
An Improved Lower Bound for
Bayesian Network Structure Learning

Xiannian Fan and Changhe Yuan
Graduate Center and Queens College

City University of New York
365 Fifth Avenue, New York 10016

{xfan2@gc, change.yuan@qc}.cuny.edu

Abstract

Several heuristic search algorithms such as A* and
breadth-first branch and bound have been developed
for learning Bayesian network structures that optimize
a scoring function. These algorithms rely on a lower
bound function called static k-cycle conflict heuristic
in guiding the search to explore the most promising
search spaces. The heuristic takes as input a partition
of the random variables of a data set; the importance of
the partition opens up opportunities for further research.
This work introduces a new partition method based on
information extracted from the potentially optimal par-
ent sets (POPS) of the variables. Empirical results show
that the new partition can significantly improve the ef-
ficiency and scalability of heuristic search-based struc-
ture learning algorithms.

Introduction
This paper considers the problem of learning an optimal
Bayesian network structure for given data and scoring func-
tion. Several heuristic search algorithms have been devel-
oped for solving this problem by formulating the problem
as a shortest path problem (Yuan and Malone 2013), e.g.,
A* (Yuan, Malone, and Wu 2011), breadth-first branch and
bound (BFBnB) (Malone et al. 2011), and anytime Win-
dow A* (Malone and Yuan 2013). Most of these algorithms
need a lower bound function in estimating the quality of a
search path so that they can prune paths that are guaranteed
to lead to suboptimal solutions and focus on exploring the
most promising search spaces.

A lower bound function called static k-cycle conflict
heuristic (Yuan and Malone 2012) has demonstrated excel-
lent performance when used by the search algorithms to
solve many benchmark data sets. It takes as input a par-
tition of the random variables of a data set, and computes
the heuristic value of a path by enforcing the acyclicity con-
straint between the variables within each group and relaxing
the acyclicity between different groups. The partition has a
significant impact on the tightness of the heuristic. Accord-
ing to Yuan and Malone (2012), a good grouping method
should reduce the number of directed cycles between dif-
ferent groups and enforce acyclicity as much as possible.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing approaches (Fan, Yuan, and Malone 2014) achieve
this objective only indirectly; they use independence tests to
create an undirected graph, and then use graph partition al-
gorithms to create a partition by minimizing the correlation
between the variables in different groups.

This work introduces a more direct partition approach.
Since the goal is to reduce the cycles between different
groups of the partition, we should put variables that have
more cycles between them in the same group. We will
show that the cycles introduced in the static k-cycle conflict
heuristic are originated from the potentially optimal parent
sets (POPS) of the variables. We therefore identify groups of
variables with more cycles based on information extracted
from all or some of the POPS. Empirical results show that
the new partition method can significantly improve the ef-
ficiency and scalability of heuristic search-based structure
learning algorithms.

Background
This section provides an overview of Bayesian network
structure learning, the shortest-path formulation, and the k-
cycle conflict heuristic.

Bayesian Network Structure Learning
A Bayesian network (BN) consists of a directed acyclic
graph (DAG) in which the vertices correspond to a set of ran-
dom variables V = {X1, ..., Xn} and a set of conditional
probability distributions P (Xi|PAi), where all parents of
Xi are referred to as PAi. The joint probability over all vari-
ables factorizes as the product of the conditional probability
distributions.

We consider the problem of learning a network structure
from a discrete dataset D = {D1, ..., DN}, where Di is
an instantiation of all the variables in V. A scoring func-
tion s measures the goodness of fit of a network structure to
D (Heckerman 1998). The goal is to find a structure which
optimizes the score. We only require that the scoring func-
tion is decomposable (Heckerman 1998); that is, the score of
a network s(N) =

∑
i si(PAi). The si(PAi) values are of-

ten called local scores. Many commonly used scoring func-
tions, such as MDL (Lam and Bacchus 1994) and BDe (Bun-
tine 1991; Heckerman, Geiger, and Chickering 1995), are
decomposable.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3526

Figure 1: An order graph for four variables.

