
Value of Information Based on Decision Robustness

Suming Chen, Arthur Choi, and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{suming,aychoi,darwiche}@cs.ucla.edu

Abstract

There are many criteria for measuring the value of informa-
tion (VOI), each based on a different principle that is usually
suitable for specific applications. We propose a new criterion
for measuring the value of information, which values infor-
mation that leads to robust decisions (i.e., ones that are un-
likely to change due to new information). We also introduce
an algorithm for Naive Bayes networks that selects features
with maximal VOI under the new criterion. We discuss the
application of the new criterion to classification tasks, show-
ing how it can be used to tradeoff the budget, allotted for ac-
quiring information, with the classification accuracy. In par-
ticular, we show empirically that the new criterion can reduce
the expended budget significantly while reducing the classifi-
cation accuracy only slightly. We also show empirically that
the new criterion leads to decisions that are much more robust
than those based on traditional VOI criteria, such as informa-
tion gain and classification loss. This make the new criterion
particularly suitable for certain decision making applications.

Introduction
Consider a probabilistic graphical model with some features
F1, . . . , Fn that can be observed at a cost. Consider also a
decision variable D in the model, whose posterior distribu-
tion will be used to make a decision. Given a budget on
observations, a classical problem is that of finding a set of
features G from F1, . . . , Fn, where the cost of observing G
is within budget, and the value obtained from observing G is
maximal. This problem appears in a variety of applications,
including active sensing (Greiner, Grove, and Roth 2002;
Gao and Koller 2011), medical diagnosis (Yu et al. 2009),
fault identification (Bellala et al. 2013), knowledge assess-
ment (Munie and Shoham 2008; Millán et al. 2013), and
computer vision (Ahmad and Yu 2013).

There are different criteria for measuring the VOI, each
based on a different principle that is suitable for specific ap-
plications. Most of these criteria can be formulated in terms
of the expected reward of observing features G (Krause and
Guestrin 2009). This includes, for example, the popular cri-
terion based on information gain; see (Lu and Przytula 2006;
Zhang and Ji 2010; Yu et al. 2009; Gao and Koller 2011).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Here, the reward function is entropy and the goal is to se-
lect features that reduce the expected entropy of the decision
variable D. Another criterion is the one based on classifica-
tion loss (Gao and Koller 2011), which is used in the context
of threshold-based classification. Some additional criteria
are proposed in (Krause and Guestrin 2009), which are also
formulated in terms of expected reward.

In this paper, we propose a new criterion for VOI in the
context of threshold-based decisions. The proposed criterion
is based on a new principle, decision robustness, which val-
ues features that, when observed, would lead to a decision
that is maximally robust against further observations.

Our proposed VOI criterion can also be formulated in
terms of expected reward, where the reward function is
a recently proposed probabilistic query, called the Same-
Decision Probability (SDP) (Darwiche and Choi 2010). The
SDP quantifies the stability of a threshold-based decision
and is defined as the probability that a current decision
would stay the same, had we observed further information.

Our second contribution is an algorithm, MaxDR, that op-
timally selects features using the new criterion, given a bud-
get. We restrict our attention to Naive Bayes networks,
as computing the SDP is PPPP-complete for Bayesian
networks (Choi, Xue, and Darwiche 2012) but only NP-
hard for Naive Bayes networks (Chen, Choi, and Darwiche
2013).1 The proposed algorithm, MaxDR, is based on a com-
bination of techniques used to solve the knapsack problem
as well as a branch-and-bound search algorithm.

Our third contribution is in exploring the application of
MaxDR to classification and decision making tasks. For the
former, we show that MaxDR can be used to tradeoff the ex-

1First, observe the following relationship between complexity
classes:

NP ⊆ PP ⊆ NPPP ⊆ PPPP

Note that MPE is the prototypical NP-complete problem for proba-
bilistic inference (Shimony 1994). MAP (Park and Darwiche 2004)
is the prototypical NPPP-complete problem. SDP was shown to
be PPPP-complete, where PPPP can be thought of as a counting
variant of the class NPPP, hence highly intractable. Naive Bayes
networks are typically tractable for basic queries, yet remain NP-
hard for MAP (De Campos 2011), and PP-complete for comput-
ing the value of information (Krause and Guestrin 2009). SDP has
also been shown to be an NP-hard problem in Naive Bayes (Chen,
Choi, and Darwiche 2013).

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3503

D

H1 H2 H3 H4

D Pr(D)
+ 0.50
− 0.50

Figure 1: A Naive Bayes network.

D H1 Pr(H1 | D)
+ + 0.508
+ − 0.482
− + 0.016
− − 0.984

D H2 Pr(H2 | D)
+ + 0.80
+ − 0.20
− + 0.20
− − 0.80

D H3 Pr(H3 | D)
+ + 0.61
+ − 0.39
− + 0.39
− − 0.61

D H4 Pr(H4 | D)
+ + 0.543
+ − 0.456
− + 0.456
− − 0.543

Figure 2: Additional CPTs for network in Figure 1.

pended budget with classification accuracy (MaxDR can re-
duce the expended budget significantly, while reducing the
classification accuracy only slightly). For decision making
tasks, we show that MaxDR leads to much more robust deci-
sions, under a limited budget, compared to some traditional
VOI criteria. This makes MaxDR particularly suitable to ap-
plications where the decision maker wishes to reduce the
liability of their decisions against unknown information.

