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Abstract
Adaptive exploration uses active learning principles to
improve the efficiency of autonomous robotic surveys.
This work considers an important and understudied
aspect of autonomous exploration: in situ validation
of remote sensing measurements. We focus on high-
dimensional sensor data with a specific case study of
spectroscopic mapping. A field robot refines an orbital
image by measuring the surface at many wavelengths.
We introduce a new objective function based on spec-
tral unmixing that seeks pure spectral signatures to ac-
curately model diluted remote signals. This objective re-
flects physical properties of the multi-wavelength data.
The rover visits locations that jointly improve its model
of the environment while satisfying time and energy
constraints. We simulate exploration using alternative
planning approaches, and show proof of concept results
with the canonical spectroscopic map of a mining dis-
trict in Cuprite, Nevada.

Introduction
A growing body of AI research tries to make robots more
effective partners during remote exploration and survey. As
rover traverse distance increases, it becomes increasingly
important to incorporate science data into rover navigational
and science activity planning (Thompson, Wettergreen, and
Peralta 2011). Formalizing this process can enable rover au-
tonomy that improves data collection during the long pe-
riods when the rover is out of touch with ground control
(Wettergreen et al. 2008). By incorporating remote sens-
ing into the automated science assessment, autonomous ex-
plorers can be more resilient to disruptions or opportuni-
ties, acting as a more informed proxy for the remote sci-
ence team. Typical approaches involve detection and mea-
surement of discrete features of interest (Estlin et al. 2006;
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Wagstaff et al. 2013) or informative path and observation
planning based on active learning or spatial experimental de-
sign (Thompson, Wettergreen, and Peralta 2011).

This work broadens adaptive exploration in two impor-
tant directions. Most prior approaches to informative ob-
servation planning assume measurements at each location
are scalar or uncorrelated with each other (e.g. Low, Dolan,
and Khosla 2008 for a typical example). Here we address
high-dimensional spectrometer data having strong correla-
tions across dimensions. We also account for previous mea-
surements of the explored area at different spatial and/or
wavelength resolutions. This is important because, literal-
ism aside, robotic space exploration seldom takes place in a
vacuum; preparatory remote sensing almost always precedes
the in situ traverse. These remote data inform, and largely
prescribe, the exploration objectives. Such partnerships play
to the strengths of both platforms: orbital measurements can
identify investigation sites, and in situ sensors can provide
more unambiguous interpretations.

We focus on the case of Visible to Shortwave Infrared
(VSWIR) spectroscopy (Green et al. 1998; Plaza et al.
2009). In our scenario, a field robot refines a low-resolution
orbital image using an in situ VSWIR reflectance spectrom-
eter. VSWIR spectroscopy is a useful test case because of
its ubiquity in terrestrial and planetary exploration. It con-
tributes greatly to our understanding of mineralogy, atmo-
spheric composition, and on Earth, agriculture, commerce,
and the biosphere. However, orbital sensors have large pixel
sizes (often 30m or more) so small localized features can go
undetected. In situ sensing can complement these data by re-
vealing pure signals from subpixel features. In-situ sensors
also provide improved spectral resolution and signal to noise
ratios (SNRs) which make them helpful for validating bulk
properties of larger targets.

The paper defines a novel spatio-spectral exploration ob-
jective. Here the robot accumulates a spectral library that
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facilitates spectral unmixing of the remote image. In other
words, the it collects spectra that best explain the orbital
measurements, seeking signatures that could physically re-
construct the spectra seen from orbit. This balances the
competing objectives of sample diversity and representative-
ness, providing an unambiguous interpretation of the orbital
data. A path planner visits features to optimize this objec-
tive while respecting a total budget on path cost. Regular
replanning means the agent can recover from bad data (by
adding additional spectra to the plan) and exploit new sig-
nals (by skipping future targets made redundant). We shall
see that the objective is amenable to efficient path planning
algorithms. The following sections give theoretical founda-
tions for spatio-spectral exploration and then demonstrate
different algorithm variants in simulation. In this demonstra-
tion the agent recomputes its course on the fly, adapting its
path to visit distinctive spectral features that have not yet
appeared in in situ data collection.