While the local scores are defined for all 2n−1 possible
parent sets for each variable, this number is greatly reduced
by pruning parent sets that are provably never optimal (de
Campos and Ji 2011). The scores remaining after pruning
are called potentially optimal parent sets (POPS). The POPS
are given as input to the learning problem. We denote the
set of POPS for Xi as Pi.The Bayesian network structure
learning problem (BNSL) can be defined as follows.

The BNSL Problem
INPUT: A set V = {X1, . . . , Xn} of variables

and a set of POPS Pi for each Xi.
TASK: Find a DAG N∗ such that

N∗ ∈ argmin
N

n∑
i=1

si(PAi),

where PAi is the parent set of Xi in N and
PAi ∈ Pi.

Shortest Path Formulation
The above structure learning problem was formulated as
a shortest-path problem in (Yuan, Malone, and Wu 2011;
Yuan and Malone 2013). Figure 1 shows the implicit search
graph for four variables. The top-most node with the empty
variable set is the start node, and the bottom-most node
with the complete set is the goal node. An arc from U to
U ∪ {Xi} in the graph represents generating a successor
node by adding a new variable Xi as a leaf to an existing
subnetwork of variables U; the cost of the arc is equal to
the score of the optimal parent set for Xi out of U, which
is computed by considering all subsets of the variables in
PA ⊆ U, PA ∈ Pi, i.e.,

cost(U→ U ∪ {Xi}) = BestScore(Xi,U) (1)
= min

PAi⊆U,PAi∈Pi

si(PAi). (2)

In this search graph, each path from the start to the goal
corresponds to an ordering of the variables in the order of

their appearance, so the search graph is also called an order
graph. Each variable selects optimal parents from the vari-
ables that precede it, so combining the optimal parent sets
yields an optimal structure for that ordering. The shortest
path gives the global optimal structure.

Static K-Cycle Conflict Heuristic
The following simple heuristic function was introduced
in (Yuan, Malone, and Wu 2011) for computing lower
bounds for A* search.
Definition 1. Let U be a node in the order graph, its heuris-
tic value is

h(U) =
∑

X∈V\U

BestScore(X,V\{X}). (3)

The above heuristic function allows each remaining vari-
able to choose optimal parents from all of the other vari-
ables. Therefore it completely relaxes the acyclicity con-
straint of Bayesian networks in the estimation. The heuristic
was proven to be admissible, meaning it never overestimates
the future distance (Yuan, Malone, and Wu 2011). Admissi-
ble heuristics guarantee the optimality. However, because of
the complete relaxation of the acyclicity constraint, the sim-
ple heuristic may generate loose lower bounds.

In (Yuan and Malone 2012), an improved heuristic func-
tion called static k-cycle conflict heuristic was proposed by
reducing the amount of relaxation. The idea is to partition
the variables V into multiple groups Vi (typically two), i.e.
V =

⋃
i Vi, and enforce acyclicity within each group while

still allowing cycles between the groups. For the partition,
we need to compute a pattern database for each group Vi.
For this particular problem, a pattern database for group Vi

is basically a full order graph containing all subsets of Vi.
We will use a backward breadth first search to create the
graph layer by layer starting from the node Vi. The cost for
any reverse arc from U ∪ {X} to U in this order graph will
be BestScore(X, (

⋃
j 6=i Vj) ∪U). We then enumerate all

subsets of each group Vi as the patterns, which can be done
by a reverse breadth-first search in an order graph containing
only Vi (Yuan and Malone 2012). The patterns from differ-
ent groups are guaranteed to be mutually exclusive, so we
simply pick out the maximum-size pattern for each group
that is a subset of V \U and add them together as the lower
bound. Figure 2 shows two pattern databases for a 8-variable
problem, as well as the procedure of calculating the heuristic
value of node {X2, X3, X5, X7}.