This paper is structured as follows. We start by providing
some background, and follow by introducing the new VOI
criterion. The corresponding algorithm, MaxDR, is then pre-
sented along with its applications and empirical results.

Background
We use standard notation for variables and their instantia-
tions, where variables are denoted by upper case letters (e.g.
X) and their instantiations by lower case letters (e.g. x).
Sets of variables are then denoted by bold upper case letters
(e.g. X) and their instantiations by bold lower case letters
(e.g. x). We use E to denote the set of currently observed
features in a Naive Bayes network, and H to denote the set
of unobserved features. The decision variable, which we as-
sume is binary, is denoted by D with states + and −.

Value of Information. Consider the Naive Bayes network
in Figure 1, which will serve as a running example. Here, D
is a decision variable and H1, H2, H3, H4 are tests that bear
on this decision. The decision threshold is 0.80, leading to a
positive decision if Pr(D=+ | e) ≥ 0.8.2

Suppose that tests H1 and H2 have a cost of $4 each,
whereas tests H3 and H4 have a cost of $1 each. We are
interested in the following problem: given a budget, which
features should we observe? Feature selection is typically
based on maximizing the value of information (VOI). A
common VOI criterion is information gain. The information

2This threshold is often used in educational and medical diag-
nosis (VanLehn and Niu 2001; Cantarel et al. 2014).

gain for the different features are as follows: H1: 0.2708,
H2: 0.2781, H3: 0.0350, H4: 0.0054. Suppose that we
have a budget of $5 to expend. Using information gain as
the reward criterion, features H2 and H3 would be the opti-
mal features to observe as they maximize information gain
(with a combined gain of 0.2815) while being within budget.
Note that myopic (greedy) feature selection (Yu et al. 2009;
Gao and Koller 2011) agrees with non-myopic (optimal) fea-
ture selection (Krause and Guestrin 2009; Bilgic and Getoor
2011) in this example.

We next review the recently introduced notion of the
Same-Decision Probability (SDP) (Darwiche and Choi
2010; Choi, Xue, and Darwiche 2012; Chen, Choi, and Dar-
wiche 2012) and then justify the usage of the SDP as a re-
ward function for VOI.

Same-Decision Probability. Consider our running exam-
ple and suppose that no features have been observed. We
then have Pr(D=+) = 0.5, leading to the decision (clas-
sification) D=−. The question we ask now is: What is the
probability that this decision will stay the same after we ob-
serve features H = {H1, . . . ,H4}? This probability is the
Same-Decision Probability (SDP).

Intuitively, we can compute the SDP by considering every
possible instantiation h of features H, computing the deci-
sion under each instantiation, and then adding up the proba-
bility of each instantiation h that leads to the same decision
(i.e., Pr(d | h) < 0.8). The process of enumerating in-
stantiations is shown in Table 1, leading to an SDP of 0.738.
Hence, the probability of reaching a different decision after
observing features H = H1, . . . ,H4 is only 0.262.

Assuming that features E have been already observed to
e and that H are the unobserved features, we have:

SDP (d,H, e, T) =
∑
h

[Pr(d | h, e) ≥ T]Pr(h | e). (1)

Here, [α] is an indicator function equal to 1 if α is true and
equal to 0 otherwise. In the next section, we propose using
the SDP as a reward function when computing the VOI.

Maximizing Decision Robustness
Using the SDP as a reward criterion for VOI, we would ob-
serve feature H1 instead of both H2 and H3 (which would
be selected by information gain). In particular, if we ob-
serve H1 =+, the decision made will not change regard-
less of what the other features are observed to be — since
Pr(D=+ | H1 =+, h2, h3, h4) will always be greater than
0.8. Technically, this means that the SDP after observing
H1 =+ is 1.0. Similarly, if we observe H1 =−, the SDP
will be 1.0 as well. As such, the expected SDP is 1.0 af-
ter observing H1. This means that whatever decision we
make after observing H1, that decision stays the same af-
ter observing H2, H3 and H4. By a similar calculation, the
expected SDP of observing both H2 and H3 is 0.697. This
shows that maximizing information gain does not necessar-
ily maximize decision robustness. This is an extreme exam-
ple, which is meant to highlight the proposed criterion. More
generally, however, we seek to identify a set of features that

3504

H1 H2 H3 H4 Pr(h | e) Pr(d | h, e)
+ + + + 0.0676 0.995
+ + + − 0.0430 0.989
+ + − + 0.0570 0.994
+ + − − 0.0366 0.985
+ − + + 0.0179 0.937
+ − + − 0.0125 0.858
+ − − + 0.0155 0.913
+ − − − 0.0111 0.810
− + + + 0.0828 0.788
− + + − 0.0690 0.602
− + − + 0.0757 0.725
− + − − 0.0676 0.517
− − + + 0.0863 0.189
− − + − 0.1202 0.086
− − − + 0.0969 0.141
− − − − 0.1393 0.062

Table 1: Scenarios h for the network in Figure 1. The cases
where Pr(d | h, e) ≥ 0.8 are bolded. Note that whether
H1 =+ or H1 =− is entirely indicative of whether Pr(d |
h, e) ≥ 0.8.

maximize the expected SDP, even though the expected SDP
may not necessarily be 1.0.

