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Abstract

Interruptible pure exploration in multi-armed bandits
(MABs) is a key component of Monte-Carlo tree search
algorithms for sequential decision problems. We intro-
duce Discriminative Bucketing (DB), a novel family
of strategies for pure exploration in MABs, which al-
lows for adapting recent advances in non-interruptible
strategies to the interruptible setting, while guaran-
teeing exponential-rate performance improvement over
time. Our experimental evaluation demonstrates that
the corresponding instances of DB favorably compete
both with the currently popular strategies UCB1 and
ε-Greedy, as well as with the conservative uniform sam-
pling.

Introduction
The decision setting known as Multi-Armed Bandit (MAB)
captures the structure of some of the most fundamental prob-
lems in the field of decision making (Robbins 1952). In par-
ticular, in the stochastic Multi-Armed Bandit (MAB) setting,
a player is given K actions A := {a1, ..., aK}. Each action
ai ∈ A is associated with a reward, which is a random vari-
able bounded in the interval [0, 1] with expectation µi. The
highest expected reward among the actions is denoted by µ∗,
and the (for simplicity assumed to be single) action having
this expectation is denoted by a∗. The player can make some
T samples of the actions, but he does not know the expecta-
tions of the action rewards.

One of the canonical decision problems in the context of
MABs is the problem of identifying an as good as possi-
ble action from A. In this problem, the player is not judged
by the quality of the rewards collected by his samples, but
only by the quality of the action which he recommends at
the end of the process. With the recent rise of Monte-Carlo
tree search (MCTS) algorithms for online planning of se-
quential decisions, this MAB problem receives a substan-
tial attention in AI literature (Browne et al. 2012). This is
because the nodes of a state-space Monte-Carlo search tree
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can be seen as a hierarchy of MAB players, and thus, hav-
ing more effective sampling strategies for such pure explo-
ration in MABs allows for devising more effective MCTS
algorithms (e.g., see the analysis/discussion by Feldman and
Domshlak, 2014).

Sampling strategies for pure exploration in MABs can
be roughly divided into contract strategies and interruptible
strategies. In the contract setting, the player is allowed ex-
actly T samples up front, and thus his sampling strategy
should aim at optimizing the quality of the recommendation
that can be guaranteed within these T samples. In the inter-
ruptible setting, the player has no knowledge of T and can
be interrupted at any time. Thus, the player here should op-
timize the rate at which his recommendation improves over
time.

As of recent, certain contract strategies for pure explo-
ration in MABs have been shown achieving guarantees that
are optimal up to logarithmic factors (Audibert, Bubeck, and
Munos 2010; Karnin, Koren, and Somekh 2013). A char-
acteristic property of these strategies is that they incremen-
tally zoom in on smaller and smaller subsets of actions. Un-
fortunately, contract strategies are not generally applicable
in the context of MCTS because the players corresponding
to the internal nodes of the search tree cannot be mean-
ingfully preallocated with sampling budgets. In contrast,
among the interruptible strategies (that all fit the context of
MCTS), works on MCTS typically adopt the UCB1 strategy,
which incorporates a soft zooming-in mechanism, but guar-
antees only polynomial-rate performance improvement over
time (Bubeck, Munos, and Stoltz 2011). At the same time,
a simple uniform sampling guarantees an exponential-rate
performance improvement over time (Bubeck, Munos, and
Stoltz 2011), yet it appears to be less popular in practice be-
cause it completely ignores the information collected about
the actions over time.

In this work we introduce and study Discriminative Buck-
eting (DB), a family of interruptible strategies for pure ex-
ploration in MABs that allows for a flexible zooming-in
on subsets of actions while guaranteeing exponential-rate
performance improvement over time. We show that DB
straightforwardly generalizes both uniform and ε-greedy
sampling, but also, and more importantly, that certain in-
stances of DB can be seen as interruptible variants of the
state-of-the-art, action rejecting contract strategies. Our ex-
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perimental evaluation demonstrates that these novel inter-
ruptible strategies for pure exploration in MABs favorably
compete both with the currently popular strategies UCB1
and ε-Greedy, as well as with the conservative Uniform sam-
pling.