Background
Robotic Mapping for Exploration
There is a large body of previous work on robotic envi-
ronmental sensing. Most formulations try to reconstruct the
spatial structure of just one or two dependent variables of
interest. This leads naturally to spatial statistical models
like Gaussian Processes, reducing exploration to the well-
understood problem of experimental design or active learn-
ing for regression. One typically optimizes information gain
by maximizing the Shannon entropy of future observations,
or by maximizing the Mutual Information with respect to
unobserved locations (Cao, Low, and Dolan 2013). For ex-
ample, Low et al. demonstrate information-theoretic loss
functions that drive team of robots to reduce map uncer-
tainty (Low, Dolan, and Khosla 2008). Diverse applications
include measuring water constituents (Binney, Krause, and
Sukhatme 2010) or current fields (Hollinger et al. 2012).

Recent research has started using remote sensing to
guide robotic exploration. One study has demonstrated au-
tonomous rover mapping based on an information gain
objective, with a Gaussian Process model combining re-
mote and in situ data about terrain properties (Thompson,
Wettergreen, and Peralta 2011). There is also significant
work to combine remote and in situ observations for haz-
ard avoidance. These efforts typically involve Digital Ele-
vation Models or visible-wavelength remote sensing chan-
nels (Silver, Bagnell, and Stentz 2010; Bagnell et al. 2010;
Persson, Duckett, and Lilienthal 2008). They define or learn
relationships between ground and remote data to improve
navigation planning (Sofman et al. 2006). For example, Sil-
ver et al. (2010) demonstrate a self-training system where
local observations train a classifier that predicts navigability
throughout the orbital image. While this can be useful for
path planning, it is not obvious how this approach could be
extended to science-driven exploration or experimental de-
sign objectives.

The principles underlying the current work differ some-
what from these previous studies. To our knowledge ours is
the first attempt to guide robotic exploration using full mul-

Figure 1: Spectral endmembers and characteristic absorption
features

tivariate spectral data, and the powerful compositional infor-
mation it provides. Here, we incorporate physical models of
spectral mixing directly into the exploration objective. The
resulting in situ measurements refine the remote signals, pro-
viding a combined measurement with the spectral precision
of the former and the wide spatial coverage of the latter.

Spectral Mixture Models
Rover measurements X = {x1, . . .xn} are spectra with
tens or hundreds of wavelength channels; each spectrum is a
vector x ∈ Rd. Roughly speaking, these reflectance spectra
measure the fraction of light at each wavelength reflected
from a surface. The spectral features reveal chemical and
physical properties of the surface composition. A simple
model for the reflectance of an extended object A is the in-
tegral of reflectances over its surface:

xA =

∫
A

xdAdA (1)

This expression is valid as long as the observation geometry
(observing angle, illumination angle and surface orientation)
is approximately constant overA. It leads to a geographic or
areal mixing model where each measurement is a mixture
of a small number of endmember materials, the spectra of
which combine in proportion to their physical extent on the
surface (Keshava and Mustard 2002). Most scenes contain
just a few endmember spectra; applying these in appropriate
mixing fractions can reconstruct any measurement x. For a
scene with m endmembers the mixing fractions are vectors
φ ∈ Rm. More generally we can model a spectral image
using a library given by a d×m matrix Y , giving x = Y φ.

The elements of φ describe the library spectra fractional
abundances within the geographic footprint of x. This phys-
ical interpretation places certain restrictions on legal values
of φ. Negative mixing fractions are impossible; one cannot,
for example, observe a Mars surface pixel containing -5%
Phyllosilicate clay. Thus φ is often constrained to be non-
negative. In addition, the fractional abundances should sum
to unity, so many algorithms require |φ|1 = 1. These con-
straints force observations to be convex combinations of the
endmembers, lying in the simplex bounded by elements Y .

There are several ways to determine the spectral library
Y . Researchers have developed many automatic endmem-
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ber detection algorithms that use statistics or convex geom-
etry to estimate Y from data (Thompson et al. 2013). It is
also common to build libraries from prior observations. For
complete review of such algorithms we refer the interested
reader to a comprehensive review by Plaza et al. (2009).

A typical unmixing problem starts with one or more ob-
servations x and a known endmember matrix Y . It seeks
mixing fractions φ that accurately reconstruct the observa-
tions. It is typical to minimize the L2 norm of the error using
Linear Least Squares (LLS), or Nonnegative Least Squares
(NNLS) in the positive case (Lawson and Hanson 1974).
The latter solves an optimization of the form:

argminφ ‖Y φ− x‖2 for φ ≥ 0 (2)

Roughly speaking, one performs this operation at every pixel
to map the areal abundance of each endmember material.