We now formally define the expected SDP. Suppose that
we have already observed features E to e, and let G be a
subset of the hidden features H. Our goal is to define a new
measure for deciding the worth of observing G. Let D(ge)
be the decision made assuming that features G are observed
to the values g. The expected SDP (E-SDP) is:

E(D,G,H, e, T)

=
∑
g

SDP (D(ge),H \G,ge, T)Pr(g|e). (2)

The E-SDP of features G can be thought of as measuring
the similarity between the decision made after observing
G ⊆ H and the one made after observing all of H (Chen,
Choi, and Darwiche 2014). If the E-SDP of a set G is high,
we know that after observing G, there is little chance that
observing H \G will change our decision. This means that
observing G will lead to high decision robustness. We are
thus interested in finding the set of features that maximize
the E-SDP. We refer to this criterion as maximizing decision
robustness (DR). It should be clear that choosing features
based on DR amounts to maximizing an expected reward,
where SDP (D(ge),H \G,ge, T) is the reward function.
We next provide an algorithm for identifying the subset G
of hidden features that maximizes decision robustness.

MaxDR: Maximizing Decision Robustness
Given a Naive Bayes network N with class variable D,
threshold T , observation e, unobserved features H, a costCi
for each individual feature Hi, and a total budget B, our al-
gorithm MaxDR will output a set of features G? ⊆ H where

• the cost of observing G? is within the budget B:(∑
Hi∈G?

Ci
)
≤ B,

• the E-SDP of observing G is maximal:

G? = arg max
G⊆H

E(D,G,H, e, T).

Intuitively, observing the set of features identified by
MaxDR will best render the remaining features redundant.
Note the similarity between our problem and the 0-1 knap-
sack problem: we have a set of items, each with an asso-
ciated cost and profit, and a budget B, where our goal is to
maximize the profit while keeping the total cost within bud-
get B. The knapsack problem is difficult: the decision prob-
lem is NP-complete (Kellerer, Pferschy, and Pisinger 2004).
There is a key difference, however, between our problem and
the typical knapsack problem: computing the total profit of
a set for the knapsack problem can be done in linear time,
while computing the total profit of a set for our problem in-
volves computing E-SDP, which is NP-hard even in Naive
Bayes networks.3

We will first show how to compute E-SDP, and then show
how to solve the knapsack component of the problem.

Computing the Expected SDP. Computing the E-SDP of
G ⊆ H involves the test Pr(d | h, e) =T Pr(d | g, e).
That is, we test whether both posterior probabilities are on
the “same side” of threshold T . We find it more convenient
to implement this test in the log-odds domain, where

logO(d | h, e) = log
Pr(d | h, e)

Pr(d | h, e)
.

We then define the log-odds threshold as

λ = log
T

1− T
,

and subsequently we have the log-odds test:

logO(d | h, e) =λ logO(d | g, e).

In a Naive Bayes network we have D as the class vari-
able and H ∪ E as the leaf variables. The posterior log-
odds after observing an arbitrary partial instantiation q =
{h1, . . . , hj} of variables Q ⊆ H can be written as

logO(d | q, e) = logO(d | e) +

j∑
i=1

whi ,

where whi
is the weight of evidence hi and defined as:

whi = log
Pr(hi | d)

Pr(hi | d)
.

The weight of evidence whi is then the contribution of ev-
idence hi to the quantity logO(d | q, e) (Chan and Dar-
wiche 2003). Note that all weights can be computed in time
and space linear in |H| (for Naive Bayes networks). For our
example network, the weights of evidence {whi

, whi
} are

shown in Table 2.
3Computing the SDP in Naive Bayes networks is NP-hard

(Chen, Choi, and Darwiche 2013). Computing E-SDP is NP-hard
as well since computing the SDP is just a special case of computing
the E-SDP where G = {}.

3505

i 1 2 3 4
whi 5.00 2.00 0.65 0.25
whi

1.00 -2.00 -0.65 -0.25

Table 2: Weights of evidence.

H2

H1

H2
H3 H3 H3 H3

0.0
2.0 -2.0

3.0 -3.07.0 1.0
1.65 0.357.65 6.35 3.65 2.35 -2.35 -3.65H4 H4 H4 H4 H4 H4 H4 H4

7.9 7.4 -3.4 -3.96.6 6.1 1.9 1.4 0.6 0.1 3.9 3.4 2.6 2.1 -2.1 -2.6

Figure 3: This figure depicts a two-tiered search tree to com-
pute E-SDP with G = {H1} and λ = 2.0 for the network
shown in Figure 1. A solid line indicates + and a dashed
line indicates −. Note the horizontal line dividing G and
the remaining features. The quantity logO(d | q, e) is dis-
played next to each node q in the tree. Leaf nodes where
logO(d | h, e) =λ logO(d | g, e) are bolded.

