
An Exact Algorithm for Solving Most
Relevant Explanation in Bayesian Networks

Xiaoyuan Zhu and Changhe Yuan
Queens College, City University of New York

65-30 Kissena Blvd., Queens, NY 11367
{xiaoyuan.zhu, changhe.yuan}@qc.cuny.edu

Abstract

Most Relevant Explanation (MRE) is a new inference
task in Bayesian networks that finds the most relevant
partial instantiation of target variables as an explana-
tion for given evidence by maximizing the Generalized
Bayes Factor (GBF). No exact algorithm has been de-
veloped for solving MRE previously. This paper fills the
void and introduces a breadth-first branch-and-bound
MRE algorithm based on a novel upper bound on GBF.
The bound is calculated by decomposing the computa-
tion of the score to a set of Markov blankets of subsets
of evidence variables. Our empirical evaluations show
that the proposed algorithm scales up exact MRE infer-
ence significantly.

Introduction
Bayesian networks are probabilistic models that represent
the conditional independencies between random variables as
directed acyclic graphs, and provide principled approaches
to explaining evidence, e.g., Most Probable Explanation
(MPE), Maximum a Posterior (MAP), and Most Relevant
Explanation (MRE). Both MPE and MAP are solved by op-
timizing the joint posterior probability of the target vari-
ables given the evidence. However, in explanation prob-
lems (Lacave and Dı́ez 2002; Nielsen, Pellet, and Elisse-
eff 2008), MPE and MAP often produce overspecified ex-
planations (Pacer et al. 2013; Yuan et al. 2009), i.e., ir-
relevant target variables may be included. This is because
maximizing the joint probability alone cannot exclude ir-
relevant target variables directly. To address the limita-
tion of MPE and MAP, MRE (Yuan, Lim, and Lu 2011;
Yuan and Lu 2008) was proposed to find a partial instan-
tiation of the target variables that maximizes the General-
ized Bayes Factor (GBF) (Fitelson 2007; Good 1985) as an
explanation for the evidence. GBF is a rational function of
probabilities that is suitable for comparing explanations with
different cardinalities. Theoretically, MRE is shown able to
prune away independent and less relevant variables from the
final explanation (Yuan, Lim, and Lu 2011); a recent hu-
man study also provided empirical evidence to support the
claim (Pacer et al. 2013).
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Due to the difficulty of finding a meaningful bound for
GBF, no exact algorithms have been developed to solve
MRE. Only local search and Markov chain Monte Carlo
methods have been proposed previously (Yuan, Lim, and
Littman 2011). In this paper, we introduce the first non-
trivial exact MRE algorithm, a Breadth-First Branch-and-
Bound (BFBnB) algorithm. The key idea of the proposed
method is to decompose the whole Bayesian network into
a set of overlapping subnetworks. Each subnetwork is char-
acterized by a subset of evidence variables and its Markov
blanket. An upper bound for the GBF of an MRE solution
is derived by solving independent optimization problems in
the subnetworks. To tighten the upper bound, we also intro-
duce a greedy algorithm for merging the Markov blankets
that share target variables. The upper bound is used in the
BFBnB algorithm for pruning the search space. We evalu-
ate the proposed algorithm in a set of benchmark diagnostic
Bayesian networks. The experimental results show that the
BFBnB algorithm scales up exact MRE inference signifi-
cantly.

Background
A Bayesian network (Pearl 1988; Koller and Friedman
2009) is represented as a Directed Acyclic Graph (DAG).
The nodes in the DAG represent random variables. The lack
of arcs in the DAG define conditional independence rela-
tions among the nodes. If there is an arc from node Y to
X , we say that Y is a parent of X , and X is a child of Y
(We use upper-case letters to denote variables X or vari-
able sets X, and lower-case letters for values of scalars x or
vectors x.). A node Y is an ancestor of a node X , if there
is a directed path from Y to X . Let an(X) denote all the
ancestors of X , then the smallest ancestral set An(X) of
node set X is defined as An(X) = X ∪ (∪Xi∈Xan(Xi)).
D-separation describes the conditional independence rela-
tion between two set of nodes X and Y, given a third set of
nodes Z, i.e., p(X|Z,Y) = p(X|Z). The Markov blanket
of X, denoted by MB(X), is the smallest node set which d-
separates X from the remaining nodes in the network. The
network as a whole represents the joint probability distribu-
tion of