The tightness of the static k-cycle conflict heuristic de-
pends highly on the partition being used. The heuristic can
avoid directed cycles for the patterns within the same group,
but cannot avoid cycles between different groups. In the ex-
ample shown in Figure 2, X3 selects parents {X1, X5} as
parents (subset of {X1, X4}∪V2) andX5 selects {X3, X6}
as parents; there is a cycle between {X3} and {X5}.

A New Partition Method for Improved Lower
Bounds

Previously, Fan et al. proposed two methods called Parent
Grouping (PG) and Family Grouping (FG) (Fan, Yuan, and

3527

���

������ ������ ������

���������������������������

���	��������

���	��

���	��������	��������	�����

���	�������� ���	�������� ������������

���	�����������

���

���
�� ������ ������

������������
��������
�����

�����
�����

�����

�������������
�������
��

�����
����� ����������� ���
��������

�����
��������

Figure 2: Two pattern databases for a 8 variables problem. 8 variables are partitioned into two groups, V1 = {X1, X2, X3, X4}
and V2 = {X5, X6, X7, X8}. (Left) The pattern database for group V1; bold arrows show the path corresponding to the score
P1 for pattern {X2, X3}, where P1 = BestScore(X3, {X1, X2, X4}∪V2)+BestScore(X2, {X1, X4}∪V2). (Right) The
pattern database for group V2; bold arrows show the path corresponding to the score P2 for pattern {X5, X7}, where P2 =
BestScore(X7, {X5, X6, X8} ∪V1) +BestScore(X5, {X6, X8} ∪V1) . The heuristic value for pattern {X2, X3, X5, X7}
is P1 + P2.

Malone 2014) to partition the variables based on correlation
between the variables. There are three main steps in these
two methods. First, they create an undirected skeleton graph.
PG uses the best POPS of each variable to create the skele-
ton, while FG uses the Min-Max Parent Child (MMPC) al-
gorithm (Tsamardinos, Brown, and Aliferis 2006) to get the
skeleton. Second, they use the independence tests in MMPC
to estimate the weights for the edges of the skeleton. Third,
A graph partition algorithm called METIS (Karypis and Ku-
mar 1998) is used to partition the skeleton into two balanced
subgraphs by minimizing the total weights of the edges be-
tween the subgraphs.

Intuitively, since the edge weights measure the correlation
between the variables, putting variables that are less corre-
lated into different groups should reduce cycles between the
groups. However, these approaches fail to consider the com-
plex relation between a variable and another set of variables
(parent set), and are heuristic in nature. This work introduces
a new approach to obtaining a partition by directly reducing
cycles between its groups.

Ancestral Constraints
We first use a concrete example to motivate the develop-
ment of our method. It relies on the fact that all of the po-
tential parent-child relations are contained in the potentially
optimal parent sets (POPS) of the variables. Useful informa-
tion can be extracted from the parent-child relations to find
good partition strategies. As an illustrating example, Table 1
shows the POPS of eight variables in the example. Based
on these POPS, we can extract the parent-child relations as
follows. The set of all potential parents Pi for Xi can be
collected by taking the union of all of its POPS. For exam-
ple, X1 can select parents from {X2, X5}, and X2 can only
select X1 as its parent. We then use all of the Pis to cre-
ate a directed graph, which was called parent relation graph

var. POPS
X1 {X2} {X5}
X2 {X1}
X3 {X1, X5} {X1, X2} {X2, X4} {X1}
X4 {X3} {X6} {X7}
X5 {X1, X3} {X3}
X6 {X2, X7} {X7}
X7 {X8} {X6, X4}
X8 {X6} {X7}

Table 1: The POPS for eight variables. The ith row shows
Pi. The POPS for each variable are sorted according to their
scores.

