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Abstract
Lifted probabilistic inference algorithms have been
successfully applied to a large number of symmetric
graphical models. Unfortunately, the majority of real-
world graphical models is asymmetric. This is even
the case for relational representations when evidence
is given. Therefore, more recent work in the commu-
nity moved to making the models symmetric and then
applying existing lifted inference algorithms. However,
this approach has two shortcomings. First, all exist-
ing over-symmetric approximations require a relational
representation such as Markov logic networks. Sec-
ond, the induced symmetries often change the distri-
bution significantly, making the computed probabilities
highly biased. We present a framework for probabilistic
sampling-based inference that only uses the induced ap-
proximate symmetries to propose steps in a Metropolis-
Hastings style Markov chain. The framework, there-
fore, leads to improved probability estimates while re-
maining unbiased. Experiments demonstrate that the
approach outperforms existing MCMC algorithms.

Introduction
Probabilistic graphical models are successfully used in a
wide range of applications. Inference in these models is
intractable in general and, therefore, approximate algo-
rithms are mostly applied. However, there are several prob-
abilistic graphical models for which inference is tractable
due to (conditional) independences and the resulting low
treewidth (Darwiche 2009; Koller and Friedman 2009). Ex-
amples of the former class of models are chains and tree
models. More recently, the AI community has uncovered
additional statistical properties based on symmetries of the
graphical model that render inference tractable (Niepert and
Van den Broeck 2014). In the literature, approaches ex-
ploiting these symmetries are often referred to as lifted or
symmetry-aware inference algorithms (Poole 2003; Kerst-
ing 2012).

While lifted inference algorithms perform well for highly
symmetric graphical models, they depend heavily on the
presence of symmetries and perform worse for asymmetric
models due to their computational overhead. This is espe-
cially unfortunate as numerous real-world graphical models
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are not symmetric. To bring the achievements of the lifted
inference community to the mainstream of machine learn-
ing and uncertain reasoning it is crucial to explore ways to
apply ideas from the lifted inference literature to inference
problems in asymmetric graphical models.

Recent work has introduced methods to generate sym-
metric approximations of probabilistic models (Van den
Broeck and Darwiche 2013; Venugopal and Gogate 2014;
Singla, Nath, and Domingos 2014). All of these approaches
turn approximate symmetries, that is, symmetries that “al-
most” hold in the probabilistic models, into perfect symme-
tries, and proceed to apply lifted inference algorithms to the
symmetrized model. These approaches were shown to per-
form well but are also limited in a fundamental way. The in-
troduction of artificial symmetries results in marginal proba-
bilities that are different from the ones of the original model.
The per variable Kullback-Leibler divergence, a measure of-
ten used to assess the performance of approximate inference
algorithms, might improve when these symmetries are in-
duced but it is possible that the marginals the user actually
cares about are highly biased. Of course, this is a potential
problem in applications. For instance, consider a medical ap-
plication where one queries the probability of diseases given
symptoms. A symmetric approximation may perform well
in terms of the KL divergence but might skew the proba-
bilities of the most probable diseases to become equal. A
major argument for graphical models is the need to detect
subtle differences in the posterior, which becomes impossi-
ble when approximate symmetries skew the distribution.

To apply lifted inference to asymmetric graphical mod-
els we propose a completely novel approach. As in previous
approaches, we compute a symmetric approximation of the
original model but leverage the symmetrized model to com-
pute a proposal distribution for a Metropolis-Hastings chain.
The approach combines a base MCMC algorithm such as
the Gibbs sampler with the Metropolis chain that performs
jumps in the symmetric model. The novel framework al-
lows us to utilize work on approximate symmetries such
as color passing algorithms (Kersting et al. 2014) and low-
rank Boolean matrix approximations (Van den Broeck and
Darwiche 2013) while producing unbiased probability esti-
mates. We identify properties of an approximate symmetry
group that make it suitable for the novel lifted Metropolis-
Hastings approach.
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We conduct experiments where, for the first time, lifted
inference is applied to graphical models with no exact sym-
metries and no color-passing symmetries, and where every
random variable has distinct soft evidence. The framework,
therefore, leads to improved probability estimates while re-
maining unbiased. Experiments demonstrate that the ap-
proach outperforms existing MCMC algorithms.