Pure Exploration in MABs
Originally, the MAB environment was mostly studied in the
setting of “learning while acting”, in which the player ac-
tually experiences the T sampled rewards (Robbins 1952;
Lai and Robbins 1985). In this setting, the player is inter-
ested in maximizing his expected cumulative reward, or,
conversely, in minimizing his cumulative regret from not
sampling T times the best action a∗ (as if µ∗ is revealed
to the player at the end of the process). Various strategies for
action sampling in “learning while acting” have been pro-
posed over the years. In particular, it is now known that the
player can achieve a (close to optimal) logarithmic regret
by adopting the deterministic UCB1 strategy (Auer, Cesa-
Bianchi, and Fischer 2002), in which, taking advice from
the Hoeffding’s tail inequality (Hoeffding 1963), the player
at time t+ 1 samples the action

argmax
ai

[
µ̂i +

√
2 log t

ti

]
,

where ti is the number of times the action ai was sampled
so far and µ̂i is the current empirical mean of ai.

In contrast, in the setting of pure exploration that is of in-
terest here, the player only observes the T sampled rewards,
and is then asked to output a recommendation, formed by
a probability distribution over the action. Here, the player
is only interested in identifying the best action, or, in more
flexible terms, in minimizing his simple regret from not rec-
ommending a∗ (as if suffering the difference between µ∗

and the expected reward of the recommended action). As
of recent, devising good sampling strategies for pure explo-
ration in MABs is drawing an increasing attention, in par-
ticular because of their key role in devising efficient Monte-
Carlo tree search (MCTS) algorithms for online planning in
sequential decision problems such as Markov decision pro-
cesses, multi-player turn games, etc. (Browne et al. 2012;
Tolpin and Shimony 2012; Feldman and Domshlak 2014).

Adopting terminology from the literature on anytime al-
gorithms (Zilberstein 1993), sampling strategies that assume
knowledge of the sampling budget T are henceforth called
contract strategies, while strategies that make no such as-
sumptions are called interruptible. Considering interrupt-
ible strategies, Bubeck, Munos, and Stoltz (2011) showed
that uniform sampling of the actions achieves exponential-
rate reduction of simple regret over time, while UCB1
achieves only polynomial-rate reduction of this measure.
Subsequently, Tolpin and Shimony (2012) showed that the
popular ε-Greedy strategy, sampling the empirically best ac-
tion with probability ε, while, with probability 1 − ε, sam-
pling an action drawn from A uniformly at random, also
achieves exponential-rate reduction of simple regret over
time for any 1

ε = O(1). The attractiveness of the ε-Greedy’s

convergence-rate guaranty relatively to that of Uniform de-
pends much on the fit between the action set A and the
choice of ε, which, of course, is not known a priori.

While interruptible strategies can obviously be applied
in the contract setting as well, specialized algorithms for
the contract setting have been developed to exploit the
knowledge of the sample budget T .1 In particular, Audib-
ert, Bubeck, and Munos (2010) introduced the Successive
Reject (SReject) strategy, in which the T samples are di-
vided into K − 1 successive epochs, within each epoch the
actions are sampled evenly, and after each epoch, the em-
pirically worst action is ruled out. Audibert et al. proved the
optimality of SReject up to logarithmic factors, and demon-
strated its effectiveness in simulations. Recently, Karnin
et al. (2013) examined another strategy, called Sequential
Halving (SHalve), which also gradually rules actions out
but does it differently from SReject: the T samples are split
evenly across log2K epochs, within each epoch the actions
are sampled evenly, and at the end of each epoch, the em-
pirically worst half of the actions are ruled out. Karnin et al.
proved the optimality of SHalve up to doubly-logarithmic
factors, and demonstrated its competitiveness with SReject
in simulations.

Returning now to the interruptible strategies, note that
the formal superiority of Uniform/ε-Greedy over UCB1
is not entirely unexpected: The exploitative sampling of
UCB1 has no direct motivation in the purely explorative
setting, while Uniform dedicates no samples to exploitation
at all. A radical conclusion from this result of Bubeck et
al. (2011) would be that, unless the player is given some
extra information about the action set A, the less his sam-
pling strategy exploits the empirical knowledge, the better.
Note, however, that the (close to) optimal contract strate-
gies SReject and SHalve do exploit the empirical knowl-
edge collected over time by gradually ruling out empiri-
cally worst actions and focusing the sampling on the more
promising candidates. Furthermore, UCB1 actually outper-
forms Uniform, both formally and empirically, under restric-
tive sample allowances (Bubeck, Munos, and Stoltz 2011;
Feldman and Domshlak 2014). Thus, after all, strategies for
the interruptible setting probably should somehow take the
empirical knowledge into account, and the question is, of
course, how. This is precisely the question we consider in
what comes next.

