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Abstract

Applications of graphical models often require the use
of approximate inference, such as sequential impor-
tance sampling (SIS), for estimation of the model dis-
tribution given partial evidence, i.e., the target distribu-
tion. However, when SIS proposal and target distribu-
tions are dissimilar, such procedures lead to biased es-
timates or require a prohibitive number of samples. We
introduce ReBaSIS, a method that better approximates
the target distribution by sampling variable by variable
from existing importance samplers and accepting or re-
jecting each proposed assignment in the sequence: a
choice made based on anticipating upcoming evidence.
We relate the per-variable proposal and model distri-
butions by expected weight ratios of sequence comple-
tions and show that we can learn accurate models of
optimal acceptance probabilities from local samples. In
a continuous-time domain, our method improves upon
previous importance samplers by transforming an SIS
problem into a machine learning one.

1 Introduction
Sequential importance sampling (SIS) is a method for ap-
proximating an intractable target distribution by sampling
from a proposal distribution and weighting the sample by the
ratio of target to proposal distribution probabilities at each
step of the sequence. It provides the basis for many distribu-
tion approximations with applications including robotic en-
vironment mapping and speech recognition (Montemerlo et
al. 2003; Wolfel and Faubel 2007). The characteristic short-
coming of importance sampling stems from the potentially
high weight variance that results from large differences in
the target and proposal densities. SIS compounds this prob-
lem by iteratively sampling over the steps of the sequence,
resulting in sequence weights equal to the product of step
weights. The sequence weight distribution is exponential,
so only the high-weight tail of the sample distribution con-
tributes substantially to the approximation. Two approaches
to mitigate this problem are filtering, e.g., (Doucet, Godsill,
and Andrieu 2000; Fan, Xu, and Shelton 2010) and adaptive
importance sampling, e.g., (Cornebise, Moulines, and Ols-
son 2008; Yuan and Druzdzel 2003; 2007a).
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One drawback of filtering is that it does not efficiently ac-
count for future evidence, and in cases of severe proposal-
evidence mismatch, many resampling steps are required,
leading to sample impoverishment. Akin to adaptive im-
portance sampling, our method addresses proposal-evidence
mismatch by developing “foresight”, i.e. adaptation to ap-
proaching evidence, to guide its proposals. It develops “fore-
sight” by learning a binary classifier dependent on approach-
ing evidence to accept or reject each proposal. Our proce-
dure can be viewed as the construction of a second proposal
distribution, learned to account for evidence and to better ap-
proximate the target distribution, and is a new form of adap-
tive importance sampling.

In greater detail, our task is to recover a target distribution
f∗, which can be factored variable by variable into compo-
nent conditional distributions f∗i for i ∈ 1 . . . k. The SIS
framework provides a suboptimal surrogate distribution g,
which likewise can be factored into a set of conditional dis-
tributions gi. We propose a second surrogate distribution h
closer to f∗ based on learning conditional acceptance prob-
abilities ai of rejection samplers relating f∗i and gi. That is,
to sample from h, we iteratively (re-)sample from proposals
gi and accept with probability ai.

Our key idea is to relate the proposal gi and target f∗i dis-
tributions by the ratio of expected weights of sequence com-
pletions, i.e., a setting for each variable from i to k, given
acceptance and rejection of the sample from gi. Given the
expected weight ratio, we can recover the optimal accep-
tance probability a∗i and thus f∗i .

Unfortunately, the calculation of the expected weights,
and thus the ratio, is typically intractable because of the
exponential number of sequence completions. Instead, we
can approximate it using machine learning. First, we show
that the expected weight ratio equals the odds of accept-
ing a proposal from gi under the f∗i distribution. Then,
transforming the odds to a probability, we can learn a bi-
nary classifier for the probability of acceptance under f∗i
given the sample proposal from gi. Finally, we show how
to generate examples to train a classifier to make the opti-
mal accept/reject decision. We specifically examine the ap-
plication of our rejection-based SIS (ReBaSIS) algorithm to
continuous-time Bayesian networks (CTBNs) (Nodelman,
Shelton, and Koller 2002), where inference (even approxi-
mate) is NP-hard (Sturlaugson and Sheppard 2014).
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We proceed as follows. First we present an example and
related work, and we outline the problem of SIS and the
identification of good proposal distributions. Then, we de-
fine rejection sampling within SIS and show how to approx-
imate the target distribution via binary classification. Finally,
we extend our analysis to CTBNs and describe experiments
that show the empirical advantages of our method over pre-
vious CTBN importance samplers.