in (Fan, Yuan, and Malone 2014).
We can use the ancestral relations of the parent relation

graph to partition the variables into sets. In particular if the
variables in one set can be ancestors of the variables in an-
other set, but not vice versa, there must be no cycles between
the two sets. We can put the two sets of variables into dif-
ferent groups of the static k-cycle conflict heuristic in or-
der to reduce cycles. We identify such ancestral relations
by extracting strongly connected components (SCCs) from
the parent relation graph. The SCCs of the parent relation
graph form a DAG called component graph (Cormen et al.
2001); each component ci corresponds to a SCC scci from
the parent relation graph (which in turn corresponds to a set
of variables in the Bayesian network). The component graph
includes a directed edge from node ci to cj if the parent re-
lation graph includes an edge from a variable Xi ∈ scci
to Xj ∈ sccj . The component graph provides some obvi-
ous ancestral relation constraints: if cj is a descendent of
ci in the component graph, variables in sccj cannot be an-
cestors of variables in scci. We call such relations ances-

3528

Figure 3: The parent relation graphs created from (a) all of
the POPS, (b)top-1 POPS, and (c) top-2 POPS. Each shaded
box represents a strongly connected component (SCC) and
a node in a corresponding component graph.

tral constraints. We can obtain a tight static k-cycle conflict
heuristic by putting the different SCCs into different groups
of the heuristic as there would not be any cycles between
the groups. As a matter of fact, the SCCs represent indepen-
dent learning problems that can be solved separately (Fan,
Malone, and Yuan 2014).

There are two possible pitfalls of the above approach. One
is that it assumes there exist multiple SCCs. The component
graph may only has a single SCC, especially when we use all
of the POPS to create the parent relation graph. Figure 3(a)
shows the parent relation graph created from the POPS in
Table 1. The component graph includes one SCC contain-
ing all variables. Therefore, all variables can be ancestors
of each other; we have no way of easily dividing the vari-
ables into groups. Second, even though there exist multiple
SCCs, the largest one may be too large for the approach to
be feasible. The reason is that we are performing an exhaus-
tive search when building a pattern database for a group of
variables; the search is only feasible for fewer than 30 vari-
ables within one group in our testing environment. We will
address these issues in the following sections.

Ancestral Constraints from Top-K POPS
To avoid creating a dense parent relation graph that has ei-
ther only a single SCC or a SCC that is too large, we pro-
pose to use only the top K POPS of each variable to create
the graph. Fewer POPS reduce the total number of candi-
date parents for each variable, resulting in fewer arcs in the
parent relation graph. Top K POPS allow us to focus on the
most important parent-child relations so that the SCCs of the
relation graph still allow the heuristic to remove the most
critical cycles. Figure 3(b) shows the parent relation graph
created from only the top 1 POPS of each variable. The com-
ponent graph now has 4 SCCs with no cycles between them.
Of course we are ignoring the ancestral constraints outside
of the top-1 POPS. For example, after recovering the par-
ent relation X5 → X1, there will be cycles between SCCs
{X1, X2} and {X3, X5} as well as between X1 and X5.

The parent relation graph created from the top-1 POPS is
overly sparse; 4 SCCs are generated as a result. Fortunately,

there is a happy medium to explore between using all POPS
and using only top-1 POPS; we propose to use top-K POPS
of each variable in creating the parent relation graph. Intu-
itively, including more POPS will introduce more cycles in
the parent relation graph. More cycles in the parent relation
graph would allow us to remove more cycles in the heuris-
tic by enforcing acyclicity between the variables within each
SCC, hence resulting in tighter heuristic values.

Figure 3(c) shows the graph created from the top-2
POPS of all variables. Now there are only two SCCs,
{X1, X2, X3, X5} and {X4, X6, X7, X8}. By using each
SCC as a group in the static k-cycle conflict heuristic, we
can remove the cycles within each SCC. For example, X5

and X1 are in the same SCC, the cycle between them can
be removed by enforcing acyclicity between them in the
heuristic. Moreover, there are no cycles between the SCCs,
so putting them into different groups of the heuristic can re-
duce the possibility of cycles between the groups. Note that
we cannot completely avoid cycles between the groups be-
cause we only consider top-2 POPS.

Finally, since a partition with two groups typically works
best for the static k-cycle conflict heuristic, there is no need
to increase K to consider more POPS in this case.