∏
X p(X|PA(X)), where PA(X) is the set of all the

parents of X .
The moral graph Gm of a DAG G is an undirected graph

with the same set of nodes. There is an edge between X and
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Y inGm if and only if there is an edge between them inG or
if they are parents of the same node in G. In an undirected
graph, Z separates X and Y, if Z intercepts all paths be-
tween X and Y. Moral graph is a powerful construction to
explain d-separation. Lemma 1 (Lauritzen et al. 1990) links
d-separation in DAG to separation in undirected graphs.

Lemma 1. Let X, Y, and Z be disjoint subsets of nodes in a
DAG G. Then Z d-separates X from Y if and only if Z sepa-
rates X from Y in (GAn(X∪Y∪Z))

m, where (GAn(X∪Y∪Z))
m

is the moral graph of the subgraph of G with node set
An(X ∪ Y ∪ Z).

In an inference problem in a Bayesian network, the nodes
are often classified into three categories: target, evidence,
and auxiliary. The target set M represents variables of in-
ference interest. The evidence set E represents observed in-
formation. The auxiliary set represents the variables that are
not of interest in the inference. MRE (Yuan, Lim, and Lu
2011) finds a partial instantiation of M as an explanation
for given evidence e in a Bayesian network. Here, expla-
nation refers to the explanation of evidence, whose goal is
to explain why some observed variables are in their particu-
lar states using the target variables in the domain. The search
space of MRE is large and the complexity of MRE is conjec-
tured to beNPPP complete (Yuan, Lim, and Littman 2011).
Formally, the MRE problem is formulated as follows:

Definition 1. Let M be a set of targets, and e be the given
evidence in a Bayesian network. Most Relevant Explanation
is the problem of finding a partial instantiation x of M
that has the maximum generalized Bayes factor score
GBF (x; e) as the explanation for e, i.e.,

MRE (M; e) = argmax
x,∅⊂X⊆M

GBF (x; e), (1)

where GBF is defined as

GBF (x; e) =
p(e|x)

p(e|x̄)
. (2)

Here, x is the instantiation of X, and x̄ represents all of
the alternative explanations of x.

Different from MPE and MAP which maximize a joint
posterior probability function, MRE maximizes the rational
function of probabilities in Equation 2. This makes it possi-
ble for MRE to compare explanations with different cardi-
nalities in a principled way.

Belief update ratio is a useful concept. The belief update
ratio of X given e is defined as follows:

r(X; e) =
p(X|e)

p(X)
. (3)

GBF can be calculated from the belief update ratio as fol-
lows:

GBF (x; e) =
p(x|e)(1− p(x))

p(x)(1− p(x|e))
=
r(x; e)− p(x|e)

1− p(x|e)

= 1 +
r(x; e)− 1

1− p(x|e)
. (4)

Many local search methods have been applied to solve
both MAP/MPE (Park and Darwiche 2001) and MRE (Yuan,
Lim, and Littman 2011), such as tabu search (Glover 1990).
Tabu search starts at an empty solution set. At each step, it
generates the neighbors of the current solution by adding,
changing, or deleting one target variable. Then tabu search
selects the best neighbor which has the highest GBF score
and has not been visited before. In tabu search, the best
neighbor can be worse than the current solution. To stop tabu
search properly, upper bounds are set on both the total num-
ber of search steps M and the number of search steps since
the last improvement L as the stopping criteria. Local search
methods can only provide approximate solutions which are
not guaranteed to be optimal. Furthermore, the accuracy and
efficiency of these methods are typically highly sensitive to
tunable parameters.

Branch-and-bound algorithms have been developed for
solving MAP and MPE by using upper bounds derived based
on different relaxations. A mini-bucket upper bound is pro-
posed in (Dechter and Rish 2003) and applied to And/Or tree
search for solving MPE (Marinescu and Dechter 2009). The
work in (Choi, Chavira, and Darwiche 2007) showed that
the mini-bucket upper bound can be derived from a node
splitting scheme. To solve MAP exactly, an upper bound is
proposed in (Park and Darwiche 2003) by commuting the
order of max and sum operations in the MAP calculation.
In (Huang, Chavira, and Darwiche 2006), an exact algorithm
is proposed for solving MAP by computing upper bounds on
an arithmetic circuit compiled from a Bayesian network. No
upper bound or exact algorithm has been proposed for solv-
ing MRE, however.