For convenience, we also define the quantities UB and
LB that respectively represent the upper and lower bounds
on the total weight of evidence of observing variables Q:

UB(wQ) =
∑
Hi∈Q

max
hi

whi

LB(wQ) =
∑
Hi∈Q

min
hi

whi

One brute-force method to compute the E-SDP is similar
to the brute force method discussed in (Chen, Choi, and Dar-
wiche 2013) for computing the SDP, where we first initialize
the total SDP to 0, then enumerate the instantiations of H
into a search tree, then check whether logO(d | h, e) =λ

logO(d | e), and if so, add Pr(h | e) to the total SDP.
Our proposed algorithm, CalcESDP, utilizes a two-

tiered search tree. The first tier of the search tree includes
G, whereas the second tier includes H \ G. An example
two-tiered search tree can be seen in Figure 3. To reduce the
number of nodes that must be explored, we use a branch-
and-bound approach similar to (Chen, Choi, and Darwiche
2013) to detect when the children of an intermediate node
can be pruned. In addition, our algorithm uses a novel dy-
namic variable order that leads to significant improvements
to the amount of pruning. The pseudocode of CalcESDP is
shown in Algorithm 1. When applied to the previous exam-
ple, the algorithm will only explore the tree in Figure 4.

Note that the dynamic ordering heuristic (Line 20) will
select the variable that upon observation, can maximize the

H2

H1

H2

0.0
2.0 -2.0

3.0 -3.07.0 1.0

Figure 4: The pruned search tree when computing E-SDP
for G = {H1}.

Algorithm 1: CalcESDP Computing E-SDP in a Naive
Bayes network with class variable D, evidence e, and at-
tributes H = {H1, . . . ,Hn}. Note wq =

∑
hi∈q whi .

input:
N : Naive Bayes network
G: a subset of H
λ: log-odds threshold

output: Expected Same-Decision Probability p
main:
p← 0.0 a lower-bound on E-SDP
m← 1.0 an upper-bound on E-SDP
q← {} initial instantiation (empty)
DFS E SDP(q)
return p p = m on return

1: procedure DFS E SDP(q)
2: t← logO(d | e) + wq current log-odds
3: if |Q| ≤ |G| enumerating top-half of tree
4: if t+ UB(wH\Q) < λ or λ ≤ t+ LB(wH\Q)
5: decision is now fixed
6: p← p+ Pr(q | e)
7: return
8: else searching bottom-half of tree
9: if t+ UB(wH\Q) < λ or λ ≤ t+ LB(wH\Q)

10: decision is now fixed
11: if t =λ logO(d | e) + wg same decision
12: p← p+ Pr(q | e)
13: else different decision
14: m← m− Pr(q | e)

15: return
16: if |Q| < |H| continue traversing tree
17: Hi ← NEXT VAR(q, t) pick next variable
18: for each value hi of attribute Hi do
19: DFS E SDP(q, hi) recurse
20: procedure NEXT VAR(q, t)
21: C ← H \Q candidate variables
22: if |Q| < |G| if enumerating top half
23: C ← C \H remove bottom half
24: return arg maxHi∈C |(t+ whi∈Hi

− λ)|

margin between the current posterior log-odds and the log
threshold. For instance, in our running example, if logO(d |
e) = −2, then H1 would be selected, as the observation of
H1 =− would result in a minimal posterior log-odds of −4.
Whereas if logO(d | e) = 1, then H2 would be selected as
the observation of H2 =+ would result in a maximal pos-
terior log-odds of 6. This allows us to first explore certain
parts of the search tree where we can aggressively prune.
Note that we keep track of the upper bound on the final value
of the E-SDP. This quantity, as well as our dynamic ordering
heuristic, will be further discussed in the next section.

Finding Valid Sets of Features. Feature selection al-
gorithms usually exploit submodularity and/or monotonic-
ity (Krause and Guestrin 2005; 2009; Golovin and Krause
2011). However, as the expected SDP is neither mono-

3506

Algorithm 2: FindCands Finding candidate subsets to
compute E-SDP over. A subset [T, F, F, T] represents a sub-
set that includes features H1 and H4. For a candidate set to
be valid, the total profit must ≥ V while the total cost ≤ B.

input:
H: {H1, . . . ,Hn}, by decreasing efficiency
V : target threshold (see Equations 3 & 4)
B: budget

output: All subsets of features where total profit exceeds V

main:
p← 0.0 initial profit
q← [F, . . . , F]n initially, no features selected
d← 0 initial depth
b← B initial budget
candidates← [] list of candidate feature sets
DFS KS(q, p, d, b)
return candidates

1: procedure DFS KS(q, p, d, b)
2: if p + UBP (H, d, b) < V no profit potential
3: return
4: else if b < 0 budget exceeded
5: return
6: else if p ≥ V enough profit potential
7: add q to candidates
8: DFS KS(q, p, d+ 1, b)
9: set feature Hd = T in q include Hd

10: DFS KS(q, p+ profit(Hd), d+ 1, b− cost(Hd))

tonic, nor submodular (shown in the introductory example),
a novel approach must be devised. A brute-force computa-
tion enumerates all 2|H| sets of features and then computes
E-SDP for each set that respects the budget.