A least-squares solution gives nonzero mixing fractions
for nearly all library spectra. This is physically implausible,
since only a few materials would be present in one pixel.
Thus, we will also consider a sparse mixing model. Multiple
Endmember Spectral Mixture Analysis (MESMA) (Denni-
son and Roberts 2003) permits just a small fixed number of
endmembers (typically two or three) to contribute to each
remote spectrum. For each pixel one searches over all pos-
sible endmember combinations for each pixel, with mixing
fractions computed using LLS or NNLS. The final model is
the pair or triplet of endmembers having best reconstruction
error for that pixel. MESMA models are common in disci-
plines from mineralogy to ecosystem studies (Roth, Denni-
son, and Roberts 2012; Fèvotte and Godsill 2006).

A successful unmixing provides a low reconstruction er-
ror, explaining and validating the remote observation. In
addition, the list of endmembers is independently valuable
since it identifies the purest spectral signals in the scene.
It forms a compact spectral library capturing both com-
mon materials and any interesting outliers. Figure 1 shows
an example from the Airborne Visible Near Infrared Imag-
ing Spectrometer (AVIRIS) (Green et al. 1998). The scene
shows an airborne image of a well-studied mining district in
Cuprite, Nevada (Kruse 2002). We recognize distinct min-
eral classes from spectral absorption signatures at different
wavelengths. Most other spectra in the scene are mixtures of
these classes, so the endmember library is a powerful diag-
nostic and interpretive tool.

Approach
Formally, we aim to collect in situ measurements that best
unmix the remote data. We define a set of candidate mea-
surement sites L. The robot collects in situ spectra by sam-
pling at locations B = {b : b ∈ L}. These multivariate
measurements are written y = f(b) + ε. They are perturbed
by Gaussian-distributed measurement noise ε. The entire set
of future in situ measurements is Y = {yi : yi ∈ Rd, 1 ≤
i ≤ m}. Together these observations form a spectral library,
a random m × d matrix written YB . Good measurements
reduce the total reconstruction error for remote sensing ob-
servations given by X = {xi : xi ∈ Rd, 1 ≤ i ≤ n}.
A resource cost C(B) represents limited time, power and
bandwidth; it must not exceed a total budget β. Without loss

of generality we assume the environment is planar and fully-
navigable, so that the energy and time cost of traversal is
proportional to the path length.

We define a risk function as the expected reconstruction
error after unmixing the remote images with in situ spectra:

R(B) = E

[∑
x∈X

min
φ
‖YBφ− x‖2

]
for φ ≥ 0, C(B) ≤ β (3)

Note that the expectation is over the rover’s observation ma-
trix, which is a random variable. The expression is analyti-
cally challenging, so we solve the related minimization:

argminB
∑
x∈X

min
φ
‖E[YB ]φ− x‖2

for φ ≥ 0, C(B) ≤ β (4)

The linear geographic mixing assumption (Equation 1) sim-
plifies the expectation E[YB ] since reflectance spectra com-
bine in proportion to their extent on the surface to make the
remote pixel. As a consequence, the remote observation is
the expectation of in situ measurements sampled uniformly
at random from within their enclosing pixel. Writing XB to
signify remote measurements at sites B, we have:

R(B) =
∑
x∈X

min
φ
‖XBφ− x‖2 (5)

for φ ≥ 0, C(B) ≤ β (6)

One now can calculate the new objective explicitly for any
candidate set of in situ measurements.

As the robot collects spectra, its observations reveal of
some of the random variables inE[Y ]. The matrix ZA repre-
sents in situ spectra collected at previous locations A = {a :
a ∈ L}. These measurements are a realization of YA, and
can be substituted into the expectation. After one or more
observations, the library used for unmixing is the union of
all measured spectra combined with the expected spectra to
be collected at future locations. The objective is:

R(B|A) =
∑
x∈X

min
φ
‖ [ZA XB ]φ− x‖2

for φ ≥ 0, C(B) + C(A) ≤ β (7)

Figure 2 illustrates the method. The rover is considering a
path with two additional spectra YB . It composes a library of
its collected spectra ZA, together with the orbital data XB

used to estimate YB . It uses these signatures to unmix the
spectra in the entire image. Further incorporating a MESMA
sparsity constraint is straightforward; one simply requires
that φ have mostly zero entries.