Components Grouping
It was shown in (Yuan and Malone 2012; Fan, Yuan, and
Malone 2014) that it is best to divide the variables into only
2 groups in static pattern databases. The reason is that we
enforce acyclicity within each group, and allow cycles be-
tween groups; using only two groups allows acyclicity to
be enforced within the largest possible groups, hence lower
probability for cycles between the groups. The parent rela-
tion graph created from top-K POPS may have more than
2 SCCs, regardless of what K is. We then have a group-
ing problem. Suppose there are l SCCs in the parent relation
graph, denoted by scc1, scc2, ..., sccl, the grouping problem
is to divide these SCCs into two groups, V1 and V2.

We let γ be the number of variables in the largest pat-
tern database we can build in our testing environment. If the
largest SCC is already larger than γ, we cannot succeed in
building the heuristic, not mentioning solving the learning
problem. In this case we fall back on the parent grouping
(PG) method (Fan, Yuan, and Malone 2014), that is, we ig-
nore the direction of the edges in the parent relation graph
from Top-1 POPS and use the graph as the skeleton, assign
the graph weights, and partition the skeleton to give the two
grouping.

On the other hand, if the largest SCC is smaller than γ,
we should combine it with some other SCCs to get a group
as large as possible as long as it is still smaller than γ. More-
over, we want to combine nearby SCCs into a group because
variables in nearby SCCs are more likely to have cycles be-
tween them outside of the top-K POPS. We therefore pro-
pose the following Prim algorithm-like method for dividing
the SCCs into two groups.

First, we create the parent relation graph and its compo-
nent graph based on top-K POPS. Initialize V1 to contain
the largest SCC in the graph. Second, we perform the fol-
lowing iteratively until V1 hits the threshold γ. For all of

3529

the SCCs in V1, we find their neighboring SCCs that are
not yet in V1. Then we select the largest one out of these
SCCs to add to V1 subject to the constraint that |V1| ≤ γ.
Third, all the remaining SCCs form the second group V2. It
is straightforward to generalize this method to more groups;
we only consider two groups in this paper.

TheK is given in the above procedure. Let P be the max-
imum number of POPS any variable can have. Since we do
not know what the optimalK is, we try eachK starting from
1 to P until we get only a single SCC or exhaust all POPS
for each variable, or the largest SCC exceeds the γ thresh-
old. We finally accept the grouping of the highest K that
produces at least two SCCs subject to the γ threshold. We
name the new method Components Grouping (CG).

Related Work
POPS for all variables are the input to the score-based ex-
act BNSL algorithms. To the best of our knowledge, Fan
et al. (2014) are the first to extract constraints from POPS
to improve the performance of heuristic search on the ex-
act BNSL problem. They decomposed the parent graph into
a set of strongly connected components (SCCs). Each SCC
corresponds to a smaller subproblem which can be solved
independently of the others, thus the search space was re-
duced. They also used the top-K POPS to further reduce the
search space to get a sub-optimal solution, but lost the opti-
mality guarantee. We use the top-K POPS to get groupings
for the lower bound. We do not lose global optimality no
matter which K we use.

The Parent Grouping (PG) method in (Fan, Yuan, and
Malone 2014) creates an undirected skeleton from the top-1
POPS, assigns the skeleton weights, and partition the graph
into two groups. Our method works directly on the directed
graph created from the top-K POPS.

Finally, this research focuses on heuristic search-based
algorithms for learning optimal Bayesian networks (Yuan
and Malone 2013; Yuan, Malone, and Wu 2011; Malone et
al. 2011; Malone and Yuan 2013). Other exact algorithms
have been developed for solving the same problem based
on dynamic programming (Koivisto and Sood 2004; Ott,
Imoto, and Miyano 2004; Silander and Myllymaki 2006;
Singh and Moore 2005; Malone, Yuan, and Hansen 2011)
and integer linear programming (Cussens 2011; Jaakkola et
al. 2010). Please refer to (Yuan and Malone 2013) for a com-
prehensive study comparing the different approaches.