We can greatly improve upon this method using a key ob-
servation: if observing variables G ⊆ H cannot change the
original decision, then the E-SDP of observing variables G
is the same as the original SDP with respect to variables H
(without the expectation). Hence, we need only compute
this “expected” SDP once, and focus only on those subsets
G that are not so vacuous.

More precisely, if our decision is initially below the
threshold, logO(d | e) < λ, then we only need to con-
sider sets of features G that are able to cross the threshold:
λ ≤ logO(d | e) + UB(wG). Similarly, if our decision
is initially above the threshold, i.e., λ ≥ logO(d | e), then
we only need to consider features G that satisfy logO(d |
e) + LB(wG) ≤ λ. Hence, to obtain a non-trivial expected
SDP problem, we must select enough features in G so that:

UB(wG) =
∑
Hi∈G

max
hi

whi
≥ λ− logO(d | e), (3)

if our decision is initially below the threshold, or else if the
decision is initially above the threshold:

LB(wG) =
∑
Hi∈G

min
hi

whi
≤ λ− logO(d | e). (4)

X2
X1

X2
X3 X3

0,3,7

5,1,7 0,3,4

2,2,4
0,3,3

5,1,6

6,0,0
4,0,0 2,2,3

7,0,0

X4

Figure 5: A pruned inclusion/exclusion tree for the knap-
sack problem instance shown in Table 3. Note that a left
branch corresponds to the inclusion of an item whereas a
right branch corresponds to the exclusion of an item. At ev-
ery node there is a tuple of 3 items: the profit so far, the bud-
get remaining, and an upper bound for the remaining profit
(UBP). Due to pruning, we thus avoid traversing the full
inclusion/exclusion tree.

We can find these sets by solving the following variant of
the knapsack problem:

Definition 1. Consider n items X1 to Xn, where each item
has cost cost(Xi) and profit profit(Xi). Is there a subset of
items with total cost at most B and total profit at least V ?

Here, our cost function is the same cost as in our fea-
ture selection, but our profit function is either profit(Hi) =
maxhi

whi
or profit(Hi) = minhi

whi
(depending on the

initial decision). We then want subsets of items (features)
that yield enough profit for our decision to cross its thresh-
old, and hence yield a non-trivial expected SDP problem.
Our proposed algorithm, FindCands, uses a branch-and-
bound approach similar to (Pisinger 1995; Zäpfel, Braune,
and Bögl 2010), and builds an inclusion/exclusion tree, as
done by (Korf 2009), in order to find all possible solutions.

In order to increase the amount of pruning that can be
done, we build the inclusion/exclusion tree of items by ef-
ficiency, defined as the ratio profit(Xi)

cost(Xi)
. After the items are

sorted, and as we traverse the tree, we keep track of (1) all
costs accrued (by the features currently selected), (2) and the
remaining profit potential that is available (that we could get
by selecting from the remaining features). We backtrack if
we find that (1) the budget has been surpassed, or (2) the
profit potential is too low, which is based on an efficiently
computable upper bound on our profit, UBP — we add all
items as allowed by the budget in order of decreasing effi-
ciency. At the point where the next item’s cost exceeds the
remaining budget, we take, according to the remaining bud-
get, the fraction of the item’s profit, which yields an upper
bound on the maximum obtainable profit (Kellerer, Pferschy,
and Pisinger 2004; Zäpfel, Braune, and Bögl 2010).

The pseudocode for FindCands can be found in Algo-
rithm 2. In Figure 5, we provide an example of the inclu-
sion/exclusion tree after using FindCands for the follow-
ing knapsack problem instance found in Table 3. The can-
didate knapsack items includeX1, X2, X3, X4, and their re-
spective {profit, cost} values can be found in Table 3.
The final algorithm MaxDR to find the feature set G? with
highest expected SDP is: use FindCands to generate valid
sets, and for each candidate set G, use CalcESDP to com-

3507

pute the expected SDP. Note that CalcESDP maintains an
upper bound for the current value of the expected SDP —
if that value falls below the highest expected SDP of some
previous candidate set, we can abort the computation and
continue our traversal through the inclusion/exclusion tree.
This is where the previously introduced dynamic ordering
heuristic is especially useful, as it allows us to swiftly detect
when the upper bound falls below some threshold.

X1 X2 X3 X4

Profit 5.0 2.0 2.0 1.0
Cost 2.0 1.0 2.0 1.0

Table 3: A knapsack problem instance with budget = 3 and
profit = 4.