In general, a robot must pay a cost in time and power
to move between locations. This is an orienteering problem
where the total budget restricts path length, or alternatively,
power and time resources required to complete the tour.
We represent the plan as an ordered sequence of vertices
P = [a1, . . . , am] which gives an ordering to the sample
locations A. Algorithm 1 details a straightforward greedy
procedure to optimize this objective subject to a path cost
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Figure 2: Spectra used in unmixing solution. The rover
builds a library of collected spectra ZA, combined with or-
bital data XB that are used as proxies for future spectra YB .

budget C(P). At each iteration we compute the best spec-
trum and then insert it into the sequence at the most desirable
(cost minimizing) location. More sophisticated optimization
strategies are possible, but the greedy approach is an effec-
tive and computationally-efficient approximation.

Input: Starting location vstart,
End location vend,
Valid measurement locations Q,
Associated remote measurements X ,
Total sample budget β

Output: Optimal plan P

Initialize A← {vstart, vend};
Initialize P ← [vstart, vend];
while C(P) < β do

for each v ∈ Q \A do
form Xv by concatenation of XA and xv;
compute
R(A ∪ v) =

∑
x∈X minφ ‖Xvφ− x‖2 for φ ≥ 0

using NNLS;
if R(A ∪ v) < R? then

R? ← R(A ∪ v);
v? ← v;

end
end
Insert v? into plan at the location minimizing C(P)

end

Algorithm 1: Greedy spectrum selection

Experiments
Datasets
We simulated an exploration scenario using high resolution
airborne data as a proxy for in situ measurements. We used
the Airborne Visible Near Infrared Spectrometer (AVIRIS)
to simulate rover in situ spectra (Green et al. 1998). This in-
strument observes the spectral region from 0.38µm to 2.5µm
at a spectral resolution of 0.01µm and high spatial resolu-
tion, making it comparable in spectral range and resolution
to field instruments. Our case study centers on the mining

district of Cuprite, Nevada. It contains a wide range of dis-
tinctive mineralogical signatures, and has been extensively
studied through scientific expeditions and field campaigns
(Kruse 2002). The site exhibits mineralogical diversity with
features at mutliple scales and wavelength regions. We used
a sequence of three non-overlapping AVIRIS scenes from
flight f970619t01p02r02, which we will call A, B, and C.

We also used orbital remote sensing data from the ASTER
instrument (Fujisada 1995). This instrument’s cameras have
three VSWIR and six SWIR bands within this spectral
range. In order to meaningfully compare the two instru-
ments it is necessary to align them radiometrically and spa-
tially. We began with ASTER Level 2 reflectance data with
crosstalk correction (Iwasaki and Tonooka 2005), and used
manually-selected ground control points to orthorectify the
AVIRIS data to this coordinate frame via polynomial in-
terpolation. We then transformed the ASTER reflectance
values to match the AVIRIS atmospherically-corrected re-
flectance using a modified empirical line approach (Gao
et al. 2009). We used AVIRIS pixels as ground truth and
aligned the ASTER images to the corresponding reflectance
values by fitting an independent gain to each channel.

Figure 3 shows scene C. The left panel shows the over-
lap area as a visible color (RGB) image. The right panel is a
false color abundance map assigning each pixel to its dom-
inant endmember. We generated it by using Vertex Compo-
nent Analysis (Nascimento and Dias 2005) to identify end-
member pixels. We then performed an unconstrained linear
unmixing and classified pixels according to their largest con-
stituent. This analysis was not used in the simulations but it
helps to visualize the different spatial units.

Figure 4 has representative spectra from image locations I
and II. They show both the AVIRIS spectrum and (corrected)
ASTER data. ASTER has just a few channels; these can
indicate the different units of surface material, but cannot
conclusively determine the mineralogy. In contrast, the full-
spectrum data by the AVIRIS instrument clearly resolves
spectral features such as a shape indicative of Alunite (Spec-
trum I). The nine-band orbital product cannot conclusively
identify these materials, but it is effective at localizing dif-
ferent surficial units to guide exploration.