Discriminative Bucketing
The key conceptual difference between the (close to) opti-
mal strategies for pure exploration in the interruptible and
the contract settings appears to be that the latter incremen-
tally shrink the set of candidates for recommendation. Un-
fortunately, if we are not ready to give up on the eventual

1The other way around, the player can be constrained with the
required quality of the recommendation, and then he should min-
imize the number of samples required to stand by the requested
quality guarantees. This setup gave rise to a family of PAC (proba-
bly approximately correct) algorithms for MABs (Even-Dar, Man-
nor, and Mansour 2002; Mannor and Tsitsiklis 2011), but these are
less relevant to our work here.
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Discriminative Bucketing (DB)
Parameters: A probability distribution P over the buckets [κ];

A bucketing function b : [K]× [0, 1]K → [κ], which, given a set of empirical means for actions in A,
maps each action to the nesting-wise first bucket containing it;

While not interrupted, for each iteration t = 1, 2, . . .

If t ≤ K, then sample at, initialize µ̂t with the sampled reward, and proceed to the next round.
Otherwise,

– select bucket Bj with probability P(j);
– select an action ai from the bucket Bj , either by selecting one of the least sampled actions in Bj ,

or by selecting an action from Bj uniformly at random;
– sample ai and update µ̂i with the sampled reward.

Recommend a ∈ argmaxai µ̂i, i.e., recommend one of the empirically best actions (ties broken is some way).

Figure 1: The Discriminative Bucketing sampling scheme

convergence of the simple regret to zero, then ruling actions
out over time cannot be used in the interruptible setting:
No matter how many times each action has been sampled
so far, even the currently empirically worst action still can
be recommended at the end, if T will turn out to be large
enough to allow a sufficient exploration of that action. At
the same time, in contrast to Uniform, both ε-Greedy and
UCB1 appear to dynamically discriminate actions based on
their empirical means, biasing exploration towards the cur-
rently more promising actions. In terms of convergence-rate
guarantees, that bias of UCB1 appears to be too strong, re-
sulting in only a polynomial-rate reduction of simple regret
over time. In contrast, the bias of ε-Greedy is only constant-
multiplicative, keeping it close enough to Uniform to pre-
serve exponential-rate reduction over time. It is not clear,
however, what precisely justifies ε-Greedy’s equal discrimi-
nation of all but the empirically best action in the context of
pure exploration.

We now introduce Discriminative Bucketing (DB), a
parametrized family of interruptible strategies for simple
regret minimization in MABs, which allows for a flexi-
ble dynamic discrimination of actions while guaranteeing
exponential-rate reduction of simple regret over time. In par-
ticular, we show that DB straightforwardly generalizes both
Uniform and ε-Greedy. More importantly, certain instances
of DB can be seen as interruptible variants of the action re-
jecting contract strategies, and later we demonstrate the ef-
fectiveness of these instances of DB in simulations.

The DB strategy scheme is depicted in Figure 1; there and
henceforth, [n] for n ∈ N denotes the set {1, . . . , n}. As any
other interruptible strategy for MABs, at each iteration DB
samples an action ai from A and updates its empirical mean
µ̂i. Once interrupted, DB recommends one of the actions
with the highest empirical mean. The selection of the actions
for sampling is based on a set of κ ≤ K nested buckets of
actions

B1 ⊂ B2 ⊂ · · · ⊂ Bκ−1 ⊂ Bκ = A,

and a positive probability distribution P over these buckets.

While the content of all buckets but the “all-inclusive
bucket” Bκ can change between the iterations, the sizes of
the buckets, as well as the probability distribution P over
them, remain fixed. At each iteration, the actions are redis-
tributed among the buckets based on their current empirical
means M̂ = {µ̂1, . . . , µ̂K}. Recalling that our buckets are
nested, let a(1), . . . , a(K) be a relabeling of the actions in a
non-decreasing order of their empirical means. For i ∈ [K],
we have a(i) ∈ Bj iff i ≤ |Bj |. In Figure 1, this dynamic
assignment of actions to buckets is captured by a function b
that, given empirical means of K actions, maps a given ac-
tion to the index of the first bucket that contains it; since the
buckets are nested, if ai ∈ Bj , then ai ∈ Bl for all l ≥ j.