1.1 An Illustrative Example
Figure 1 describes our method in the simplest rele-
vant example: a binary-state Markov chain. For our
example, let k = 3: then we have evidence that
z3 = 1. One possible sample procedure could be:
S, accept z2

1 , reject z2
2 , accept z1

2 , reject z2
3 , accept z1

3 , T ,
giving us the path: S, z2

1 , z
1
2 , z

1
3 , T . Note that if the

proposal g3: z1
2 → z1

3 were very improbable under g
but not f (i.e., proposal-evidence mismatch), all samples
running through z1

2 would have very large weight. By
introducing the possibility of rejection at each step, our
procedure can learn to reject samples to z2

3 , reducing the
importance sampling weight, and learn to enter states z1

2
and z2

2 proportionally to f(·|e), i.e., develop “foresight”.

1.2 Related Work
As mentioned above, batch resampling techniques based on
rejection control (Liu, Chen, and Wong 1998; Yuan and
Druzdzel 2007b) or sequential Monte Carlo (SMC) (Doucet,
Godsill, and Andrieu 2000; Fan, Xu, and Shelton 2010),
i.e. particle filtering, can mitigate the SIS weight variance
problem, but they can lead to reduced particle diversity,
especially when many resampling iterations are required.
Particle smoothing (Fan, Xu, and Shelton 2010) combats
particle impoverishment, but the exponentially-large state
spaces used in CTBNs limit its ability to find alterna-
tive, probable sample histories. Previous adaptive impor-
tance sampling methods rely on structural knowledge and
other inference methods, e.g., (Cheng and Druzdzel 2000;
Yuan and Druzdzel 2003), to develop improved proposals,
whereas our method learns a classifier to help guide sam-
ples through regions of proposal-evidence mismatch. One
interesting idea combining work in filtering and adaptive
importance sampling is the SMC2 algorithm (Chopin et al.
2011), which maintains a sample distribution over both par-
ticles and parameters determining the proposal distribution,
resampling along either dimension as necessary. The method
does not anticipate future evidence, so it may complement
our work, which can similarly be used in the SMC frame-
work. Other MCMC (Rao and Teh 2011) or particle MCMC
(Andrieu, Doucet, and Holenstein 2010) methods may have
trouble in large state spaces (e.g., CTBNs) with multiple
modes and low density regions in between, especially if
there is proposal-evidence mismatch.

2 Background
We begin with a review of importance sampling and then in-
troduce our surrogate distribution. Let f be a p.d.f. defined
on an ordered set of random variables Z = {Z1, . . . , Zk}

Figure 1: A source-to-sink representation of a binary-state
Markov chain with evidence at zk (red). Distributions f and
g are defined over paths from source S to sink T and are
composed of element-wise distributions fi and gi. For a
sample at state z2

1 (dark blue), an assignment to z2
2 is pro-

posed (light blue) according to g2. To mimic sampling from
f∗2 = f2(·|e), the proposed assignment is accepted with
probability proportional to the ratio of expected weights of
path completions from z2

2 and z2
1 to T .

over an event space Ω. We are interested in the conditional
distribution f(z|e), where evidence e is a set of observa-
tions about a subset κ of values {Zi = zi}i∈κ. For fixed e,
we define our target p.d.f. f∗(z) = f(z|e). Let g(z) be a
surrogate distribution from which we can sample such that
if f∗(z) > 0 then g(z) > 0. Then for any subset Z ⊆ Ω, we
can approximate f∗ with n weighted samples from g:∫

z∈Z
f∗(z)dz =

∫
Z

f∗(z)

g(z)
g(z)dz

≈ 1

n

n∑
i=1

1[zi∈Z]
f∗(zi)

g(zi)
=

1

n

n∑
i=1

1[zi∈Z]wi

where 1[zi∈Z] is the indicator function with value 1 if zi ∈
Z and 0 otherwise, and wi is the importance sample weight.