An Exact MRE Algorithm Based on A Novel
Upper Bound

It is difficult to solve MRE problems exactly because of
both an exponential search space and the need for proba-
bilistic inference at each search step. A naive brute-force
search method can scale to Bayesian networks with at most
15 targets. In this work, we propose a breadth-first branch-
and-bound algorithm that uses a new upper bound based on
Markov blanket decomposition to prune the search space.
The algorithm makes it possible to solve MRE problems
with more targets exactly.

Search space formulation
Assuming there are n targets, and each target has d states,
the search space of MRE contains (d+1)n−1 possible joint
states (or solutions). Each state contains values of a subset
of the targets. We organize the search space as a search tree
by instantiating the targets according to a total order π of the
targets. The search tree has the empty state as the root. For a
state y in the tree, Y is defined as the expanded set of targets,
and X = {X|X ∈ M; ∀Yi ∈ Y, Yi <π X} is the unex-
panded set. That is, the unexpanded set only contains targets
that trail all of the expanded targets in π. Each child state of
y instantiates one more unexpanded target. Figure 1 shows
an example with two targets A = {a, ā} and B = {b, b̄} in
this particular order. Assuming the current state is {b}, {B}
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is the expanded set of target(s), and {} is the unexpanded
set. So {b} has no child state. As a result, different branches
of the search tree may have different numbers of layers, but
all of the states with the same cardinality appear in the same
layer.

It is possible to use dynamic ordering to expand the tar-
gets that can most improve the GBF score first. However, it
was shown in (Yuan and Hansen 2009) that a static ordering
can actually make computing upper bounds and ultimately
the search more efficient. We therefore simply ordered the
targets according to their indices in this work.

An upper bound based on Markov blanket
decomposition
For MRE inference, an upper bound of a state x should be
greater than the GBF score of not only x but also all descen-
dant states of x. We can prune the whole subtree if the upper
bound is less than the GBF of the current best solution.

We introduce the following novel upper bound for MRE
inference. We first partition the evidences into a set of ex-
clusive and exhaustive subsets, i.e., E = ∪iEi, such that
MB(Ei) ⊆M, by using a depth first search discussed later.
These evidence subsets naturally decompose the whole net-
work into overlapping subnetworks, each of which contains
an evidence subset Ei and its Markov blanket MB(Ei). An
upper bound on GBF is derived by multiplying the upper
bounds on the belief update ratios calculated on the subnet-
works.

We first derive an upper bound on the belief update ratio
in Theorem 1.

Theorem 1. Let M = {X1, X2, . . . , Xn} be a set of tar-
gets, e be the evidence, and MB(Ei) ⊆ M be the Markov
blanket of the ith subset of evidences Ei. Then, for any sub-
set ∅ ⊂ X ⊆M, the belief update ratio r(x; e) is upper
bounded as follows.

max
x,∅⊂X⊆M

r(x; e) ≤

(∏
i

max
x,X=MB(Ei)

r(x; ei)

)
· C, (5)

where C =
∏
i p(ei)

/
p(e).

Proof. From the formulation of r(M; e), we have

r(M; e) = p(M|e)
/
p(M) = p(e|M)

/
p(e)

=
∏
i

p(ei|MB(Ei))/p(e)

=
∏
i

p(MB(Ei)|ei)p(ei)
p(MB(Ei))

/p(e)

=

(∏
i

r(MB(Ei); ei)p(ei)

)
/p(e). (6)

The third equality is based on the property of Markov blan-
kets.

Thus, we have:

r(M; e) =

(∏
i

r(MB(Ei); ei)

)
· C, (7)

where C =
∏
i p(ei)

/
p(e).