Background
We review some background on concepts and methods used
throughout the remainder of the paper.

Group Theory
A group is an algebraic structure (G, ◦), where G is a set
closed under a binary associative operation ◦ with an iden-
tity element and a unique inverse for each element. We often
write G rather than (G, ◦). A permutation group acting on a
set Ω is a set of bijections g : Ω → Ω that form a group.
Let Ω be a finite set and let G be a permutation group acting
on Ω. If α ∈ Ω and g ∈ G we write αg to denote the image
of α under g. A cycle (α1 α2 ... αn) represents the permu-
tation that maps α1 to α2, α2 to α3,..., and αn to α1. Every
permutation can be written as a product of disjoint cycles.
A generating set R of a group is a subset of the group’s ele-
ments such that every element of the group can be written as
a product of finitely many elements of R and their inverses.

We define a relation ∼ on Ω with α ∼ β if and only if
there is a permutation g ∈ G such that αg = β. The relation
partitions Ω into equivalence classes which we call orbits.
We call this partition of Ω the orbit partition induced by G.
We use the notation αG to denote the orbit {αg | g ∈ G}
containing α.

Symmetries of Graphical Models
Symmetries of a set of random variables and graphical mod-
els have been formally defined in the lifted and symmetry-
aware probabilistic inference literature with concepts from
group theory (Niepert 2012b; Bui, Huynh, and Riedel 2013).

Definition 1. Let X be a set of discrete random variables
with distribution π and let Ω be the set of states (configura-
tions) of X. We say that a permutation group G acting on Ω
is an automorphism group for X if and only if for all x ∈ Ω
and all g ∈ G we have that π(x) = π(xg).

Note that we do not require the automorphism group
to be maximal, that is, it can be a subgroup of a differ-
ent automorphism group for the same set of random vari-
ables. Moreover, note that the definition of an automor-
phism group is independent of the particular representa-
tion of the probabilistic model. For particular representa-
tions, there are efficient algorithms for computing the au-
tomorphism groups exploiting the structure of relational
and propositional graphical models (Niepert 2012b; 2012a;
Bui, Huynh, and Riedel 2013).

Most probabilistic models are asymmetric. For instance,
the Ising model which is used in numerous applications, is
asymmetric if we assume an external field as it leads to dif-
ferent unary potentials. However, we can make the model

(a) (b)

Figure 1: A ferromagnetic Ising model with constant inter-
action strength. In the presence of an external field, that is,
when the variables have different unary potentials, the prob-
abilistic model is asymmetric (a). However, the model is ren-
dered symmetric by assuming a constant external field (b).
In this case, the symmetries of the model are generated by
the reflection and rotation automorphisms.

symmetric simply by assuming a constant external field. Fig-
ure 1 depicts this situation. The framework we propose in
this paper will take advantage of such an over-symmetric
model without biasing the probability estimates.

Exploiting Symmetries for Lifted Inference
The advent of high-level representations of probabilistic
graphical models, such as plate models and relational rep-
resentations, have motivated a new class of lifted inference
algorithms (Poole 2003). These algorithms exploit the high-
level structure and symmetries to speed up inference (Ker-
sting 2012). Surprisingly, they perform tractable inference
even in the absence of conditional independencies.