Empirical Results
We empirically evaluated our new CG lower bound using the
A* and BFBnB algorithms on benchmark datasets from UCI
machine learning repository and Bayesian Network Repos-
itory (http://compbio.cs.huji.ac. il/Repository/). The experi-
ments were performed on an IBM System x3850 X5 with 16
core 2.67GHz Intel Xeon Processors and 512G RAM.

Parameter K
We first tested the effect of K on the performance of A* al-
gorithm as it guarantees to expand the minimal number of

1 2 3 4 5

10
0

10
1

10
2

k

R
u

n
n

in
g

 T
im

e

1 2 3 4 5

10
4

10
5

10
6

k

E
x
p

a
n

d
e
d

 N
o

d
e
s

Figure 4: The running time and number of expanded nodes
needed by A* to solve Soybeans with different K.

nodes. The size of the largest SCC is monotonically increas-
ing in terms of K. We did not limit the size of the largest
SCC as long as at least two SCCs are obtained. In this exper-
iment, Dataset soybeans (36 variables) was tested bacause
it was found to be challenging from a previous study (Fan,
Malone, and Yuan 2014). FG failed to solve this dataset
within the time limit of 2 hours; PG solved it in more than
518 seconds with more than 9 million nodes expanded. For
CG, we varied K and measured the running time and the
number of expanded nodes. Figure 4 showed the results.
Even for K = 1, the running time of CG was only 76 sec-
onds, 7 times faster than PG, and the number of expanded
nodes was around 1 million, 9 times fewer than that of PG;
when K = 2, the running time was less than 1 second, and
the number of expanded nodes was just around 1 thousand,
which were negligible compared to PG; fromK = 3 and on,
the running time and number of expanded nodes were fur-
ther reduced. The size of largest SCC was 20 when K = 1,
26 when K = 2, and 27 when K = 3, 4, 5. K = 6 and
above only generated a single SCC.

Generally, we notice that the larger the K, the better per-
formance of the CG lower bound, which is understandable
because we can avoid cycles within a wider range of POPS.
That is exactly why we set K to be the largest value such
that at least two SCCs are obtained and the size of the largest
SCC is smaller than the threshold γ.

Results on Benchmark Datasets
We compared the components grouping (CG) against the
two existing strategies, the family grouping (FG) and parents
grouping (PG) (Fan, Yuan, and Malone 2014), using A* and
BFBnB on a set of benchmark datasets. We set the threshold
γ to be 22 for small datasets with fewer than 35 variables as
the heuristic can be built within 5 seconds, and to be 25 for
large datasets with 35 or more variables as the heuristic can
be built within 60 seconds. The results are shown in Table 2.

A* is guaranteed to expand the least number of search

3530

Dataset Results
Name n N FG (A*) PG (A*) CG (A*) FG (BFBnB) PG (BFBnB) CG (BFBnB)
Autos 26 159 Time (s) 16.91 26.78 7.20 9.12 13.77 4.79

Nodes 0.94 1.63 0.46 0.94 1.63 0.46
Insurance* 27 1,000 Time (s) 7.51 62.41 22.27 4.57 28.74 10.88

Nodes 0.53 3.77 1.50 0.53 3.77 1.64
Horse Colic 28 300 Time (s) 1.13 6.01 0.09 1.72 5.71 0.71

Nodes 0.09 0.58 0.00 0.09 0.87 0.00
Flag 29 194 Time (s) 61.04 213.53 1.40 50.31 112.24 1.61

Nodes 2.36 9.96 0.09 3.45 13.41 0.09
Mildew* 35 1,000 Time (s) OT 20.92 0.58 OT 21.28 1.30

Nodes OT 1.97 0.03 OT 4.43 0.03
Soybean 36 307 Time (s) OT 518.35 76.22 OT 1,203.78 59.13

Nodes OT 9.64 1.37 OT 129.77 2.46
Alarm* 37 1,000 Time (s) 4.08 4.09 4.00 3.18 3.15 3.23