Given that, at each iteration DB samples the reward of an
action selected by

1. sampling the set of buckets according to P , and then
2. either selecting one of the least sampled actions in the se-

lected bucket, or sampling the selected bucket uniformly
at random.

Different strategy instances DB(b,P) vary in the structure
of their bucket sets (captured by b) and/or in their proba-
bility distributions over the buckets. Note that both Uniform
and ε-Greedy can be seen as specific instances of DB:
• Uniform corresponds to the (only) instance of DB with
κ = 1, i.e., with a single bucket B1 = A, and

• ε-Greedy is an instance of DB with κ = 2, |B1| = 1 (and
|B2| = K), and P(1) = ε (respectively, P(2) = 1− ε).

More importantly, however, as we show below, (i) not only
these two, but any instance of the DB strategy provides an
exponential-rate reduction of simple regret over time, and
(ii) the flow of DB allows to adapt the action rejection ap-
proach of the state-of-the-art contract strategies to the inter-
ruptible setting.
Proposition 1 Every instance DB(b,P) of DB ensures
that, at any iteration t ≥ K, the expected simple regret as-
sociated with the recommended action is upper-bounded by
αe−βt for some (independent of t) parameters α, β > 0.

3594



(a) (b)

Figure 2: Example of bucketing K = 7 actions in (a) DBSH

and (b) DBSR

Proof sketch: Since P is a positive probability distribution
and the largest bucket of actions Bκ consists of the entire
set of actions A, each action is expected to be sampled by
DB(b,P) at least tP(κ)K , that is, Θ(t), times. The claim fol-
lows from that, combined with the exponential-rate conver-
gence of simple regret ensured by Uniform (Bubeck, Munos,
and Stoltz 2011).

We now introduce two novel instances of DB, baptized
as DBSH and DBSR, which can be seen as interruptible ver-
sions of the SHalve strategy of Karnin et al. (2013) and
the SReject strategy of Audibert et al. (2010), respectively.
Specifically:

DBSH: While in SHalve, the dlog2Ke sampling epochs all
have the same duration and each epoch rules out half of
the actions, in DBSH, the K actions fill dlog2Ke + 1 ex-
ponentially growing buckets, with |Bi| = 2i−1, and the
probability distribution over the buckets is uniform, i.e.,
P(i) = 1

κ (see Figure 2a).

DBSR: In SReject, the duration of the sampling epochs
grows linearly, with the duration of the epoch i being
proportional to 1

K−i+1 , and each epoch rules out a sin-
gle action. Reflecting that, the K actions in DBSR (see
Figure 2b) fillK buckets, with |Bi| = i, and the probabil-
ity distribution over the buckets is (linear) P(i) = α 1

i+1 ,
with α being the respective normalization factor.

Note that the general principle behind deriving both DBSH

and DBSR is the same: The number of the sampling epochs
in the contract algorithm translates to the number of buck-
ets, the number of actions considered at the sampling epoch
i translates to the size of the bucket κ − i + 1, and the du-
ration of the sampling epoch i translates to the probability
P(κ − i + 1) of sampling the bucket κ − i + 1. Likewise,
reflecting the deterministically balanced action selection of
SHalve and SReject within each sampling epoch, both DBSH

and DBSR select one of the least sampled actions withing the
selected bucket. In the next section, we put DBSH and DBSR

on test in simulation.