Our current understanding of exact lifted inference is that
syntactic properties of relational representations permit ef-
ficient lifted inference (Van den Broeck 2011; Jaeger and
Van den Broeck 2012; Gribkoff, Van den Broeck, and Suciu
2014). We review relational representations such as Markov
logic in a technical report. More recently, it has been shown
that (partial) exchangeability as a statistical property can ex-
plain numerous results in this literature (Niepert and Van
den Broeck 2014). Indeed, there are deep connections be-
tween automorphisms and exchangeability (Niepert 2012b;
2013; Bui, Huynh, and Riedel 2013; Bui, Huynh, and
de Salvo Braz 2012). Moreover, the (fractional) automor-
phisms of the graphical model representation have been re-
lated to lifted inference and exploited for more efficient
inference (Niepert 2012b; Bui, Huynh, and Riedel 2013;
Noessner, Niepert, and Stuckenschmidt 2013; Mladenov and
Kersting 2013). In particular, there are a number of sampling
algorithms that take advantage of symmetries (Venugopal
and Gogate 2012; Gogate, Jha, and Venugopal 2012). How-
ever, these approaches expect a relational representation and
require the model to be symmetric.

Finite Markov Chains
Given a finite set Ω a Markov chain defines a random walk
(x0,x1, ...) on elements of Ω with the property that the con-
ditional distribution of xn+1 given (x0,x1, ...,xn) depends
only on xn. For all x,y ∈ Ω, P (x→ y) is the chain’s prob-
ability to transition from x to y, and P t(x → y) = P tx(y)
the probability of being in state y after t steps if the chain
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starts at state x. We often refer to the conditional probabil-
ity matrix P as the kernel of the Markov chain. A Markov
chain is irreducible if for all x,y ∈ Ω there exists a t such
that P t(x → y) > 0 and aperiodic if for all x ∈ Ω,
gcd{t ≥ 1 | P t(x→ x) > 0} = 1.

Theorem 1. Any irreducible and aperiodic Markov chain
has exactly one stationary distribution.

A distribution π on Ω is reversible for a Markov chain
with state space Ω and transition probabilities P , if for every
x,y ∈ Ω

π(x)P (x→ y) = π(y)P (y→ x).

We say that a Markov chain is reversible if there exists a
reversible distribution for it. The AI literature often refers
to reversible Markov chains as Markov chains satisfying the
detailed balance property.

Theorem 2. Every reversible distribution for a Markov
chain is also a stationary distribution for the chain.

Markov Chains for Probability Estimation Numerous
approximate inference algorithms for probabilistic graphical
models draw sample points from a Markov chain whose sta-
tionary distribution is that of the probabilistic model, and use
the sample points to estimate marginal probabilities. Sam-
pling approaches of this kind are referred to as Markov chain
Monte Carlo methods. We discuss the Gibbs sampler, a sam-
pling algorithm often used in practice.

Let X be a finite set of random variables with probability
distribution π. The Markov chain for the Gibbs sampler is
a Markov chainM = (x0,x1, ...) which, being in state xt,
performs the following steps at time t+ 1:

1. Select a variable X ∈ X uniformly at random;

2. Sample x′
t+1(X), the value of X in the state x′

t+1, ac-
cording to the conditional π-distribution of X given that
all other variables take their values according to xt; and

3. Let x′
t+1(Y ) = xt(Y ) for all variables Y ∈ X \ {X}.

The Gibbs chain is aperiodic and has π as a stationary
distribution. If the chain is irreducible, then the marginal es-
timates based on sample points drawn from the chain are
unbiased once the chain reaches the stationary distribution.

Two or more Markov chains can be combined by con-
structing mixtures and compositions of the kernels (Tierney
1994). Let P1 and P2 be the kernels for two Markov chains
M1 and M2 both with stationary distribution π. Given a
positive probability 0 < α < 1, a mixture of the Markov
chains is a Markov chain where, in each iteration, kernel P1

is applied with probability α and kernel P2 with probabil-
ity 1 − α. The resulting Markov chain has π as a stationary
distribution. The following result relates properties of the in-
dividual chains to properties of their mixture.

Theorem 3 (Tierney 1994). A mixture of two Markov
chainsM1 andM2 is irreducible and aperiodic if at least
one of the chains is irreducible and aperiodic.

For a more in-depth discussion of combining Markov
chains and the application to machine learning, we refer the
interested reader to an overview paper (Andrieu et al. 2003).