From Equation 7, we have the following upper bound on
r(m; e),

max
m

r(m; e) ≤

(∏
i

max
x,X=MB(Ei)

r(x; ei)

)
· C. (8)

For any ∅ ⊂ X ⊂M, M = X∪X̄, let Si = MB(Ei)∩X,
Ti = MB(Ei)∩ X̄, U = {i : Ti 6= ∅}, and V = {i : Ti =
∅}, we have:

p(e|X) =
∑
X̄

p(e|M)p(X̄|X)

=
∑
X̄

(∏
i∈U

p(ei|MB(Ei))

)
p(X̄|X) ·

∏
i∈V

p(ei|MB(Ei))

≤

(∏
i∈U

max
z,Z=Ti

p(ei|Si ∪ z)

)
·(∏

i∈V

p(ei|MB(Ei))

)
. (9)

Since p(e|X) = r(X; e)p(e), we have the following up-
per bound on r(x; e):

max
x

r(x; e) ≤

(∏
i∈U

max
si

max
z,Z=Ti

r(z ∪ si; ei)

)
·(∏

i∈V

max
x,X=MB(Ei)

r(x; ei)

)
· C. (10)

Thus, for any ∅ ⊂ X ⊆M, we obtain the final upper
bound by combining Equations 8 and 10:

max
x,∅⊂X⊆M

r(x; e) ≤

(∏
i

max
x,X=MB(Ei)

r(x; ei)

)
· C.

In MRE inference, the evidence e is given, thus C is a
constant. Theorem 1 assumes that the expanded target set
Y = ∅, which is true at the beginning of search. During
the search when Y 6= ∅, we have the following corollary to
derive the upper bound on the belief update ratio:
Corollary 2. Let M = {X1, X2, . . . , Xn} be a set of tar-
gets, e be the evidence, MB(Ei) ⊆M be the Markov blan-
ket of the ith subset of evidences Ei. Let X and Y be the un-
expanded and expanded target sets. Let Ti = MB(Ei)∩Y,
and MB(Ei) = Ti ∪ T̄i. Then, for any subset ∅ ⊂ Z ⊆ X,
the belief update ratio r(z ∪ y; e) is upper bounded as fol-
lows.

max
z,∅⊂Z⊆X

r(z ∪ y; e) ≤

(∏
i

max
z,Z=T̄i

r(z ∪ ti; ei)

)
· C, (11)

where C =
∏
i p(ei)

/
p(e).
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Figure 1: The search tree of an MRE
problem with two targets, i.e., A and B.
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Figure 2: An example of compiling Markov blankets. E1 and E2 are evidence
nodes. Gray nodes are targets. Others are auxiliary nodes. MB(E1) and MB(E2)
share targets A and F .

Based on Corollary 2, we can derive the upper bound on
GBF in Theorem 3:
Theorem 3. Let M = {X1, X2, . . . , Xn} be a set of tar-
gets, e be the evidence, MB(Ei) ⊆M is the Markov blanket
of the ith subset of evidences Ei. Let X and Y be the unex-
panded and expanded target sets. Let Ti = MB(Ei) ∩Y,
and MB(Ei) = Ti ∪ T̄i. Then, for any subset ∅ ⊂ Z ⊆ X,
the general Bayesian factor score GBF (z ∪ y; e) is upper
bounded as follows.

max
z,∅⊂Z⊆X

GBF (z ∪ y; e)

≤ 1 +

(∏
i

max
z,Z=T̄i

r(z ∪ ti; ei)

)
· C − 1

1− p(y|e)
, (12)

where C =
∏
i p(ei)

/
p(e).

Proof. First, we formulate GBF using the belief update ra-
tio as in Equation 4.

GBF (m; e) = 1 +
r(m; e)− 1

1− p(m|e)
.

For any subset ∅ ⊂ Z ⊆ X, p(z ∪ y|e) = p(z|y, e) ·
p(y|e) ≤ p(y|e). Thus we have:

max
z,∅⊂Z⊆X

GBF (z ∪ y; e)

≤ 1 +

max
z,∅⊂Z⊆X

r(z ∪ y; e)− 1

1− p(y|e)
. (13)

Then using Corollary 2, we obtain the following upper
bound on GBF.

max
z,∅⊂Z⊆X

GBF (z ∪ y; e)

≤ 1 +

(∏
i

max
z,Z=T̄i

r(z ∪ ti; ei)

)
· C − 1

1− p(y|e)
,

where C =
∏
i p(ei)

/
p(e).