We design a second surrogate h(z) with the density cor-
responding to accepting a sample from g:

h(z) = g(z)a(z)

(∫
Ω

g(ζ)a(ζ)dζ

)−1

(1)

where a(z) is the sample acceptance probability from g. The
last term in Equation 1 is a normalizing functional (of g and
a) to ensure that h(z) is a density. Procedurally, we sample
from h by (re-)sampling from g and accepting with proba-
bility a. The approximation of f∗ with h is given by:∫

Z
f∗(z)dz =

∫
Z

f∗(z)

g(z)

g(z)

h(z)
h(z)dz

≈ 1

n

n∑
i=1

1[zi∈Z]wif∗gw
i
gh

with weights wif∗h = wif∗gw
i
gh. To ensure that h has the

support of f∗, we require that both a and g are non-zero
everywhere f∗ is non-zero.

Now we can define our optimal resampling density h∗(z)
using the optimal choice of acceptance probability a∗(z) =
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min(1, f∗(z)/αg(z)), where α ≥ 1 is a constant determin-
ing the familiar rejection sampler “envelope”: αg(z). The
density h∗(z) is optimal in the sense that, for appropriate
choice of α such that f∗(z) < αg(z) for all z, h∗(z) =
f∗(z). When h∗(z) = f∗(z), the importance weights are
exactly 1, and the effective sample size is n.

In many applications the direct calculation of f∗(z) is in-
tractable or impossible and thus we cannot directly recover
a∗(z) or h∗(z). However, we can still use these ideas to find
h∗(z) through sequential importance sampling (Liu, Chen,
and Wong 1998), which we describe next.

2.1 Sequential Importance Sampling
Sequential importance sampling (SIS) is used when estimat-
ing the distribution f∗ over the factorization of Z. In time-
series models, Zi is a random variable over the joint state
corresponding to a time step; in continuous-time models, Zi
is the random variable corresponding to an interval. Defining
zj←i = {zj , zj−1, . . . , zi} for i, j ∈ {1, . . . , k} and j ≥ i,
we have the decomposition:

f∗(z) = p(z1, . . . , zk|e)
= g1(z1|e)w1(z1|e)

k∏
i=2

gi(zi|z(i−1)←1, e)wi(zi|z(i−1)←1, e) (2)

where p(·) is the probability distribution under f . Equa-
tion 2 substitutes p with p.d.f. gi by defining functions gi
and wi(·) = p(·)/gi(·) and requiring gi to have the same
support as p. Then we define g by the composition of gi:
g(z|e) = g1(z1|e)

∏k
i=2 gi(zi|z(i−1)←1, e), and likewise

for w. To generate a sample zj from proposal distribution
g(z|e), SIS samples each zi in order from 1 to k.

3 Methods
In this section we relate the target and proposal decompo-
sitions. Recall that we are interested in sampling directly
from the conditional distribution f∗(z) = p(z|e) for fixed e.
We define interval distributions f∗1 (z1) and f∗i (zi|z(i−1)←1)
such that f∗(z) can be factored into the interval distribu-
tions: f∗(z) = f∗1 (z1)

∏k
i=2 f

∗
i (zi|z(i−1)←1). We define the

interval distributions:

f∗i (zi|z(i−1)←1) =
p(e|zi←1)

p(e|z(i−1)←1)
p(zi|z(i−1)←1)

for i > 1 and p(e|z(i−1)←1) > 0, and f∗(z1) =
p(e|z1)p(z1)/p(e) for i = 1 and p(e) > 0. Then, by the
law of probability, we have:

f∗i (zi|z(i−1)←1) =
Ef [1[e, z]|zi←1]

Ef [1[e, z]|z(i−1)←1]
p(zi|z(i−1)←1).