Mixing Symmetric and Asymmetric
Markov Chains

We propose a novel MCMC framework that constructs mix-
tures of Markov chains where one of the chains operates
on the approximate symmetries of the probabilistic model.
The framework assumes a base Markov chain MB such as
the Gibbs chain, the MC-SAT chain (Poon and Domingos
2006), or any other MCMC algorithm. We then construct a
mixture of the base chain and an Orbital Metropolis chain
which exploits approximate symmetries for its proposal dis-
tribution. Before we describe the approach in more detail,
let us first review Metropolis samplers.

Metropolis-Hastings Chains
The construction of a Metropolis-Hastings Markov chain is a
popular general procedure for designing reversible Markov
chains for MCMC-based estimation of marginal probabili-
ties. Metropolis-Hastings chains are associated with a pro-
posal distribution Q(·|x) that is utilized to propose a move
to the next state given the current state x. The closer the pro-
posal distribution to the distribution π to be estimated, that
is, the closer Q(x | xt) to π(x) for large t, the better the
convergence properties of the Metropolis-Hastings chain.

We first describe the Metropolis algorithm, a special case
of the Metropolis-Hastings algorithm (Häggström 2002).
Let X be a finite set of random variables with probability
distribution π and let Ω be the set of states of the random
variables. The Metropolis chain is governed by a transition
graph G = (Ω,E) whose nodes correspond to states of
the random variables. Let n(x) be the set of neighbors of
state x in G, that is, all states reachable from x with a
single transition. The Metropolis chain with graph G and
distribution π has transition probabilities

P (x→ y) =
1

|n(x)| min
{
π(y)|n(x)|
π(x)|n(y)| , 1

}
, if x and y are neighbors

0, if x 6= y are not neighbors

1−
∑

y′∈n(x)

1
|n(x)| min

{
π(y′)|n(x)|
π(x)|n(y′)| , 1

}
, if x = y.

Being in state xt of the Markov chainM = (x0,x1, ...),
the Metropolis sampler therefore performs the following
steps at time t+ 1:

1. Select a state y from n(xt), the neighbors of xt, uniformly
at random;

2. Let xt+1 = y with probability min
{
π(y)|n(x)|
π(x)|n(y)| , 1

}
;

3. Otherwise, let xt+1 = xt.

Note that the proposal distribution Q(·|x) is simply the
uniform distribution on the set of x’s neighbors. It is
straight-forward to show that π is a stationary distribution
for the Metropolis chain by showing that π is a reversible
distribution for it (Häggström 2002).

Now, the performance of the Metropolis chain hinges
on the structure of the graph G. We would like the graph
structure to facilitate global moves between high probability
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modes, as opposed to the local moves typically performed
by MCMC chains. To design such a graph structure, we take
advantage of approximate symmetries in the model.

Orbital Metropolis Chains
We propose a novel class of orbital Metropolis chains that
move between approximate symmetries of a distribution.
The approximate symmetries form an automorphism group
G. We will discuss approaches to obtain such an automor-
phism group in Section . Here, we introduce a novel Markov
chain that takes advantage of the approximate symmetries.

Given a distribution π over random variables X with state
space Ω, and a permutation group G acting on Ω, the orbital
Metropolis chainMS for G performs the following steps:

1. Select a state y from xG
t , the orbit of xt, uniformly at

random;

2. Let xt+1 = y with probability min
{
π(y)
π(x) , 1

}
;

3. Otherwise, let xt+1 = xt.

Note that a permutation group acting on Ω partitions the
states into disjoint orbits. The orbital Metropolis chain sim-
ply moves between states in the same orbit. Hence, two
states in the same orbit have the same number of neighbors
and, thus, the expressions cancel out in line 2 above. It is
straight-forward to show that the chainMS is reversible and,
hence, that it has π as a stationary distribution. However, the
chain is not irreducible as it never moves between states that
are not symmetric with respect to the permutation group G.
In the binary case, for example, it cannot reach states with a
different Hamming weight from the initial state.