Complexity analysis
Let n be the number of features in the network, where c is
the number of states of a feature variable. In the best-case
scenario, we can detect that the E-SDP will never change re-
gardless of what instantiation of features is observed — in
this trivial scenario, no search needs to be performed. How-
ever, for the worst-case time complexity, we may need to tra-
verse all of the O(2n) possible candidate subsets of features
and take O(cn) time to compute the E-SDP of each subset.
Therefore, the worst-case time complexity is is O(cn2n).

Applications and Experimental Results
We now discuss the application of MaxDR to classification
and decision making tasks. We performed experiments on
Naive Bayes networks from a variety of sources: UCI Ma-
chine Learning Repository (Bache and Lichman 2013), BFC
(http://www.berkeleyfreeclinic.org/) and CRESST (http://
www.cse.ucla.edu/). Each network has an associated dataset
containing labelled examples, which we used in some of the
experiments.

Classification. Consider the problem of classification
with Naive Bayesian networks. Let D be the class vari-
able and let H = H1, . . . ,Hn be the features. In a
classical setting, one classifies by observing all the avail-
able features. That is, one computes Pr(D|H1, . . . ,Hn)
and then chooses a class depending on a given threshold
T . If Pr(d|h1, . . . , hn) ≥ T , one classifies the example
h1, . . . , hn positively; otherwise, one classifies it negatively.

Suppose now that we wish to classify based on only a
subset of the features, due to feature cost. Our approach in-
volves using MaxDR to find the smallest subset G of features
where the expected SDP of observing G crosses a certain
level L. In other words, we want the subset G that satisfies
arg minG |G| and E(D,G,H,E, T) ≥ L. Note here that
we are not maximizing the expected SDP, but only ensur-
ing that it passes a given threshold L. We do this so we can
tradeoff the number of selected features with the classifica-
tion accuracy. The larger L is, the more features MaxDRwill
select, and the better the classification accuracy. The smaller
L is, the fewer features that MaxDR will select, but at the ex-
pense of less classification accuracy. As we shall see next,

one can choose L so as to obtain a very interesting balance:
a relatively small number of features can be selected while
ensuring a very small penalty in classification accuracy.

We experimented with thresholds L ranging from
[0.70, 0.75, 0.80, 0.85, 0.90, 0.95]. For eachL, and each net-
work, MaxDR found the smallest subset G that satisfies the
above conditions. We then computed the classification ac-
curacy based on observing only G versus observing all fea-
tures H. We classified each example in each dataset based
on G and H, and then computed for each the proportion of
correctly labeled instances to total number of instances.

Table 4 displays the percentage of features (|G||H|) that
MaxDR selected for different levels L of decision robust-
ness, across all networks. We also list the average percent-
age of selected features and the average difference of classi-
fication accuracy (accuracy of H - accuracy of G) for each
threshold L. The table reveals an interesting tradeoff be-
tween the number of features selected and the classification
accuracy, which can be controlled by varying the decision
robustness threshold L. For example, for L = 0.95, we
select about 60% of the features on average, while incur-
ring only a 0.64% reduction in classification accuracy. This
clearly shows that many features are redundant given other
features. Moreover, MaxDR is able to identify those redun-
dant features, by excluding them from the selected features.

Decision Making. We now discuss another application of
MaxDR to decision making. Given a Naive Bayes network
with decision variable D, features H = H1, . . . ,Hn, and
budget B, we wish to make a decision that is within budget,
and that is maximally robust against additional observations.
For example, if we can only observe three features, Hi, Hj

and Hk, we wish to select them such that when observed,
there is a low probability of reaching a different decision if
features H \ {Hi, Hj , Hk} were later observed. The goal
here is to minimize our liability against what we chose not
to observe. Contrary to the previous application, we have no
data here. Therefore, the notion of classification accuracy is
not meaningful in this setting, and the quality of a decision
is measured solely based on its robustness.

For each Naive Bayes network, budget B and decision
threshold T , we used MaxDR to select features G and con-
sidered the expected SDP of decisions based on observing
G (MaxDR computes the expected SDP as a side effect).
For each network, the budget was set to 1/3 the number of
features, with decision thresholds in [0.1, 0.2, . . . , 0.8, 0.9].

Figure 6 depicts a sample result for one of the considered
networks.4 We compare against two baseline feature selec-
tion algorithms: non-myopic information gain (NM-IG) and
non-myopic, generalized classification loss (NM-DT).5 That
is, we select features G using each of these feature selection
criteria and then measure the robustness of decisions based

4Additional results are given in the full version of our paper at
http://reasoning.cs.ucla.edu/.

5Suppose we are making decisions based on the following
utilities of positive and negative decisions: Up = Pr(d|e) and
Un = Pr(d|e)T/(1 − T). This corresponds to a threshold-based
decision for arbitrary T . NM-DT selects features using the reward
function max(Up, Un). When T = 1/2, we get classification loss.

