While expressive, manually encoding effects with nested
belief can be involved due to the cascading of ancillary con-
ditional effects. Here, we extend the scope of ancillary con-
ditional effects to safely capture a common phenomenon in
planning with nested belief: that of agents being mutually
aware of the effects of actions.
Example 4. In our running example, if an agent enters a
room, then we realize this as an effect: e.g., (〈∅, ∅〉 →
at 1 loc1) ∈ eff +. In many applications, other agents may
also be aware of this: e.g., (〈∅, ∅〉 → B2at 1 loc1) ∈
eff +. Perhaps we wish to predicate this effect on the
second agent believing that it is also in this room: e.g.,
(〈{B2at 2 loc1}, ∅〉 → B2at 1 loc1) ∈ eff +. It is this kind of
behaviour of conditioned mutual awareness that we would
like to capture in a controlled but automated manner.

By appealing to ancillary conditional effects, we will cre-
ate new effects from existing ones. We have already demon-
strated the ancillary conditional effects required for a faith-
ful encoding to adhere to the axioms and state constraints
we expect from our agent. We extend this idea here to cap-
ture the appealing property of conditioned mutual aware-
ness. For simplicity, we describe conditioned mutual aware-
ness in terms of the encoded problem, but assume the con-
ditions for mutual awareness are optionally provided with a
RP-MEP problem.

Definition 4. Condition for Awareness
We define µo

i ∈ F to be the condition for agent i to be aware
of the effects of operator o. If need be, µo

i may be a unique
fluent that is either always believed or never believed.

Intuitively, we want to assume that agent i is aware of
every conditional effect of o only when agent i believes µo

i .
For a given set of fluents T , we define the shorthand

BiT = {Bil | l ∈ T } and ¬BiT = {¬Bil | l ∈ T } and model
conditioned mutual awareness through the following two en-
coding rules for every agent i ∈ Ag to derive new conditional
effects:

(〈C+,C−〉 → l) ∈ eff +
o ⇒

(〈BiC
+ ∪ ¬BiC

− ∪ {Bi µ
o
i }, ∅〉 → Bil) ∈ eff +

o (5)
(〈C+,C−〉 → l) ∈ eff −o ⇒

(〈BiC
+ ∪ ¬BiC

− ∪ {Bi µ
o
i }, ∅〉 → ¬Bil) ∈ eff +

o (6)

Note that each form of ancillary conditional effect adds
a new positive conditional effect. In the positive case, we
believe that the agent i has a new belief Bil if we believe that
agent i had the prerequisite belief for the effect to fire. In
the negative case, we would believe that the agent no longer
holds the belief, but because we take a perspectival view, it

is encoded as a positive conditional effect – i.e., we would
believe ¬Bil. For instance, the ancillary conditional effect
from our working example says that we should no longer
believe the negation of agent 1’s secret if we do not believe
agent 1 is untrustworthy (see Example 3), would create the
following ancillary conditional effect:

(〈∅, {¬t1}〉 → ¬s1) ∈ eff − ⇒

(〈{¬B2¬t1}, ∅〉 → ¬B2¬s1) ∈ eff +.

We restrict the application of the above rules by apply-
ing them only if the following two conditions are met: (1)
every RML in the newly created effect has a nested depth
smaller than our bound d; and (2) if we are applying the
above rule for agent i to a conditional effect (C → l) ∈ eff −o ,
then l < {Bil′,¬Bil′}. The first restriction bounds the number
of conditional effects while the second prevents unwanted
outcomes from introspection. To see why this exception is
required, consider the example of a pair of conditional ef-
fects for an action where we discover agent 1 may or may
not believe s2 (i.e., we should forget any belief about what
agent 1 believes regarding s2). Omitting µo

1 for clarity, we
have the following negative conditional effects:

(〈∅, ∅〉 → ¬B1s2) (〈∅, ∅〉 → B1s2)

If we were to apply the above rules with agent 1, we
would add two positive ancillary conditional effects:

(〈∅, ∅〉 → ¬B1¬B1s2) (〈∅, ∅〉 → ¬B1B1s2)

which subsequently would simplify to the following condi-
tional effects (given that we combine successive modalities
of the same agent index under KD45n):

(〈∅, ∅〉 → B1s2) (〈∅, ∅〉 → ¬B1s2)

Thus, the resulting effects would indicate that the agent
reaches an inconsistency with its own belief. To avoid this
issue, we apply rule (6) only when the effect is not a belief
(negative or positive) of the corresponding agent.

Because we can assume that the specification of condi-
tioned mutual awareness is given and computed in the orig-
inal RP-MEP specification, Theorem 1 continues to hold.

5 Projection to Reason As Others
It is natural that an agent may want to reason about what
another believes or may come to believe, allowing queries
such as, “Does Sue believe that Bob believes that Sue be-
lieves a plan exists?”. We construe the term virtual agent to
be the list of agents we wish to have the root agent reason
as. Here, [Bob, Sue] is the virtual agent assuming that Sue
is the root agent: i.e., we want Sue to reason as if she was
Bob reasoning as if he was Sue.