Lifted Metropolis-Hastings
To obtain an irreducible Markov chain that exploits ap-
proximate symmetries, we construct a mixture of (a) some
base chainMB with stationary distribution π for which we
know that it is irreducible and aperiodic; and (b) an orbital
Metropolis chainMS. We can prove the following theorem.
Theorem 4. Let X be a set of random variables with distri-
bution π and approximate automorphisms G. Moreover, let
MB be an aperiodic and irreducible Markov chain with sta-
tionary distribution π, and letMS be the orbital Metropolis
chain for X and G. The mixture ofMB andMS is aperiodic,
irreducible, and has π as its unique stationary distribution.

The mixture of the base chain and the orbital Metropo-
lis chain has several advantages. First, it exploits the ap-
proximate symmetries of the model which was shown to be
advantageous for marginal probability estimation (Van den
Broeck and Darwiche 2013). Second, the mixture of
Markov chains performs wide ranging moves via the orbital
Metropolis chain, exploring the state space more efficiently
and, therefore, improving the quality of the probability es-
timates. Figure 2 depicts the state space and the transition
graph of (a) the Gibbs chain and (b) the mixture of the Gibbs
chain and an orbital Metropolis chain. It illustrates that the
mixture is able to more freely move about the state space
by jumping between orbit states. For instance, moving from
state 0110 to 1001 would require 4 steps of the Gibbs chain

0 0 0 0 

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 

0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 

1 1 1 1 

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 

0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 

0 0 0 0 

1 1 1 1 

0 0 1 1 1 1 0 0 

X1 X2 X3 X4 (a)

(b)

Figure 2: The state space (self-arcs are omitted) of (a) the
Gibbs chain for four binary random variables and (b) the or-
bit partition of its state space induced by the permutation
group generated by the permutation (X1 X2)(X3 X4). The
permutations are approximate symmetries, derived from an
over-symmetric approximation of the original model. The
Gibbs chain proposes moves to states whose Hamming dis-
tance to the current state is at most 1. The orbital Metropo-
lis chain, on the other hand, proposes moves between orbit
elements which have a Hamming distance of up to 4. The
mixture of the two chains leads to faster convergence while
maintaining an unbiased stationary distribution.

but is possible in one step with the mixture of chains. The
larger the size of the automorphism groups, the more densely
connected is the transition graph. Since the moves of the or-
bital Metropolis chain are between approximately symmet-
ric states of the random variables, it does not suffer from the
problem of most proposals being rejected. We will be able
to verify this hypothesis empirically.

The general Lifted Metropolis-Hastings framework can
be summarized as follows.

1. Obtain an approximate automorphism group G;

2. Run the following mixture of Markov chains:

(a) With probability 0 < α < 1, apply the kernel of the
base chainMB;

(b) Otherwise, apply the kernel of the orbital Metropolis
chainMS for G.

Note that the proposed approach is a generalization of
lifted MCMC (Niepert 2013; 2012b), essentially using it as a
subroutine, and that all MH proposals are accepted if G is an
automorphism group of the original model. Moreover, note
that the framework allows one to combine multiple orbital
Metropolis chains with a base chain.
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Approximate Symmetries
The Lifted Metropolis-Hastings algorithm assumes that a
permutation group G is given, representing the approximate
symmetries. We now discuss several approaches to the com-
putation of such an automorphism group. While it is not pos-
sible to go into technical detail here, we will provide pointers
to the relevant literature.

There exist several techniques to compute the exact sym-
metries of a graphical model and construct G; see (Niepert
2012b; Bui, Huynh, and Riedel 2013). The color refinement
algorithm is also well-studied in lifted inference (Kersting et
al. 2014). It can find (exact) orbits of random variables for a
slightly weaker notion of symmetry, called fractional auto-
morphism. These techniques all require some form of exact
symmetry to be present in the model.