Experimental Evaluation
To examine the prospects of DBSH and DBSR, we conducted
a few simple experiments and used them to compare the per-
formance of DBSH and DBSR to the performance of UCB1,

Uniform, and ε-Greedy2.
The first set of seven experiments was borrowed from Au-

dibert et al. (2010). These experiments all use Bernoulli dis-
tributions, all have µ∗ = 0.5, but correspond to different
situations for the gaps between the action expected rewards,
differing in the size of the gaps and the distribution of the
gaps (clustered in few groups or distributed according to an
arithmetic or geometric progression). Specifically:
expA1 A single cluster of bad actions:K = 20, µ2:20 = 0.4

(meaning for any j ∈ {2, . . . , 20}, µj = 0.4).
expA2 Two clusters of bad actions: K = 20, µ2:6 = 0.42,
µ7:20 = 0.38.

expA3 Geometric progression: K = 4, µi = 0.5− (0.37)i

for i ∈ {2, 3, 4}.
expA4 Six actions divided in three clusters: K = 6, µ2 =

0.42, µ3:4 = 0.4, µ5:6 = 0.35

expA5 Arithmetic progression: K = 15, µi = 0.5−0.025i
for i ∈ {2, . . . , 15}

expA6 Two good arms and a large group of bad arms: K =
20, µ2 = 0.48, µ3:20 = 0.37

expA7 Three groups of bad arms: K = 30, µ2:6 =
0.45,µ7:20 = 0.43, µ21:30 = 0.38

Each experiment was repeated 10000 times for a specific
(but, of course, unknown to the algorithms) number of itera-
tions T that was suggested by Audibert et al. (2010) for ex-
amining SReject in the respective “situation of gaps”, with
the last experiment being examined under two different val-
ues of T .

Figures 3a and 3b depict the performance of all the afore-
mentioned sampling strategies (plus an additional strategy,
DBSH

lin , that we discuss below) on the eight (7 × 1 + 1 × 2)
experiments from Audibert et al. (2010) in terms of the rela-
tive achievements of these strategies with respect to UCB1,
which is taken as a baseline. That is, if the simple re-
gret achieved by a strategy A is lower (= better) than that
achieved by UCB1, then A is scored 1 + (A−UCB1)

UCB1 , other-
wise it is scored 1 + (A−UCB1)

A . Figure 3a depicts the scores
averaged over all the eight experiments, while Figure 3b de-
picts the scores per experiment, with labels K/T under the
bar charts in Figure 3b capturing the number of actions K
and the number of iterations T in the respective experiments.
One can notice that

1. Uniform in these experiments was consistently the worst
performer, probably suggesting that the situations of gaps
examined by Audibert et al. (2010) are not confusing
enough to justify the most conservative, uniform explo-
ration of the actions.

2. Both DBSH and DBSR almost consistently outperformed
ε-Greedy, with the sole exception being DBSH on expA7
with T = 12000.

3. While in experiments with relatively small number of ac-
tions, namely expA3, expA4, and expA5, UCB1’s simple
2Following Tolpin and Shimony (2012), we used ε-Greedy with

ε = 1/2.
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(a) (b) (c)

(d)
Figure 3: Results of the simulations: (a) Summary and (b) per-experiment results on the MAB setups by Audibert et al. (2010),
(c) summary of the results on our additional experiments on MABs with both small and large numbers of actions, and (d) a
detailed snapshot of the results summarized in (c).

regret was lower than this achieved by the DB instances,
in experiments with relatively high number of actions, the
picture was the opposite.

4. On average across the experiments, while UCB1 outper-
formed Uniform and ε-Greedy, DBSH and DBSR outper-
formed UCB1, reducing the simple regret achieved by the
latter by 9% and 17%, respectively.

Interestingly, the best performer in this set of experiments

was a strategy referred to in Figure 3 as DBSH
lin . This instance

of DB borrows from both DBSH and DBSR, yet its contract-
setting counterpart has not been considered in the literature.
Specifically, similarly to DBSH, DBSH

lin uses dlog2Ke + 1
exponentially growing buckets, with |Bi| = 2i−1. How-
ever, similarly to DBSR, the probability distribution over the
buckets is linear, with P(i) = α 1

i+1 . Informally, DBSH
lin

can be seen as combining the (relative) “aggressiveness”
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of discrimination of the DBSH’s bucketing structure with
the, again, relative, “aggressiveness” of discrimination of the
DBSR’s preference structure over buckets.

As it can be seen in Figure 3b, DBSH
lin almost consistently

outperformed UCB1 across the experiments, with the aver-
age reduction of the simple regret being 30%. In fact, DBSH

lin
almost consistently outperformed all the other strategies,
across all the experiments, with the only exceptions being
DBSR on, again, expA7 with T = 12000, and UCB1 on
expA7.