Nodes 0.25 0.24 0.24 0.25 0.25 0.25
Sponge 45 76 Time (s) OT OT 23.23 OT OT 20.93

Nodes OT OT 1.60 OT OT 2.99
Barley* 48 1,000 Time (s) OT 3.16 0.08 OT 1.53 1.14

Nodes OT 0.08 0.00 OT 0.08 0.00

Table 2: The number of expanded nodes (in millions) and running time (in seconds) of the A* and BFBnB algorithm on a set
of benchmark datasets with different lower bounds. The lower bounds are family grouping (FG), parents grouping (PG) and
components grouping (CG). “n” is the total number of variables, and “N” is the number of data points; “*”indicates the dataset
was generated from a repository network using logic sampling; all other datasets are from UCI; OT means out of time (2 hours).

nodes (Yuan, Malone, and Wu 2011). The table shows that
the benefit of the new grouping method CG on A* is rather
obvious. The improvement brought by CG in running time
and the number of expanded nodes ranges from three times
to over two orders of magnitude on most of datasets.

FG is inferior than CG on all of the datasets except insur-
ance. It failed to solve datasets Mildew, Soybean, Sponge
and Barley within 2 hours. In comparison, three out of
the four datasets turned out to be quite easy to solve by
CG; the other one, Soybean, was solved efficiently by CG
within 77 seconds (Note γ is set to be 25 in this experi-
ment, so the final results are from K = 1). Upon further
investigation, we found that the skeleton of FG found by the
MMPC (Tsamardinos, Brown, and Aliferis 2006) method
was very sparse and not well connected. MMPC used a pa-
rameter p−value to control the generation of the skeleton,
and the default value p = 0.05 was shown to result in stable
performance. We varied the value of p from 0.01 to 0.99 to
test the effect for the network. The results showed that the
issue cannot be solved with a larger p value.

PG is more robust on large datasets than FG. However,
CG consistently outperformed PG; the speedup ranged from
several times faster (e.g., Autos) to several orders of magni-
tude faster (e.g., Flag). Moreover, CG solved the Sponge ef-
ficiently (within 24 seconds) while PG and FG failed within
the time limit (7,200 seconds). The only exception is the
easy dataset alarm for which all of the grouping methods
can solve it efficiently in around 4 seconds.

We also evaluated the different grouping methods with
BFBnB (Malone et al. 2011) because it can scale to larger
datasets by using external memory. Anytime window A*
(AWA*) was used to provided an upper bound for prun-

ing since a previous study (Malone and Yuan 2013) has
shown that AWA* is effective at finding high quality solu-
tions quickly, so we provided the upper bound by running
AWA* for 5 seconds on small dataset (fewer than 35 vari-
ables) and 10 seconds for larger datasets. The results of BF-
BnB demonstrate rather similar patterns to A*. Therefore,
the new grouping method seems to be generally applicable
to other search methods.

Conclusion

This paper investigates a new method for improving the
lower bound of heuristic search for Bayesian networks struc-
ture learning proposed in (Yuan and Malone 2012). The
main idea is to create a parent relation graph from the top-
K potentially optimal parent sets (POPS) of each variable,
and extract better groupings for the static k-cycle conflict
heuristic. Empirically, we showed that the new lower bound
can significantly improve the efficiency and scalability of the
heuristic search-based learning methods.

As we said earlier, the need for good groupings in the
k-cycle conflict heuristic opens up opportunities for future
research. Even though our current method has excellent per-
formance, there may be better methods. For example, one
possibility is to investigate how to integrate domain knowl-
edge and the information contained in the potentially opti-
mal parents sets.