Detecting approximate symmetries is a problem that is
largely open. One key idea is that of an over-symmetric ap-
proximations (OSAs) (Van den Broeck and Darwiche 2013).
Such approximations are derived from the original model
by rendering the model more symmetric. After the compu-
tation of an over-symmetric model, we can apply existing
tools for exact symmetry detection. Indeed, the exact sym-
metries of an approximate model are approximate symme-
tries of the exact model. These symmetrization techniques
are indispensable to our algorithm.

Relational Symmetrization Existing symmetrization
techniques operate on relational representations, such as
Markov logic networks (MLNs). The full paper reviews
MLNs and shows a web page classification model. Rela-
tional models have numerous symmetries. For example,
swapping the web pages A and B does not change the
MLN. This permutation of constants induces a permutations
of random variables (e.g., between Page(A,Faculty) and
Page(B,Faculty)). Unfortunately, hard and soft evidence
breaks symmetries, even in highly symmetric relational
models (Van den Broeck and Darwiche 2013). When the
variables Page(A,Faculty) and Page(B,Faculty) get as-
signed distinct soft evidence, the symmetry between A and
B is removed, and lifted inference breaks down.1 Similarly,
when the Link relation is given, its graph is unlikely to be
symmetric (Erdős and Rényi 1963), which in turn breaks
the symmetries in the MLN. These observations motivated
research on OSAs. Van den Broeck and Darwiche (2013)
propose to approximate binary relations, such as Link,
by a low-rank Boolean matrix factorization. Venugopal
and Gogate (2014) cluster the constants in the domain of
the MLN. Singla, Nath, and Domingos (2014) present a
message-passing approach to clustering similar constants.

Propositional Symmetrization A key property of our
LMH algorithm is that it operates at the propositional level,
regardless of how the graphical model was generated. It also
means that the relational symmetrization approaches out-
lined above are inadequate in the general case. Unfortu-
nately, we are not aware of any work on OSAs of propo-
sitional graphical models. However, some existing tech-

1Solutions to this problem exist if the soft evidence is on a sin-
gle unary relation (Bui, Huynh, and de Salvo Braz 2012)

(a) Texas - Iterations (b) Texas - Time

(c) Washington - Iterations (d) Washington - Time

Figure 3: WebKB - KL Divergence of Texas and Washington

niques provide a promising direction. First, basic clustering
can group together similar potentials. Second, the low-rank
Boolean matrix factorization used for relational approxima-
tions can be applied to any graph structure, including graph-
ical models. Third, color passing techniques for exact sym-
metries operate on propositional models (Kersting, Ahmadi,
and Natarajan 2009; Kersting et al. 2014). Combined with
early stopping, they can output approximate variable orbits.

From OSAs to Automorphisms Given an OSA of our
model, we need to compute an automorphism group G from
it. The obvious choice is to compute the exact automor-
phisms from the OSA. While this works in principle, it may
not be optimal. Let us first consider the following two con-
cepts. When a group G operates on a set Ω, only a subset
of the elements in Ω can actually be mapped to an element
other than itself. When Ω is the set of random variables, we
call these elements the moved variables. When Ω is the set
of potentials in a probabilistic graphical model, we call these
the moved potentials. It is clear that we want G to move
many random variables, as this will create the largest jumps
and improve the mixing behavior. However, each LMH step
comes at a cost: in the second step of the algorithm, the prob-
ability of the proposed approximately-symmetric state π(y)
is estimated. This requires the re-evaluation of all potentials
that are moved by G. Thus, the time complexity of an orbital
Metropolis step is linear in the number of moved potentials.
It will therefore be beneficial to construct subgroups of the
automorphism group of the OSA and, in particular, ones that
move many variables and few potentials. The full paper dis-
cusses a heuristic to construct such subgroups.

Experiments
For our first experiments, we use the standard WebKB data
set, consisting of web pages from four computer science de-
partments (Craven and Slattery 2001). We use the standard
MLN structure for the WebKB domain, which has MLN for-
mulas of the form shown above, but for all combinations of
labels and words, adding up to around 5500 first-order MLN
formulas. We learn the MLN parameters using Alchemy.