3508

Network bupa pima ident anatomy heart voting hepatitis nav
features 6 8 9 12 13 16 19 20
Threshold % features selected avg % selected avg diff C.A.

0.75 33.3 12.5 11.1 8.3 15.4 6.2 5.3 30.0 15.2 0.0518
0.80 66.7 25.0 11.1 16.6 23.1 6.2 5.3 30.0 23.0 0.0191
0.85 66.7 37.5 22.2 16.6 30.8 12.5 15.8 30.0 29.0 0.0162
0.90 100 50.0 33.3 25.0 38.5 12.5 26.3 45.0 41.3 0.0109
0.95 100 87.5 55.5 41.6 61.5 18.7 47.4 60.0 59.1 0.0064
0.98 100 100 88.8 66.6 76.9 31.2 68.4 75.0 75.9 0.0048
0.99 100 100 88.8 83.3 92.3 43.7 89.5 80.0 84.7 0.0042
1.00 100 100 100 100 100 100 100 100 100 0.0000

Table 4: This table shows 1) the percentage of features selected by MaxDR for different levels of decision robustness 2) the
average percentage of features selected and 3) the average difference of classification accuracy.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Distance from standard 0.5 threshold

0.75

0.80

0.85

0.90

Ex
pe

ct
ed

 S
D

P

Expected SDP by Threshold for HEPATITIS (19)

NM-DT
NM-IG
MaxDR

Figure 6: Decision robustness.

Network NM-DT (s) NM-IG (s) MaxDR (s)
bupa 0.028 0.021 0.032
pima 0.137 0.124 0.044
ident 0.129 0.119 0.147
anatomy 0.431 0.419 0.424
heart 0.704 0.682 3.230
voting 28.146 22.734 4.612
hepatitis 284.873 276.143 147.887
nav 342.767 328.874 121.715

Figure 7: Running time.

on observing the selected features.6 Our results show a num-
ber of patterns. First, the proposed criterion selects features
leading to the most robust decisions. Moreover, the differ-
ence between MaxDR and the other criteria becomes more
pronounced for extreme thresholds and for large networks.
These results show that MaxDR, as a feature selection algo-
rithm, is very suitable for applications in which the decision

6We also experimented with the minimum Redundancy Max-
imum Relevance (mRMR) feature selection criterion (Ding and
Peng 2003). We found the criterion to be trivial for Naive Bayes
structures as it always prefers sets of features over their supersets.

maker wishes to minimize their liability against information
that they chose not to observe.

Running time. Assuming n binary features, a budget
of m, and a cost of 1 per feature, NM-IG and NM-DT can
be implemented in O(

(
n
m

)
2m) time. In particular, one only

needs to consider candidate features G of size m due to the
monotonicity of corresponding objective functions (i.e., G
will dominate all its strict subsets). For each candidate G,
one needs to compute an expectation over G, which takes
O(2m) time. In fact, we know of no algorithm that does bet-
ter than Θ(

(
n
m

)
2m) for these criteria. MaxDR has a worst-

case time complexity of O(2n+m). In this case, we need
to consider all 2m candidates G with size ≤ m since the
SDP is not strictly monotonic. We also need O(2n) time to
compute the expected SDP by enumerating all feature states.
This is much worse than the running time for NM-IG and
NM-DT. However, Figure 7 shows that MaxDR does signif-
icantly better than this on average and also does better than
both NM-IG and NM-DT, especially for larger networks.
This is due to the knapsack and branch-and-bound pruning
techniques employed by MaxDR.

Conclusion
We introduced a new criterion for measuring the VOI, which
favors features that lead to robust decisions. We also pro-
posed an algorithm, MaxDR, that optimally selects features
in Naive Bayes networks based on the new criterion. We
demonstrated the application of MaxDR to classification and
decision making tasks. In the first application, we showed
empirically that MaxDR can be used to significantly reduce
the cost of observing features while minimally affecting
the classification accuracy. In the second application, we
showed empirically that MaxDR is more suitable than tradi-
tional VOI criteria when the goal is to make stable decisions
given a limited budget.

Acknowledgments. This work has been partially sup-
ported by ONR grant #N00014-12-1-0423, NSF grant #IIS-
1118122, and a Google Research Award. In addition, we
would like to thank Brian Milch, Russell Greiner, Guy Van
den Broeck, and Richard Korf for comments and sugges-
tions that were crucial for shaping this paper.