(3)
The indicator function 1[e, z] is shorthand for 1[

⋂
l∈κ{zl=

el}|z] and takes value 1 if the evidence matches z and
0 otherwise. Note that in the sampling framework, Equa-
tion 3 corresponds to sampling from the unconditioned pro-
posal distribution p(zi|z(i−1)←1) and calculating the ex-
pected weight of sample completions zk←(i+1) and zk←i,

given by the indicator functions. This procedure describes
the expected outcome obtained by forward sampling with
rejection.

However, when f∗ and f are highly dissimilar, the vast
majority of samples from f will be rejected, i.e., 1[e, z] = 0
for most z. It may be better to sample from a proposal g
with weight function w = f/g so that sampling leads to
fewer rejections. Substituting g in Equation 3, we get:

f∗i (zi|z(i−1)←1) =
Eg[w

a
k←i]

Eg[wrk←i]
gi(zi|z(i−1)←1). (4)

The terms Eg[wak←i] and Eg[wrk←i] are the expected for-
ward importance sampling weights of zk→i given accep-
tance (a) or rejection (r) of proposed assignment zi. The
derivation of Equation 4 is provided in the Appendix.

Equation 4 provides the relationship: f∗i versus gi, given
by the ratio of expected weights of completion of sample z
under acceptance or rejection of zi. This allows us to further
improve g and gives us the sampling distribution h.

3.1 Rejection Sampling to Recover f∗i
Because Equation 4 relates the two distributions, we can
generate samples from f∗i by conducting rejection sampling
from gi. Selecting constant α such that f∗i ≤ αgi, i.e., αgi
is the rejection envelope, we define the optimal interval ac-
ceptance probability a∗i by:

a∗i (zi|z(i−1)←1) =
f∗i (zi|z(i−1)←1)

αgi(zi|z(i−1)←1)
=

Eg[w
a
k←i]

αEg[wrk←i]
. (5)

By defining a∗i for all i, we can generate an unweighted sam-
ple from f∗(z) in O(k maxi(f∗i (·)/gi(·))) steps given the
weight ratio expectations and appropriate choice of α. Thus,
if we can recover a∗i for all i, we get h = f∗ as desired and
our procedure generates unweighted samples.

3.2 Estimating the Weight Ratio
The procedure of sampling intervals to completion depends
on the expected weight ratio in Equation 4. Unfortunately,
exact calculation of the ratio is impractical because the ex-
pectations involved require summing over an exponential
number of terms. We could resort to estimating it from
weighted importance samples: completions of z given zi←1

and z given z(i−1)←1. While possible, this is inefficient be-
cause (1) it would require weight estimations for every zi
given zi←1, and (2) the estimation of the expected weights
itself relies on importance sampling.

However, we can cast the estimation of the weight ra-
tio as a machine learning problem of binary classification.
We recognize that similar situations, in terms of state zi←1,
evidence e, model (providing f ) and proposal g, result in
similar values of a∗i . Thus, we can learn a binary classifier
Φi(zi←1, e, f, g) to represent the probability of {acceptance,
rejection} = {φi(·), 1− φi(·)} as a function of the situation.

In particular, the expected weight ratio in Equation 4 is
proportional to the odds under f∗ of accepting the zi sam-
pled from gi. The binary classifier provides an estimate of
the probability of acceptance φi(zi←1, e, f, g), from which
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we can derive the odds of acceptance. Substituting into
Equation 5, we have:

a∗i (zi|z(i−1)←1)

≈ 1

α

(
φi(zi←1, e, f, g)

1− φi(zi←1, e, f, g)

)
= ai(zi|z(i−1)←1),

denoting the approximations as ai for all i. Then our empir-
ical proposal density h is:

h(z) = h1(z1)
k∏
i=2

hi(zi)

= g1(z1)a1(z1)c1[g1, a1]

k∏
i=2

gi(zi|z(i−1)←1)ai(zi|z(i−1)←1)ci[gi, ai],

where the ci are the normalizing functionals as in Equation
1. We provide pseudocode for the rejection-based SIS (Re-
BaSIS) procedure in Algorithm 1.

3.3 Training the Classifier Φi

Conceptually, generating examples for the classifier Φi is
straightforward. Given some z(i−1)←1, we sample zi from
gi, accept with probability ρ = 1/2, and sample to comple-
tion using g to get the importance weight. Then, an example
is (y, x, w): y = {accept, reject}, x is a set of features en-
coding the “situation”, and w is the importance weight.