Using Equation 12, we can bound all the descendant so-
lutions of the current state y. Equation 12 shows that in an
MRE problem (left), we need to search all of the subsets of

targets M to find the best solution. However, to calculate an
upper bound (right), we only need to search a fixed target set
MB(Ei) of each subnetwork, which usually has a small size
and is easy to handle.

Compiling Markov blankets

The above theorems are based on factorizing the conditional
joint distribution p(e|M) into the product of a set of condi-
tional distributions

∏
i p(ei|MB(Ei)). Thus partitioning the

whole evidence set E into the subsets ∪iEi and compiling
their Markov blankets is a key part of the proposed method.
The Markov blanket of a single node includes its parents,
children, and children’s other parents. In MRE problems,
some of these nodes may be auxiliary nodes. To derive the
upper bound, however, we need to find the Markov blan-
kets containing only targets. Thus the standard definition of
Markov blanket cannot be directly used in our problem.

In the proposed method, we first generate the smallest
ancestral set containing the target set M and the evidence
set E, i.e., An(M ∪ E). Then we compile a moral graph
(GAn(M∪E))

m. Figure 2 illustrates an example moral graph
with two evidence nodes. Using Lemma 1, for each evidence
subset Ei, we need to find a set of targets which separates
Ei from other evidence nodes and targets in (GAn(M∪E))

m.
This is achieved by doing a depth first graph traversal start-
ing from each evidence node if it has not been visited before.
There are three scenarios when a node is being visited.

Case 1: When an evidence node is visited, we add the ev-
idence to the current evidence subset Ei, mark it as visited,
and continue to visit its unmarked neighbors.

Case 2: When a target is visited, we add the target to
MB(Ei) and mark it as visited.

Case 3: When an auxiliary node is visited, we mark it as
visited and continue to visit its unmarked neighbors.

When restarting the search on a new evidence node, we
unmark all targets and auxiliary nodes, because the same
targets may occur in different Markov blankets as shown in
Figure 2. The algorithm stops when all evidence nodes have
been visited. The depth first search algorithm automatically
partitions the whole evidence set into subsets ∪iEi and finds
the Markov blanket MB(Ei) of each subset.
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Merging Markov blankets
When computing the upper bound, we maximize each belief
update ratio r(MB(Ei); ei) according to MB(Ei), indepen-
dently. Thus the common targets of two different Markov
blankets MB(Ei) and MB(Ej) may be set to inconsistent
values based on the maximization. Too much inconsistency
may result in a loose bound. We can tighten the upper bound
by merging Markov blankets that share targets. On the other
hand, if the number of targets in an individual Markov blan-
ket is too large, it will make calculating the upper bound
inefficient. We propose to merge Markov blankets to reduce
the number of duplicates of a target under the constraint that
the number of targets in a Markov blanket cannot exceed K.

We can use an undirected graph to represent the problem
of merging Markov blankets. The nodes in the graph denote
Markov blankets. If two Markov blankets share targets, there
is an edge between the two corresponding nodes. The weight
of edge is the number of targets shared by the two Markov
blankets. This formulation translates the problem of merg-
ing Markov blankets into a graph partition problem. More
specifically, the merging problem can be addressed by recur-
sively solving the minimum bisection problem (Feige and
Krauthgamer 2002), which partitions the vertices into two
equal halves so as to minimize the sum of weights of the
edges between the two partitions, on the undirected graph.

Minimum bisection problem is an NP-hard problem, how-
ever. We cannot afford to spend too much on computing the
upper bound. We therefore use a hierarchical clustering-like
greedy algorithm for merging the Markov blankets. We first
merge any two Markov blankets if one of them covers the
other. Then for all the remaining Markov blankets, we each
time merge two Markov blankets that share the most num-
ber of targets as long as the number of targets in the resulting
Markov blanket does not exceed K. The algorithm finishes
when no Markov blankets can be merged.