Acknowledgments This work was supported by NSF grants
IIS-0953723, IIS-1219114, and a PSC-CUNY enhancement
award

3531

References
Buntine, W. 1991. Theory refinement on Bayesian networks.
In Proceedings of the seventh conference (1991) on Uncer-
tainty in artificial intelligence, 52–60. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
Cormen, T. H.; Stein, C.; Rivest, R. L.; and Leiserson, C. E.
2001. Introduction to Algorithms. McGraw-Hill Higher Ed-
ucation.
Cussens, J. 2011. Bayesian network learning with cutting
planes. In Proceedings of the Proceedings of the Twenty-
Seventh Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-11), 153–160. Corvallis, Ore-
gon: AUAI Press.
de Campos, C. P., and Ji, Q. 2011. Efficient learning of
Bayesian networks using constraints. Journal of Machine
Learning Research 12:663–689.
Fan, X.; Malone, B.; and Yuan, C. 2014. Finding optimal
Bayesian network structures with constraints learned from
data. In Proceedings of the 30th Annual Conference on Un-
certainty in Artificial Intelligence (UAI-14).
Fan, X.; Yuan, C.; and Malone, B. 2014. Tightening bounds
for Bayesian network structure learning. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence (AAAI-
14).
Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian networks: The combination of knowl-
edge and statistical data. 20:197–243.
Heckerman, D. 1998. A tutorial on learning with Bayesian
networks. In Holmes, D., and Jain, L., eds., Innovations
in Bayesian Networks, volume 156 of Studies in Computa-
tional Intelligence. Springer Berlin / Heidelberg. 33–82.
Jaakkola, T.; Sontag, D.; Globerson, A.; and Meila, M. 2010.
Learning Bayesian network structure using LP relaxations.
In Proceedings of the 13th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS).
Karypis, G., and Kumar, V. 1998. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
Journal on scientific Computing 20(1):359–392.
Koivisto, M., and Sood, K. 2004. Exact Bayesian structure
discovery in Bayesian networks. Journal of Machine Learn-
ing Research 549–573.
Lam, W., and Bacchus, F. 1994. Learning Bayesian belief
networks: An approach based on the MDL principle. Com-
putational Intelligence 10:269–293.
Malone, B., and Yuan, C. 2013. Evaluating anytime algo-
rithms for learning optimal Bayesian networks. In In Pro-
ceedings of the 29th Conference on Uncertainty in Artificial
Intelligence (UAI-13).
Malone, B.; Yuan, C.; Hansen, E.; and Bridges, S. 2011. Im-
proving the scalability of optimal Bayesian network learn-
ing with external-memory frontier breadth-first branch and
bound search. In Proceedings of the Twenty-Seventh Annual
Conference on Uncertainty in Artificial Intelligence (UAI-
11), 479–488. Corvallis, Oregon: AUAI Press.
Malone, B.; Yuan, C.; and Hansen, E. 2011. Memory-
efficient dynamic programming for learning optimal

Bayesian networks. In Proceedings of the 25th national con-
ference on Artifical intelligence.
Ott, S.; Imoto, S.; and Miyano, S. 2004. Finding optimal
models for small gene networks. In Pac. Symp. Biocomput,
557–567.
Silander, T., and Myllymaki, P. 2006. A simple approach
for finding the globally optimal Bayesian network structure.
In Proceedings of the 22nd Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-06). Arlington, Vir-
ginia: AUAI Press.
Singh, A., and Moore, A. 2005. Finding optimal Bayesian
networks by dynamic programming. Technical report,
Carnegie Mellon University.
Tsamardinos, I.; Brown, L.; and Aliferis, C. 2006. The max-
min hill-climbing Bayesian network structure learning algo-
rithm. Machine Learning 65:31–78. 10.1007/s10994-006-
6889-7.
Yuan, C., and Malone, B. 2012. An improved admissible
heuristic for finding optimal Bayesian networks. In Pro-
ceedings of the Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence (UAI-12). AUAI Press.
Yuan, C., and Malone, B. 2013. Learning optimal Bayesian
networks: A shortest path perspective. Journal of Artificial
Intelligence Research (JAIR) 48:23–65.
Yuan, C.; Malone, B.; and Wu, X. 2011. Learning opti-
mal Bayesian networks using A* search. In Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence.

3532