The training procedure works because the mean weight of
the positive examples estimates Eg[wak←i], and likewise the
mean weight of the negative examples estimates Eg[wrk←i].
By sampling with training acceptance probability ρ, a cal-
ibrated classifier Φρi (i.e., one that minimizes the L2 loss)
estimates the probability: ρEg[wak←i]/(ρEg[w

a
k←i] + (1 −

ρ)Eg[w
r
k←i]). The estimated probability can then be used to

recover the expected weight ratio:
Eg[w

a
k←i]

Eg[wrk←i]
≈
(

1− ρ
ρ

)(
φρi (zi←1, e, f, g)

1− φρi (zi←1, e, f, g)

)
,

and thus, the optimal classifier can be used to recover the
rejection-based acceptance probability a∗i . We get our par-
ticular estimator φi/(1 − φi) by setting ρ = 1/2, though in
principle we could use other values of ρ.

In practice, we sample trajectories alternating acceptance
and rejection of samples zi to get a proportion ρ = 1/2.
Then, we continue sampling the same trajectory to produce
2k training examples for a sequence of length k. We adopt
this procedure for efficiency at the cost of generating related
training examples. Pseudocode for the generation of exam-
ples to train the classifier is provided in the Supplement.

Inevitably, there is some cost to pay to construct h, in-
cluding time for feature construction, classifier training, and
classifier use. However, learning only needs to be done once,
while inference may be performed many times. Also, in
many challenging problems g will not produce an ESS of
any appreciable size, in our case because of a mismatch with
f∗, and in MCMC because of mode hopping difficulties. Our
method adopts an approach complementary to particle meth-
ods to help tackle such problems, and we show its utility in
the CTBN application.

Algorithm 1 Rejection-based SIS (ReBaSIS)

Input: conditional distributions {fj} and {gj} ∀j,
evidence e; constants α, k; i = 1, z = {}, w = 1; classifiers
{φj}

Output: sample z with weight w
1: while i ≤ k do
2: accept = false
3: while not accept do
4: Sample zi ∼ gi, r ∼ U[0, 1]

5: a = 1
α

(
φi(zi,z,e,f,g)

1−φi(zi,z,e,f,g)

)
6: if r < a then
7: accept = true
8: end if
9: end while

10: z = {zi, z}, w = wfi(zi)c[gi(zi), a(zi)]/(gi(zi)a)
11: i = i+ 1
12: end while
13: return (z, w)

4 Continuous-Time Bayesian Networks
We extend our analysis to a continuous-time model: the
continuous-time Bayesian network (CTBN) (Nodelman,
Shelton, and Koller 2002), which have applications for ex-
ample in anomaly detection (Xu and Shelton 2010) and
medicine (Weiss, Natarajan, and Page 2012). We review the
CTBN model and sampling methods and extend our analy-
sis.

CTBNs are a model of discrete random variables
X1, X2, . . . , Xd = X over time. The model specifies a di-
rected graph overX that determines the parents of each vari-
able. The parents setting uX is the joint state of the parents
of X . Then, CTBNs assume that the probability of transi-
tion for variable X out of state x at time t is given by the
exponential distribution qx|ue−qx|ut with rate parameter (in-
tensity) qx|u for parents setting u. The variableX transitions
from state x to x′ with probability Θxx′|u, where Θxx′|u is
an entry in a state transition matrix Θu. A complete CTBN
model is described by two components: a distribution B over
the initial joint state X , typically represented by a Bayesian
network, and a directed graph over nodes representing X
with corresponding conditional intensity matrices (CIMs).
The CIMs hold the intensities qx|u and state transition prob-
ability matrices Θu.