Breadth-first branch-and-bound algorithm
In MRE inference, all of the search nodes are potential so-
lutions except the root node. We can choose from a variety
of search methods to explore the search tree, e.g., depth-first
search, best-first search, and breadth-first search. We choose
breadth-first search for two reasons. First, it is convenient to
identify the convergence of MRE by monitoring the number
of states in the search queue. Usually, the size of the search
queue first increases and then decreases in the BFBnB al-
gorithm. Second, since MRE prunes away independent and
less relevant targets, usually the number of targets in the op-
timal solution is not large. Thus breadth-first search may
reach the optimal solutions faster than other search strate-
gies. The breadth-first search costs more memory to store
the unexpanded states in a layer, however.

Before the breadth-first search, we calculate the belief up-
date ratios of all configurations of MB(Ei) and store them
in a belief table. Then the breadth-first search algorithm ex-
plores the search tree layer by layer while keeping track of
the highest-scoring state. For each state S, we search for a
configuration of each Markov blanket that is consistent with
the expanded targets ti and has the highest belief update ra-

Networks Nodes Leaves States Arcs
Alarm 37 11 2.84 46
Carpo 61 43 2.23 74
Hepar 70 41 2.31 123
Insurance 27 6 3.30 52
Emdec6h 168 117 2.00 261
Tcc4g 105 69 2.00 193

Table 1: Benchmark diagnostic Bayesian networks used to
evaluate the proposed algorithm.

tio. We then calculate the upper bound of S using Theo-
rem 3. We prune S if the upper bound is less than the current
best GBF.

Experiments
We tested the proposed algorithm on six benchmark diag-
nostic Bayesian networks listed in Table 1, i.e., Alarm (Ala),
Carpo (Car), Hepar (Hep), Insurance (Ins), Emdec6h (Emd),
and Tcc4g (Tcc) (Beinlich et al. 1989; Binder et al. 1997;
Onisko 2003). Among them, Alarm, Carpo, Hepar, and In-
surance are small networks with fewer than 100 nodes.
Emdec6h and Tcc4g are larger networks with more than 100
nodes. We also listed the number of leaf nodes (Leaves), the
average number of node states (States), and the number of
arcs (Arcs) of the Bayesian networks in Table 1. The exper-
iments were performed on a 2.67GHz Intel Xeon CPU E7
with 512G RAM running a 3.7.10 Linux kernel.

Experimental design
Since the proposed method is the first nontrivial exact MRE
algorithm, we had to use a naive Breadth-First Brute-Force
search algorithm (BFBF) as the baseline; basically BFBF is
BFBnB with the bound set to be infinity. We also included
the results of tabu search to indicate the difficulty of MRE
problems. In BFBnB, we set the maximum number of tar-
gets in a Markov blanket K to be 18. In tabu search, we
set the number of search steps since the last improvement
L and the number of search steps M according to different
network settings. For the networks with 12 targets, we set
L to be 20 and M to be {400, 800, 1600, 3200, 6400}. For
the networks with about 20 targets, we set L to be 80 and
M to be {12800, 25600, 51200}. To evaluate search perfor-
mance, we compared the solutions of tabu search and BF-
BnB, and counted the number of test cases on which tabu
search achieved optimal solutions.

BFBF search can only solve test cases with fewer than 15
targets. To compare to BFBF, we randomly generated five
test settings of each network, each setting consisting of all
leaf nodes as evidence, 12 of the remaining nodes as targets,
and others as auxiliary nodes. Then for each setting, we ran-
domly generated 20 configurations of evidence (test cases)
by sampling from the prior distributions of the networks.

We also evaluated BFBnB on test cases with about 20 tar-
gets. For each network, we generated five test settings and
20 test cases for each setting. In the four smaller networks,
we set all the leaf nodes as evidence, 80% of the remain-
ing nodes as targets, and others as auxiliary nodes. In the
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sec Ala Car Hep Ins Emd Tcc
BFBF 1.7e3 66.1 270 1.6e5 212 162
BFBnB 17.0 3.5 14.6 1.6e3 15.1 5.6

T6400 92 100 93 81 95 100
17.3 25.4 44.8 26.3 89.3 67.7

T3200 85 100 91 77 95 100
9.1 13.2 22.6 13.7 45.0 36.1

T1600 79 100 86 74 95 100
4.7 6.9 11.5 7.0 23.2 19.2

T800 76 98 81 73 95 100
2.4 3.6 5.9 3.6 11.8 10.2

T400 72 98 81 73 95 100
1.2 1.8 3.0 1.8 6.1 5.2

Table 2: Comparison of BFBnB, BFBF, and tabu on running
time and accuracy on Bayesian networks with 12 targets.

two larger networks, we set all the leaf nodes as evidence,
20 of the remaining nodes as targets, and others as auxiliary
nodes.