To reason as a virtual agent, we require two items: (1) the
assumed mental model of the virtual agent’s initial state, and
(2) the virtual agent’s view of the operators. We assume that
the goal, set of agents, and operator preconditions remain
the same. To create the new initial state for the virtual agent,
we use projection:
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Definition 5. Agent Projection
Given a state s, the agent projection of s with respect to a
vector of agents ~Ag, denoted as Proj(s, ~Ag), is defined as:{φ | Biφ ∈ s} if ~Ag = [i]

Proj(Proj(s, [i]), ~Ag
′
) if ~Ag = [i] + ~Ag

′

Essentially, agent projection repeatedly filters the set of
RMLs according to the appropriate agent and strips the be-
lief modality from the front of the RML. When projecting
a planning problem, we project the initial state using agent
projection – giving us the believed mental state of the virtual
agent – and additionally project the effects of every opera-
tor. Because we allow for heterogeneous agents with respect
to their view on operator effects, we first must decide which
conditional effects to keep for the projection. For a particu-
lar agent i, these are the effects uniform in i.

Definition 6. Uniform Conditional Effect
We say that an RML is uniform in i if the RML is a condition
for awareness or it begins with either the modality Bi or ¬Bi.
A set of fluents is uniform in i iff every RML in the set is
uniform in i. Finally, the set of conditional effects uniform
in i for operator o are all those (〈C+,C−〉 → l) ∈ eff +

o such
that C+ is uniform in i, l is uniform in i, and C− = ∅.

The projection of an operator for agent i will retain all
those conditional effects that are uniform in i. Note that
this discards all negative conditional effects. Once we have
the set of uniform conditional effects, we project each effect
(〈C+, ∅〉 → l) in the set for the agent i to be defined as:

( 〈 {φ | Biφ ∈ C
+}, {φ | ¬Biφ ∈ C

+} 〉 → l′),

where l = Bil′ and the projected effect is in eff +
o or l = ¬Bil′

and the projected effect is in eff −o .
The intuition behind our definition of conditional effects

uniform for agent i, is that we consider only those effects
that we (the current agent) believe agent i will reason with.
If a conditional effect has a negative condition (i.e., C− is
non-empty), then that is a condition that involves our own
lack of belief and not the lack of belief for agent i (the latter
would exist as an RML starting with ¬Bi in C+). Similarly,
negative conditional effects describe how we remove belief,
and not how agent i would update their belief. Paired with
the ability to add conditioned mutual awareness, the projec-
tion of effects for a particular agent can target precisely those
effects we want to keep.

We generate a new initial state for a particular virtual
agent using the agent projection procedure, and we gener-
ate a new set of operators by repeatedly applying the above
procedure for operator projection. Additionally, because we
assume that the nestings of modalities of the same agent in-
dex are combined (cf. Section 2), we process the operator
preconditions and goal slightly to accommodate for the new
root agent perspective assumed for the final agent i in the
virtual agent list: Bi is removed from the start of precon-
dition and goal RMLs while any RML of the form ¬Biφ is

converted to a negative precondition or goal RML φ. The
strength in projecting away effects is that it can simplify
the domain greatly – any conditional effect not uniform in
the projected agent will be pruned from the domain prior to
planning. Combining ancillary conditional effects and pro-
jection allows us to answer a complex suite of queries for
the nested belief of agents.

6 Preliminary Evaluations
We implemented the scheme above to convert a RP-MEP
planning problem into a classical planning problem, which
can be subsequently solved by any planner capable of han-
dling negative preconditions and conditional effects. The
compiler consumes a custom format for the RP-MEP prob-
lems and can either simulate the execution of a given action
sequence or call the Fast Downward planner (Helmert 2006).

We have verified the model of the pre-existing Thief prob-
lem, and all of the existing queries considered in the pre-
vious literature posed to demonstrate the need for nested
reasoning (e.g., those found in (Löwe, Pacuit, and Witzel
2011)) are trivially solved in a fraction of a second. As a
more challenging test-bed, we modelled a setting that com-
bines the Corridor problem (Kominis and Geffner 2014) and
the classic Gossip problem (Entringer and Slater 1979). In
the new problem, Grapevine, there are two rooms with all
agents starting in the first room. Every agent believes their
own secret to begin with, and the agents can either move be-
tween rooms or broadcast a secret they believe. Movement
is always observed by all, but through the use of conditioned
mutual awareness the sharing of a secret is only observed by
those in the same room. This problem allows us to pose a
variety of interesting goals ranging from private communi-
cation (similar to the Corridor problem) to goals of miscon-
ception in the agent’s belief (e.g., G = {Basb, Bb¬Basb}).