The likelihood of a CTBN model given data is computed
as follows. A trajectory is a sequence of intervals of fixed
state. For each interval [t0, t1), the duration t = t1 − t0
passes, and a variable X transitions at t1 from state x to x′.
During the interval all other variables Xi 6= X remain in
their current states xi. The interval likelihood is given by:

qx|ue
−qx|ut

︸ ︷︷ ︸
X transitions

Θxx′|u︸ ︷︷ ︸
to state x′

∏
xi:Xi 6=X

e−qxi|ut

︸ ︷︷ ︸
whileXi’s rest

. (6)

Then, the sequence likelihood is given by the product of in-
terval likelihoods:∏

X∈X

∏
x∈X

∏
u∈UX

q
Mx|u
x|u e−qx|uTx|u

∏
x′ 6=x

Θ
Mxx′|u
xx′|u
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where the Mx|u (and Mxx′|u) are the numbers of transi-
tions out of state x (to state x′), and where the Tx|u are the
amounts of time spent in x given parents settings u.

4.1 Sampling in CTBNs
Evidence provided in data is typically incomplete, i.e., the
joint state is partially or fully unobserved over time. Thus,
inference is performed to probabilistically complete the un-
observed regions. CTBNs are generative models and pro-
vide a sampling framework to complete such regions. Let
a trajectory z be a sequence of (state,time) pairs (zi =
{x1i, x2i, . . . , xdi}, ti) for i = {0, . . . , k}, where xji is
the jth CTBN variable at the ith time, such that the se-
quence of ti are in [tstart, tend). Given an initial state z0 =
{x10, x20, . . . , xd0}, transition times are sampled for each
variable x according to qx|ue

−qx|ut where x is the active
state of X . The variable Xi that transitions in the interval is
selected based on the shortest sampled transition time. The
state to which Xi transitions is sampled from Θxix′i|u. Then
the transition times are resampled as necessary according
to intensities qx|u, noting that these intensities may be dif-
ferent because of potential changes in the parents setting u.
The trajectory terminates when all sampled transition times
exceed a specified ending time.

Previous work by Fan et al. describes a framework for im-
portance sampling, particle filtering, and particle smoothing
in CTBNs (Fan, Xu, and Shelton 2010). By sampling from
truncated exponentials, they incur importance sample down-
weights on their samples. Recall that Equation 6 is broken
into three components. The weights f∗i /gi are decomposed
likewise: (1) a downweight for the variable x that transitions,
according to the ratio of the exponential to the truncated ex-
ponential: (1 − e−qx|uτ ), (2) a downweight corresponding
to a lookahead point-estimate of Θu assuming no other vari-
ables change until the evidence (we leave this unmodified in
our implementation), and (3) a downweight for each resting
variable xi given by the ratio of not sampling a transition
in time t from an exponential and a truncated exponential:
(1− e−qxi|uτi)/(1− e−qxi|u(τi−t1)). Finally, the product of
all interval downweights provides the trajectory importance
sample weight.

4.2 ReBaSIS applied to CTBNs
There is an equivalence between a fixed continuous-time tra-
jectory and the discrete sequences described above. In par-
ticular, the rejection-based importance sampling method re-
quires that the number of intervals k must be fixed, while
CTBNs produce trajectories with varying numbers of inter-
vals. Nevertheless, for any set of trajectories, we can define
ε-width intervals small enough that at most one transition oc-
curs per interval and that such transitions occur at the end of
the interval. Then for any set of trajectories over the duration
[tstart, tend), we set k = (tend−tstart)/ε. Using the memoryless
property of exponential distributions, the density of a single,
one-transition interval is equal to the density of the product
of a sequence of ε-width, zero-transition intervals and one ε-
width, one-transition interval. In practice, it is simpler to use
the CTBN sampling framework so that each interval is of

appreciable size. We denote the evidence e as a sequence of
tuples of type (state, start time, duration): (ei, ti,0, τi) allow-
ing for point evidence with zero duration, τi = 0, and 1[e, z]
checks to see if z agrees with each ei over the duration.

Unlike discrete time where we can enumerate the states
zi, in continuous time the calculation of wgh can be time-
consuming because of the normalizing integrals ci[gi, ai].
From Equation 1, we have, omitting the conditioning:

gi(zi)

hi(zi)
=

∫
Ωi
ai(ζ)gi(ζ)dζ

ai(zi)
.

which can either be approximated by (1 − φi(·))/φi(·), or
calculated piecewise. The approximation method assumes
the learned acceptance probability produces a proper condi-
tional probability distribution for each situation. In our ex-
periments, we adopt the approximation method and compare
the results to show it does not introduce significant bias. We
also compare using a restricted feature set where an exact,
piecewise computation is possible.