Method
We simulated 256 random trials of hypothetical traverses.
Each had a random start and finish location at the left and
right of the image. We defined a path length budget of 125%
of the Euclidean distance between start and end locations.
This provided a challenging constraint with enough margin
to visit a few targets of opportunity. We found that perfor-
mance relationships generalized well to other path lengths.
Each algorithm selected waypoints from a grid of candidate
locations spaced at 20 pixels. The ASTER spectra associated
with these grid points became our target library for the un-
mxing objective. We ran each trial using five different path
planning options:

1. Random path selected each new waypoint at random,
adding it to the waypoint sequence in the position that
minimized path length.
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2. Direct path selected each new waypoint in the order
which minimized the total path length, and then exited
when no further additions were feasible.

3. Greedy Least Squares (LS) applied algorithm 1 without
positivity constraints on mixing fractions.

4. Greedy Nonnegative Least Squares (NNLS) applied al-
gorithm 1, with positivity constraints.

5. Greedy Multiple Endmember Spectral Mixture Anal-
ysis (MESMA) used sparsity and positivity constraints.

The entire planning process took just a few seconds to run
on a modern laptop computer.

In this first test we constructed the entire plan in advance
so collected spectra did not influence the agent’s path. How-
ever, in situ spectra could differ from expectations and an
agent could account for this by revising its path after each
acquisition. We evaluated this strategy with a second test
that compared random, direct, and static Least Squares (LS)
planners as well as an adaptive LS solution that replanned
after every waypoint. We scored the paths for both tests
by using the collected in situ spectra as a library to unmix
the ASTER image with our most physically-plausible model
(MESMA). The reconstruction error indicated whether the
library of collected spectra was comprehensive. Relative
performance of the different path planners was similar re-
gardless of whether NNLS or MESMA were used during
this final evaluation.

Figure 3: Original RGB image of Scene C, which is approx-
imately 6 × 6 km, and false color image showing primary
units. Spectra from locations I and II appear in Figure 4.

Results
Figure 5 shows a typical trial. The direct path, in black,
traveled straight toward the goal while adding small wig-
gles to cover more terrain until exhausting the path length
budget. The greedy planners moved in different directions
to visit spectrally distinctive features. Figure 6 shows the
performance scores over all runs, with boxes indicating
data quartiles and median, and the whiskers indicating ex-
trema. We noted several trends. First, the greedy adaptive
approaches significantly outperformed the random and di-
rect paths for all scenes (p < 0.05). For the most challeng-
ing scenes (A and C) the median unmixing per-pixel recon-
struction error for the greedy NNLS algorithm was signifi-
cantly better than the control cases. The Nonnegative Least

0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

frequency (micron)

re
fle

ct
an

ce

 

 
AVIRIS
ASTER

0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

frequency (micron)

re
fle

ct
an

ce

 

 
AVIRIS
ASTERI II 

Figure 4: Spectra from locations I and II of Figure 3, show-
ing low spectral resolution (ASTER) and high spectral reso-
lution (AVIRIS) data.
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Figure 5: Example paths from the ASTER/AVIRIS simula-
tion.

Squares approach slightly outperformed the unconstrained
Least Squares method, but incorporating the MESMA con-
straint produced no further improvement. Figures 8 and
9 compare the error on a per-trial basis, showing NNLS
against both a data-blind approach as well as unconstrained
(LS) linear mixing. The best-fit line in red indicates that the
spectrally-sensitive planning with a nonnegativity constraint
improved performance at all three sites. Table 1 reports av-
erage scores, along with typical run times for unoptimized
code running on a modern consumer-grade processor.

Figure 7 compares adaptive and non-adaptive algorithms.

Direct Random Static LS Adaptive LS
Site A 0.0201 0.0220 0.0144 0.0131
Site B 0.0105 0.0120 0.0096 0.0088
Site C 0.0194 0.0214 0.0133 0.0122

Table 1: Comparison of two science-blind planners and
two science-aware planners. The table shows Root Mean
Squared Error (RMSE) for 256 trials. The adaptive planner
performed best, with significance to p < 0.05. It replanned
after each waypoint to incorporate the latest science data.
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Direct Random LS NNLS MESMA
Site A 0.0194 0.0223 0.0142 0.0132 0.0138
Site B 0.0105 0.0121 0.0097 0.0085 0.0086
Site C 0.0193 0.0208 0.0136 0.0125 0.0125

Runtime < 1 s < 1 s < 1 s 25 s 230 s

Table 2: Comparison of objective functions, similar to Table
1. LS: Least Squares. NNLS: Nonnegative Least Squares.
MESMA: Multiple Endmember Spectral Mixture Model.
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Figure 6: ASTER/AVIRIS simulation results comparing dif-
ferent replanning schedules.