As a preliminary investigation, we varied some of the dis-
cussed parameters and report on the results in Table 1 (the
first Corridor problem corresponds to the one presented by
Kominis and Geffner). The largest bottleneck stems from
the depth of nested knowledge, as the number of newly in-
troduced fluents is exponential in d. The planning process
is typically fast, and moving forward we hope to reduce the
compilation time by only generating fluents and conditional
effects that are relevant to achieving the goal.

7 Related Work
There is a variety of research related to the ideas we have
presented, and we cover only the most closely related here.
Research into DEL (van Ditmarsch, van der Hoek, and Kooi
2007), and more recently DEL planning (e.g., (Bolander and
Andersen 2011)), deals with how to reason about knowledge
or belief in a setting with multiple agents. Focus in this area
is primarily on the logical foundation for updating an epis-
temic state of the world according to physical (ontic) and
non-physical (epistemic) actions, as well as identifying the
classes of restricted reasoning that are tractable from a the-
oretical standpoint (Löwe, Pacuit, and Witzel 2011). While
DEL techniques are more expressive than our approach in
terms of the logical reasoning that an agent can achieve in
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Problem |Ag| d |F| |~o| Time (s)
Plan Total

Corridor 3 1 70 5 0.01 1.14
7 1 150 5 0.01 1.32
3 3 2590 5 0.01 38.80

Grapevine 4 1 216 3 0.01 1.26
3 2 774 4 0.01 3.44
4 2 1752 7 0.16 10.81

Table 1: Results for various Corridor and Grapevine prob-
lems. Ag, d, F, and ~o are as above. Plan time is the time
spent solving the encoded problem, while Total time addi-
tionally includes the encoding and parsing phases.

theory, this expressiveness increases the computational com-
plexity of the reasoning. In particular, the practical synthesis
of DEL plans remains an unsolved problem.

On the other end of the spectrum, a range of techniques
exist for planning with partial observability (e.g., (Brafman
and Shani 2012; Bonet and Geffner 2014)). These tech-
niques typically represent the individual knowledge of facts
about the world (as opposed to belief): the agent can “know
p holds” (i.e., K p), “know p does not hold” (i.e., K¬p), or
“not know the value of p” (i.e., ¬K p∧¬K¬p), but do not ex-
tend to the multi-agent case. The use of a knowledge modal-
ity was extended to be predicated on assumptions about
the initial state, leading to effective techniques for confor-
mant and contingent planning (Palacios and Geffner 2009;
Albore, Palacios, and Geffner 2009).

Others have investigated restricted classes of syntactic
knowledge bases for tractable reasoning, including the 0-
approximation semantics (Baral and Son 1997), and the no-
tion of Proper Epistemic Knowledge Bases (PEKBs) (Lake-
meyer and Lespérance 2012). Like ours, these works re-
strict the type of knowledge that is stored about a single
agent, such as not permitting disjunctive knowledge (e.g.,
the agent “knows either p or q holds”). PEKBs extend this
to the multi-agent setting, and in a sense the preconditions,
goals, and states of our work can be viewed as PEKBs.

The work most related to ours is that of Kominis and
Geffner (2014). They share the same general motivation
of bridging the rich fields of epistemic reasoning and auto-
mated planning by using classical planning over multi-agent
epistemic states. However, the two approaches are funda-
mentally different and as a result each comes with its own
strengths and shortcomings. The largest difference is our
choice to focus on belief rather than knowledge – for us,
modelling the possibility of incorrect belief is essential. Ko-
minis and Geffner assume that all agents start with common
initial knowledge, and most strongly that all action effects
are commonly known to all agents (while we can model this,
it is not required). Conversely, they are able to handle arbi-
trary formulae, including disjunctive knowledge, while we
are restricted to reasoning with RMLs. Moving forward, we
hope to explore how we can combine ideas from both ap-
proaches.

8 Concluding Remarks
We have presented a model of planning with nested belief,
and demonstrated how a syntactically restricted subclass of
this expressive problem can be compiled into a classical
planning problem. Despite the restricted form, we are able
to model complex phenomena such as public or private com-
munication, commonly observed action effects, and non-
homogeneous agents (each with their own view of how the
world changes). Our focus on belief (as opposed to knowl-
edge) provides a realistic framework for an agent to reason
about a changing environment where knowledge cannot be
presumed. We have additionally demonstrated how to pose
queries as if we were other agents, taking our belief of the
other agents into account. To solve this expressive class of
problems, we appeal to existing techniques for dealing with
ramifications, and compile the problem into a form that clas-
sical planning can handle.

In future work, we hope to expand the work in two key
directions. First, we would like to explore other forms of
ancillary conditional effects similar to the conditioned mu-
tual awareness to give the designer greater flexibility during
modelling (e.g., with concepts such as teamwork protocols
or social realities). Second, we want to formalize the con-
nection between general multi-agent epistemic planning and
the syntactic restriction that we focus on encoding. We hope
to provide an automated sound (but incomplete) approxima-
tion of an arbitrary MEP problem into a RP-MEP problem.
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