Evaluation of BFBnB on networks with 12 targets
In Table 2, we compared the proposed BFBnB algorithm
with BFBF and tabu search on the test cases with 12 tar-
gets. For tabu search, we listed the accuracy (top) and run-
ning time (bottom) at different numbers of search steps. Both
BFBnB and BFBF were able to solve the test cases exactly.
BFBnB is shown to be significantly faster than BFBF be-
cause of the pruning by the upper bound. T400 is the fastest
algorithm with the worst accuracy. With the increase of M ,
the running time of tabu search increased significantly. How-
ever, in most of the networks, tabu search could not solve all
the test cases optimally, even using more running time than
BFBnB.

To compare BFBnB and BFBF in detail, we computed
the average running time of the individual test cases for the
algorithms, and plotted the difference between the logarith-
mic running time of BFBnB and BFBF on each network as a
point in Figure 3. We also drew the contour lines to highlight
the differences. For example, the contour line marked by -3
contains the points on which BFBnB is 1000 times faster
than BFBF. The results showed that although the averaged
running time may change significantly, the ratio of running
time between BFBF and BFBnB is relatively stable. BFBnB
is roughly 10 to 100 times faster than BFBF.

Evaluation of BFBnB on networks with more
targets
We also evaluated BFBnB on the test cases with 15 to 20
targets. We listed the number of targets of each network in
the first row of Table 3. It is not surprising that BFBnB took
longer to finish comparing with the results in Table 2, but the
pruning of the upper bound slowed down the exponential
growth of the running time significantly. Also, we can see
that the running time of BFBnB depends on not only the
number of targets, but also the tightness of upper bound and
the Bayesian network structures, which control the number
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Figure 3: Distributions of logarithm running time pairs of
BFBnB and BFBF on Bayesian networks with 12 targets.

min Ala Car Hep Ins Emd Tcc
20 15 22 17 20 20

BFBnB 173 0.98 478 43.91 225 8.10

T51200 60 100 72 76 86 100
4.06 5.55 17.12 0.96 34.14 30.92

T25600 60 100 65 76 86 100
2.40 2.89 9.38 0.76 17.48 15.89

T12800 60 100 63 76 86 100
1.42 1.50 5.15 0.59 8.93 8.10

Table 3: Comparison of BFBnB and tabu on running time
and accuracy on Bayesian networks with 15 to 20 targets.

of pruned states and the size of belief table in each Markov
blanket MB(Ei), respectively. Increasing M from 12800 to
51200 is not helpful in preventing tabu search from getting
stuck in the local optima. Moreover, the performance of tabu
search varies greatly on different networks.

Discussions and Conclusions
The main contribution of this paper is a BFBnB algorithm
for solving MRE exactly using an upper bound based on
Markov blanket decomposition. This is the first exact al-
gorithm for solving MRE in Bayesian networks. The pro-
posed upper bound can be calculated efficiently for two rea-
sons. First, each Markov blanket MB(Ei) is usually much
smaller than the whole target set M. Second, in the original
MRE problem, we need to search all the subsets of target
set M to find the best solution. However, to calculate upper
bounds, we only need to search on a fixed target set MB(Ei)
of each subnetwork. The search space has been dramatically
reduced. The experimental results show that BFBnB is sig-
nificantly faster than the brute-force algorithm. BFBnB can
solve MRE inference exactly in Bayesian networks which
could not be solved previously.

Different from the brute-force algorithm, the search time
of BFBnB is no longer mainly dependent on the size of
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search space (i.e., the number of targets and the number
of states of each target), but also on the tightness of the
upper bound and the structures of Bayesian networks. For
Bayesian networks with a large number of targets, an upper
bound can be efficiently generated as long as the the number
of targets in each Markov blanket is small. For the Markov
blanket with a large number of targets, we can decompose
it into subnetworks using the methods such as node split-
ting (Choi, Chavira, and Darwiche 2007). This is also one of
our future research directions.
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