3509

References
Ahmad, S., and Yu, A. J. 2013. Active sensing as Bayes-
optimal sequential decision making. In Proceedings of the
29th Conference on Uncertainty in Artificial Intelligence
(UAI-13), 12–21.
Bache, K., and Lichman, M. 2013. UCI machine learning
repository.
Bellala, G.; Stanley, J.; Bhavnani, S. K.; and Scott, C. 2013.
A rank-based approach to active diagnosis. IEEE Trans. Pat-
tern Anal. Mach. Intell. 35(9):2078–2090.
Bilgic, M., and Getoor, L. 2011. Value of information lat-
tice: Exploiting probabilistic independence for effective fea-
ture subset acquisition. Journal of Artificial Intelligence Re-
search (JAIR) 41:69–95.
Cantarel, B. L.; Weaver, D.; McNeill, N.; Zhang, J.; Mackey,
A. J.; and Reese, J. 2014. Baysic: a Bayesian method
for combining sets of genome variants with improved speci-
ficity and sensitivity. BMC bioinformatics 15(1):104.
Chan, H., and Darwiche, A. 2003. Reasoning about
Bayesian network classifiers. In Proceedings of the 19th
Conference in Uncertainty in Artificial Intelligence, 107–
115.
Chen, S.; Choi, A.; and Darwiche, A. 2012. The Same-
Decision Probability: A new tool for decision making. In
Proceedings of the Sixth European Workshop on Probabilis-
tic Graphical Models, 51–58.
Chen, S.; Choi, A.; and Darwiche, A. 2013. An exact al-
gorithm for computing the Same-Decision Probability. In
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, 2525–2531.
Chen, S.; Choi, A.; and Darwiche, A. 2014. Algorithms and
applications for the Same-Decision Probability. Journal of
Artificial Intelligence Research (JAIR) 49:601–633.
Choi, A.; Xue, Y.; and Darwiche, A. 2012. Same-Decision
Probability: A confidence measure for threshold-based de-
cisions. International Journal of Approximate Reasoning
(IJAR) 2:1415–1428.
Darwiche, A., and Choi, A. 2010. Same-Decision Proba-
bility: A confidence measure for threshold-based decisions
under noisy sensors. In Proceedings of the Fifth European
Workshop on Probabilistic Graphical Models, 113–120.
De Campos, C. P. 2011. New complexity results for MAP
in Bayesian networks. In Proceedings of the Twenty-Second
IJCAI, 2100–2106. AAAI Press.
Ding, C., and Peng, H. 2003. Minimum redundancy feature
selection from microarray gene expression data. In Proceed-
ings of the IEEE Computer Society Conference on Bioinfor-
matics, CSB ’03, 523–. Washington, DC, USA: IEEE Com-
puter Society.
Gao, T., and Koller, D. 2011. Active classification based
on value of classifier. In Advances in Neural Information
Processing Systems (NIPS 2011).
Golovin, D., and Krause, A. 2011. Adaptive submodularity:
Theory and applications in active learning and stochastic op-
timization. Journal of Artificial Intelligence Research (JAIR)
42:427–486.

Greiner, R.; Grove, A. J.; and Roth, D. 2002. Learn-
ing cost-sensitive active classifiers. Artificial Intelligence
139(2):137–174.
Kellerer, H.; Pferschy, U.; and Pisinger, D. 2004. Knapsack
problems. Springer.
Korf, R. 2009. Multi-way number partitioning. In Proceed-
ings of the 21st International Joint Conference on Artificial
Intelligence, 538–543.
Krause, A., and Guestrin, C. 2005. Near-optimal nonmy-
opic value of information in graphical models. In 21st Con-
ference on Uncertainty in Artificial Intelligence, 324–331.
Krause, A., and Guestrin, C. 2009. Optimal value of infor-
mation in graphical models. Journal of Artificial Intelligence
Research (JAIR) 35:557–591.
Lu, T.-C., and Przytula, K. W. 2006. Focusing strategies for
multiple fault diagnosis. In Proceedings of the 19th Interna-
tional FLAIRS Conference, 842–847.
Millán, E.; Descalco, L.; Castillo, G.; Oliveira, P.; and
Diogo, S. 2013. Using Bayesian networks to improve
knowledge assessment. Computers & Education 60(1):436–
447.
Munie, M., and Shoham, Y. 2008. Optimal testing of struc-
tured knowledge. In Proceedings of the 23rd National Con-
ference on Artificial intelligence, 1069–1074.
Park, J. D., and Darwiche, A. 2004. Complexity results and
approximation strategies for MAP explanations. Journal of
Artificial Intelligence Research (JAIR) 21:101–133.
Pisinger, D. 1995. Algorithms for Knapsack Problems.
Ph.D. Dissertation, University of Copenhagen.
Shimony, S. E. 1994. Finding MAPs for belief networks is
NP-hard. Artificial Intelligence 68(2):399–410.
VanLehn, K., and Niu, Z. 2001. Bayesian student mod-
eling, user interfaces and feedback: A sensitivity analysis.
International Journal of Artificial Intelligence in Education
12(2):154–184.
Yu, S.; Krishnapuram, B.; Rosales, R.; and Rao, R. B. 2009.
Active sensing. In International Conference on Artificial
Intelligence and Statistics, 639–646.
Zäpfel, G.; Braune, R.; and Bögl, M. 2010. Metaheuristic
Search Concepts: A Tutorial with Applications to Produc-
tion and Logistics. Springer-Verlag Berlin Heidelberg.
Zhang, Y., and Ji, Q. 2010. Efficient sensor selection for
active information fusion. IEEE Transactions on Systems,
Man, and Cybernetics, Part B 40(3):719–728.

3510