The Adaptive method outperformed the static alternative,
achieving the best overall reconstruction error of any
method. During the trials we found that the collected data
sometimes caused the rover to revise its original path. This
represented recovery from missing signals that had not been
found where expected, or bypassing future measurements
made redundant by unexpected finds. The adaptive planner
outperformed above the significance level, but the marginal
benefit was small compared with the large difference from
doing science-aware path planning in the first place. In some
sense, this was encouraging - it suggested that the remote
data is a good predictor of the in situ data. Adaptive replan-
ning might also benefit the explorer by enabling graceful
recovery from errors in plan execution, such as detours to
avoid unforeseen navigation hazards.

Conclusion
This work presents an approach for autonomous robotic ex-
ploration that combines high-dimensional remote and in situ
sensing at multiple spatial and spectral resolutions, while
permitting strong correlations between measurement vari-
ables. We demonstrate that (1) for a given resource bud-
get, explicit unmixing objectives result in more efficient
exploration than status quo alternatives, (2) incorporating
physically-motivated nonnegativity constraints can signifi-
cantly help performance, and that (3) regular replanning pro-
vides limited additional benefit.

The method also applies to smaller environments. For in-
stance, spectrometer panoramas, acquired at meter scales,
could be selectively refined by targeted measurements of
specific outcrops in the rover’s local field of view (Wet-
tergreen et al. 2014). Similar convex mixing assumptions
would apply making the framework we have developed here
applicable to a wide range of spectral exploration scenarios.
Future work will validate the approach in the field using a
rover-mounted VSWIR point spectrometer. Unlike the sim-

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Site A B C A B C A B C A B C A B C

M
ea

n 
un

m
ix

in
g 

re
co

ns
tru

ct
io

n 
er

ro
r

Direct              Random                LS                NNLS            MESMA	



Figure 7: ASTER/AVIRIS simulation results comparing dif-
ferent objective functions.
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Figure 8: Comparison of per-trial error in reconstructed re-
flectance using planners that ignore spectral characteristics
(Direct method, horizontal axis) and that incorporate non-
negative unmixing (NNLS, vertical axis)

ulations presented here, rover path planning in realistic envi-
ronments will be dominated by concerns about navigability
and hazard avoidance. The practical challenges of incorpo-
rating actual navigability into the path distance cost will be
a primary concern as these techniques move from simulated
environments into more realistic field settings.
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Fèvotte, C., and Godsill, S. J. 2006. Bayesian approach
for blind separation of sparse sources. IEEE Trans. Signal
Processing 54(11):4133–4145.
Fujisada, H. 1995. Design and performance of ASTER in-
strument. In Satellite Remote Sensing II, 16–25. Interna-
tional Society for Optics and Photonics.
Gao, B.-C.; Montes, M. J.; Davis, C. O.; and Goetz, A. F.
2009. Atmospheric correction algorithms for hyperspectral
remote sensing data of land and ocean. Remote Sensing of
Environment 113:S17–S24.
Green, R. O.; Eastwood, M. L.; Sarture, C. M.; Chrien,
T. G.; Aronsson, M.; Chippendale, B. J.; Faust, J. A.;
Pavri, B. E.; Chovit, C. J.; Solis, M.; et al. 1998. Imag-
ing spectroscopy and the airborne visible/infrared imaging
spectrometer (AVIRIS). Remote Sensing of Environment
65(3):227–248.
Hollinger, G. A.; Pereira, A.; Ortenzi, V.; and Sukhatme,
G. S. 2012. Towards improved prediction of ocean processes
using statistical machine learning. Proceedings of Robotics,
Science and Systems.
Iwasaki, A., and Tonooka, H. 2005. Validation of a crosstalk
correction algorithm for aster/swir. Geoscience and Remote
Sensing, IEEE Transactions on 43(12):2747–2751.
Keshava, N., and Mustard, J. F. 2002. Spectral unmixing.
Signal Processing Magazine, IEEE 19(1):44–57.
Kruse, F. A. 2002. Comparison of AVIRIS and hyper-
ion for hyperspectral mineral mapping. JPL Airborne Geo-
science Workshop, 11th, Pasadena (Califórnia), Proceed-
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