Now, to examine the effect of the growing number of ac-
tions on the relative performance of the different strategies,
as well as to expand the evaluation beyond Bernoulli distri-
butions, we conducted four large sets of experiments, each
consisting of 10000 instances for each number of actions
K ∈ {20, 200, 2000}. All the instances were generated ran-
domly as described below; in what follows, the operation of
drawing a sample from a uniform distribution over the inter-
val [x, y] is denoted by ∼ U [x, y].
exp1 Bernoulli: For i ∈ [K], the action ai is set to a

Bernoulli random variable Ber(pi) with parameter pi ∼
U [0, 1].

exp2 Bernoulli with random reward: For i ∈ [K], the action
ai is set to ri · Ber(pi), where with ri ∼ U [0, 1] and pi ∼
U [0, 1].

exp3 Composition of two Bernoulli distributions: For i ∈
[K], the action ai corresponds to a probability distribu-
tion (p1i , p

2
i , p

3
i ) over rewards (1, 0.5, 0), with the normal-

ized parameters p1i , p
2
i , p

3
i being first drawn uniformly at

random.
exp4 Bernoulli with heavy noise: the action ai corre-

sponds to a probability distribution (p1i , . . . , p
si
i ) over

(r1i , . . . , r
si
i ) with the number of outcomes si being drawn

uniformly from {2, . . . , 200}, normalized distribution pa-
rameters pji ∼ U [0, 1], a good outcome r1i ∼ U [0.5, 1],
and, for j > 1, noise outcomes rji ∼ U [0, 0.05].
Figure 3c summarizes the average performance of the dif-

ferent strategies relatively to the baseline UCB1 after 10000
samples. The performance is averaged over all the MAB in-
stances from all the four experiments. Interestingly, the pic-
ture here is qualitatively very similar to the summary of our
results in the experimental setups of Audibert et al. (2010),
with the advantage of the contract-inspired DB instances be-
ing stratified here even further: The average reduction of
simple regret by DBSH, DBSR, and DBSH

lin relatively to UCB1
was 44%, 40%, and 59%, respectively. A closer inspection
of the simulation results reveals that the relative advantage of
these three DB instances grows sharply with the increase in
the number of actions. Figure 3d depicts the evolution of the
performance of the different strategies over time (= samples)
in the exp3 and exp4 experiments, averaged separately over
the instances with 20, 200, and 2000 actions.3 It is easy to

3Due to space consideration, exp3 and exp4 have been selected
for this detailed illustration as the two experiments that, after 10000
iterations, exhibited the largest, respectively the smallest, differ-
ence in simple regret between DBSH and UCB1.

see from this illustration that, while the qualitative difference
between all the strategies on MABs with 20 actions was not
that substantial and they all home in rather quickly on some
very good action candidates, when the number of actions
grows, the advantage of the contract-inspired instances of
DB becomes very substantial: On MABs with 2000 actions,
the average reduction of simple regret by DBSH, DBSR, and
DBSH

lin relatively to UCB1 was 87%, 87%, and 90%, respec-
tively.

Summary
We showed how the principle of incremental action rejec-
tion from state-of-the-art contract algorithms for pure explo-
ration in MABs can be adapted to interruptible pure explo-
ration via a notion of dynamic bucketing (DB). The result-
ing interruptible sampling strategies were show guarantee-
ing exponential-rate performance improvement over time,
while favorably competing with the popular UCB1 strategy,
as well as with the more conservative ε and uniform sam-
pling. We see this work as a step towards a comprehensive
understanding of what is the “right thing to do” when one
needs an interruptible mechanism for pure exploration in
MABs.

Given the results of our comparative experimentation, a
few questions in particular call for our attention. First, the
exponential bounds offered by a simple proof strategy we
used above are inherently loose. Thus, it is possible that
stronger formal claims on the performance of various in-
stances of DB could be derived, offering a better differentia-
tion between them. Second, given the superb performance
of DBSH

lin in our experiments, it will be interesting to see
whether and/or when its contact counterpart will be formally
competitive with the currently leading contract strategies
SReject and SHalve. Finally, from a practical perspective,
a natural next step would be to examine the effectiveness
of DB within the MCTS-based solvers for Markov decision
processes and the MCTS-based solvers for adversarial turn
games with large branching factors such as Go, or even Star-
craft.
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