We consider a collective classification setting, where we
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Figure 4: LMH vs. over-symmetric approximations (OSA)
on WebKB Washington. OSA-r-c denotes binary evidence
of Boolean rank r and c clusters of formula weights.

are given the link structure and the word content of each
web page, and want to predict the page labels. We run Gibbs
sampling and the Lifted MCMC algorithm (Niepert 2012b),
and show the average KL divergence between the estimated
and true marginals in Figure 3. When true marginals are not
computable, we used a very long run of a Gibbs sampler
for the gold standard marginals. Since every web page con-
tains a unique set of words, the evidence on the word content
creates distinct soft evidence on the page labels. Moreover,
the link structure is largely asymmetric and, therefore, there
are no exploitable exact symmetries and Lifted MCMC co-
incides with Gibbs sampling. Next we construct an OSA us-
ing a rank-5 approximation of the link structure (Van den
Broeck and Darwiche 2013) and group the potential weights
into 6 clusters. From this OSA we construct a set of auto-
morphisms that is efficient for LMH. Figure 3 shows that
the LMH chain, with mixing parameter α = 4/5, has a
lower KL divergence than Gibbs and Lifted MCMC vs. the
number of iterations. Note that there is a slight overhead to
LMH because the orbital Metropolis chain is run between
base chain steps. Despite this overhead, LMH outperforms
the baselines as a function of time. The orbital Metropolis
chain accepts approximately 70% of its proposals. We re-
fer the reader to the technical report on arXiv for additional
WebKB experiments.

Figure 4 illustrates the effect of running Lifted MCMC
on OSA, which is the current state-of-the-art approach for
asymmetric models. As expected, the drawn sample points
produce biased estimates. As the quality of the approxima-
tion increases, the bias reduces, but so do the speedups.
LMH does not suffer from a bias. Moreover, we observe
that its performance is stable across different OSAs (not de-
picted).

We also ran experiments for two propositional models
that are frequently used in real world applications. The first
model is a 100x100 ferromagnetic Ising model with con-
stant interaction strength and external field (see Figure 1(a)
for a 4x4 version). Due to the different potentials induced
by the external field, the model has no symmetries. We use
the model without external field to compute the approximate
symmetries. The automorphism group representing these
symmetries is generated by the rotational and reflectional
symmetries of the grid model (see Figure 1(b)). As in the
experiments with the relational models, we used the mixing

(a) Ising - Iterations (b) Ising - Time

(c) Chimera - Iterations (d) Chimera - Time

Figure 5: KL Divergences for the propositional models.

parameter α = 4/5 for the LMH algorithm. Figure 5(c) and
(d) depicts the plots of the experimental results. The LMH
algorithm performs better with respect to the number of it-
erations and, to a lesser extent, with respect to time.

We also ran experiments on the Chimera model which has
recently received some attention as it was used to assess the
performance of quantum annealing (Boixo et al. 2013). We
used exactly the model as described in Boixo et al. (2013).
This model is also asymmetric but can be made symmet-
ric by assuming that all pairwise interactions are identical.
The KL divergence vs. number of iterations and vs. time
in seconds is plotted in Figure 5(a) and (b), respectively.
Similar to the results for the Ising model, LMH outperforms
Gibbs and LMCMC both with respect to the number of iter-
ations and wall clock time. In summary, the LMH algorithm
outperforms standard sampling algorithms on these propo-
sitional models in the absence of any symmetries. We used
very simple symmetrization strategies for the experiments.
This demonstrates that the LMH framework is powerful and
allows one to design state-of-the-art sampling algorithms.

Conclusions We have presented a Lifted Metropolis-
Hastings algorithms capable of mixing two types of Markov
chains. The first is a non-lifted base chain, and the second
is an orbital Metropolis chain that moves between approx-
imately symmetric states. This allows lifted inference tech-
niques to be applied to asymmetric graphical models.
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