Several properties of CTBNs make our approach appeal-
ing. First, CTBNs possess the Markov property; namely,
the next state is independent of previous states given the
current one. Second, CTBNs are homogeneous processes,
so the model rate parameters are shared across inter-
vals. We leverage these facts when learning each accep-
tance probability ai. The Markov property simplifies the
learned probability of acceptance φi(zi|z(i−1)←1, e, f, g) to
φi(zi|z(i−1), e, f, g). Homogeneity simplifies the learning
process because, if z(i−1) = z(j−1) and ti,0 = tj,0 for j 6= i,
then φi(zi|z(i−1), e, f, g) = φi(zj |z(j−1), e, f, g). The de-
generacy of these two cases indicates that the probabil-
ity of acceptance is situation-dependent and interval index-
independent, so a single classifier can be learned in place of
k classifiers.

5 Experiments
We compare our learning-based rejection method (setting
α = 2) with the Fan et al. sampler (2010). We learn a logis-
tic regression (LR) model using online, stochastic gradient
descent for each CTBN variable state. An LR data exam-
ple is (y, x, w), where y is one of {accept, reject}, x is a set
of features, and w is the sequence completion weight. For
our experiments we use per-variable features encoding the
state (as indicator variables), the time from the current time
to next evidence, the time from the proposed sample to next
evidence, and the time from the proposed sample to next
matching evidence. Except in the restricted feature set, the
times are mapped to intervals [0, 1] by using a e−t/λ trans-
formation, with λ = {10−2, 10−1, 100, 101, 102} to capture
effects at different time scales. The restricted feature set uses
linear times truncated at a maximum time of 10. This allows
fort piecewise calculation of the normalizing functional Be-
cause of the high variance in weights for samples of full se-
quence completions, we instead choose a local weight: the
weight of the sequence through the next m = 10 evidence
times. This biases the learner to have low variance weights
within the local window, but it does not bias the proposal h.
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Figure 2: Approximate transition densities (top) of f∗ (tar-
get), f (target without evidence), g (surrogate), and h
(learned rejection surrogate) in a one-variable, binary-state
CTBN with uniform transition rates of 0.1 and matching
evidence at t=5. The learned distribution h closely mimics
f∗, the target distribution with evidence, while g was con-
structed to mimic f (exactly, in this situation). All methods
recover the weighted transition densities (bottom); for 20 ev-
idence points with one at t=5 and 19 after t=20, h recovers
the target distribution more precisely than g per 106 samples.

We analyze the performance of the rejection-based sam-
pler by inspection of learned transition probability densi-
ties and the effective sample size (ESS) (Kong, Liu, and
Wong 1994). ESS is an indicator of the quality of the sam-
ples, and a larger value is better: ESS = 1/(

∑n
i=1(W i)2),

where W i = wi/
∑n
j=1 w

j . We test our method in sev-
eral models: one-, two- and three- variable, strong-cycle
binary-state CTBNs, and the part-binary, 8-variable drug
model presented in the original CTBN paper (Nodelman,
Shelton, and Koller 2002). The “strong-cycle” models en-
code an intensity path for particular joint states by shift-
ing bit registers and adding and filling in an empty regis-
ter with a 0 or 1 as in the following example. For the 3-
variable strong cycle, intensities involved in the path 000→
001 → 011 → 111 → 110 → 100 → 000 are 1, and
intensities are 0.1 for all other transitions. We generate se-
quences from ground truth models and censor each to re-
tain only 100 point evidences with times ti drawn randomly,
uniformly over the duration [0,20). The code is provided at
http://cs.wisc.edu/˜jcweiss/aaai15.

Figure 2 (top) illustrates the ability of h to mimic f∗,
the target distribution, in a one-node binary-state CTBN
with matching evidence at t = 5. The Fan et al. proposal
g matches the target density in the absence of evidence,

Table 1: Geometric mean of effective sample size (ESS) over
100 sequences, each with 100 observations; ESS is per 105

samples. The proposal h was learned with 1000 sequences.

Model Fan et al. (g) Rejection SIS (h)
Strong cycle, n=1 690 6400
Strong cycle, n=2 19000 35000
Strong cycle, n=3 960 5800

Drug 29 170

f . However, when approaching evidence (at t = 5), the
transition probability given evidence goes to 0 as the next
transition must also occur before t = 5 to be a viable se-
quence. Only f∗ and h exhibit this behavior. Figure 2 (bot-
tom) shows the density approximations after weighting the
samples, given a trajectory with evidence at t = 5 and 19
evidence points after t = 20. Each method recovers the tar-
get distribution, but h does so more precisely than g, given a
fixed number of samples (one million). The proposal accep-
tance rate for hwas measured to be 45 percent. The proposal
h based on the restricted feature set for unbiased inference
is provided in the Supplement.

Table 1 shows that the learned, rejection-based proposal
h outperforms the other CTBN importance sampler g across
all 4 models, resulting in an ESS 2 to 10 times larger. Gener-
ally as the number of variables increases, the ESS decreases
because of the increasing mismatch between f∗ and g. With
an average ESS of only 29 in an 8-variable model, as we in-
crease model sizes, we expect that g would fail to produce a
meaningful sample distribution more quickly than h would.

Figure 3 shows that the weight distribution from h is nar-
rower than that from g on the log scale, using the drug model
and 10 evidence points. The interpretation is that a larger
fraction of examples from h contribute substantially to the
total weight, resulting in a lower variance sample distribu-
tion. For example, any sample with weight below e−10 has
negligible relative weight and does not substantially affect
the sample distribution. There are many fewer such samples
generated from h than from g.

Figure 3: Distribution of log weights. For sample comple-
tions of a trajectory with 10 evidence points in the drug
model, the distribution of log weights using h is much nar-
rower than the distribution of log weights using g (bottom).
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6 Conclusion
Our work has demonstrated that machine learning can be
used to improve sequential importance sampling via a rejec-
tion sampling framework. We showed that the proposal and
target distributions are related by an expected weight ratio,
and that the weight ratio can be estimated by the probabilis-
tic output of a binary classifier learned from weighted, local
importance samples. We extended the algorithm to CTBNs,
where we found experimentally that using our learning al-
gorithm produces a sampling distribution closer to the tar-
get and generates more effective samples. Continued inves-
tigations are warranted, including the use of non-parametric
learning algorithms, a procedure for expanding local ap-
proximations, and extensions to other graphical models,
where conjugacy of the acceptance probability with the pro-
posal distribution could lead to improved performance.
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A Appendix
To derive Equation 4, we relate the target densities
f∗i (zi|z(i−1)←1) with the proposal densities gi(zi|z(i−1)←1)
via the (standard) derivation of Equation 3 using Bayes’ the-
orem, the law of total probability, and substitution:

f∗i (zi|z(i−1)←1)

=
p(e|zi←1)

p(e|z(i−1)←1)
p(zi|z(i−1)←1)

=

∑
zk←i+1

p(e|zk←i+1, zi←1)p(zk←i+1|zi←1)∑
zk←i

p(e|zk←i, zi−1←1)p(zk←i|zi−1←1)
p(zi|zi−1←1)

=

∑
zk←i+1

1[
⋂
l∈κ{zl=el}|z]p(zk←i+1|zi←1)∑

zk←i

1[
⋂
l∈κ{zl=el}|z]p(zk←i|zi−1←1)

p(zi|zi−1←1)

=
Eg[1[e, z]

∏k
j=i+1 wj(zj |zj−1←1)|zi←1]

Eg[1[e, z]
∏k
j=i wj(zj |zj−1←1)|zi−1←1]

p(zi|zi−1←1)

=
Eg[1[e, z]

∏k
j=i wj(zj |zj−1←1)|zi←1]

Eg[1[e, z]
∏k
j=i wj(zj |zj−1←1)|zi−1←1]

gi(zi|zi−1←1)

=
Eg[w

a
k←i]

Eg[wrk←i]
gi(zi|z(i−1)←1). �
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