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Abstract
Advice giving has been long explored in artificial intelligence
to build robust learning algorithms. We consider advice giv-
ing in relational domains where the noise is systematic. The
advice is provided as logical statements that are then explic-
itly considered by the learning algorithm at every update. Our
empirical evidence proves that human advice can effectively
accelerate learning in noisy structured domains where so far
humans have been merely used as labelers or as designers of
initial structure of the model.

Introduction
Advice taking methods have a rich and long history in artifi-
cial intelligence - from the time of explanation based learn-
ing (DeJong and Mooney 1986) to theory refinement (Baffes
and Mooney 1996). The key motivation underlying this re-
search direction is that the experts possess a vast amount of
knowledge in their respective fields of which many purely
data-driven machine learning techniques (Mitchell 1997;
Cristianini and Shawe-Taylor 2000; Schapire and Freund
2012) fail to take full advantage. Exploiting advice in var-
ious forms has yielded successful learning algorithms par-
ticularly in the context of reinforcement learning (Torrey et
al. 2005; Wiewiora, Cottrell, and Elkan 2003; Ng, Harada,
and Russell 1999) where the advice is essentially used as
reward shaping. In supervised learning, typically, advice is
provided as feature selection and/or as inductive bias on ini-
tial models. In graphical models, advice is typically used as
an initial structure that is refined (Heckerman 1999).

A key assumption (particularly in supervised learning ap-
proaches) is that the data can be used to refine or fix human
advice. In several tasks however, the noise in the data can be
systematic. For instance, while driving it is quite common to
run stop signs or in segmentation tasks, it is often possible
to miss small minute segments. The key issue is that noise
in such cases is not random. However, a human expert could
provide robust advice in such cases - for instance, “stop at
stop signs without fail” and “the small blurb on the image
should be a segment in itself” etc. We address such system-
atic noise and targeted advice.

Incorporating prior knowledge in machine learning has
a rich history. Knowledge-based Neural Networks (Towell
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and Shavlik 1994), Knowledge-based Support Vector Ma-
chines (Fung, Mangasarian, and Shavlik 2002) and their re-
cent adaptations (Kunapuli et al. 2010; 2013) have explored
the combination of knowledge and data to handle systematic
noise. While specific adaptations differ, all these methods
take as advice Horn clauses and convert them to their corre-
sponding representation. We on the other hand, aim at better
integrating the advice (as Horn clauses) with a probabilistic
logic model (PLM). Our work can thus be viewed as pref-
erence elicitation (Boutilier 2002; Drummond and Boutilier
2014) for PLMs.

Specifically, we consider a recently successful PLM for-
malism called as Relational Functional Gradient Boosting
(RFGB) (Natarajan et al. 2012) as the underlying base
learner and provide human guided advice to this learning
framework. Our advice consists of preferred and avoided
target labels (labels that should have higher probability than
other labels) defined over spaces of examples. The space of
examples where the advice applies is given by horn clauses
which can be thought of as if-then rules specified by experts.
Since our underlying representation is also based on first-
order logic, the system can more faithfully exploit the ad-
vice compared to converting it to a different representation
internally by the learning algorithm.

We show that the proposed framework is not restricted
to a particular type of PLM model. Specifically, we show
that several formalisms and tasks such as Markov Logic Net-
works (MLNs) (Domingos and Lowd 2009), Relational De-
pendency Networks (RDNs) (Neville and Jensen 2007), re-
lational imitation learning (Natarajan et al. 2011) and rela-
tional transfer can benefit from this framework. Our frame-
work uses both the advice and the data throughout learn-
ing process and allows for sequential interaction where the
expert could potentially add more advice as learning pro-
gresses.

We make the following contributions - (1) We present the
first work on exploiting human advice while learning several
PLMs (2) We outline a natural framework for the human to
provide general advice about the domain as well as specific
advice about particular examples (3) Our method naturally
integrates human input with examples in a boosting formal-
ism and (4) Finally, our experiments on a several data sets
demonstrate that the framework efficiently exploits the hu-
man advice in learning effective models.
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Background
Relational Functional-Gradient Boosting
The standard gradient descent learning algorithm starts with
initial parameters θ0 and computes the gradient of the log-
likelihood function (∆1 = ∂

∂θ logP (X; θ0)). Friedman
(2001) proposed an alternate approach to perform gradient
descent where the log-likelihood function is represented us-
ing a regression function ψ over the examples x and the gra-
dients are performed with respect to ψ(x).

Functional gradient descent starts with an initial function
ψ0 and iteratively adds gradients ∆m. Each gradient term
(∆m) is a regression function over the training examples
and the gradients at the mth iteration can be represented
as 〈xi,∆m(xi)〉 where xi ∈ training examples. Also rather
than directly using 〈xi,∆m(xi)〉 as the gradient function,
functional gradient boosting generalizes by fitting a regres-
sion function ψ̂m (generally regression trees) to the gradi-
ents ∆m. The final model ψm = ψ0 + ψ̂1 + · · · + ψ̂m is a
sum over these regression trees.

This method been extended to various relational models
for learning the structure (Natarajan et al. 2012; Karwath,
Kersting, and Landwehr 2008; Kersting and Driessens 2008;
Natarajan et al. 2011). The examples are ground atoms
of the target predicate such as workedUnder(x, y). The
ψ function is represented using relational regression trees
(RRTs)(Blockeel 1999). Since these are relational models,
the ψ function depends on all the ground atoms and not just
the grounding of the target predicate. For example, the prob-
ability function used by Natarajan et al (2012) to learn the
structure of RDNs was: P (xi)= sigmoid(ψ(xi;Pa(xi)))
where Pa(xi) are all the relational/first-order logic facts that
are used in the RRTs learned for xi. They showed that the
functional gradient of the likelihood for RDNs as

∂P (X = x)

∂ψ(xi)
= I(yi = 1)− P (yi = 1;xi, Pa(xi)) (1)

which is the difference between the true distribution (I is
the indicator function) and the current predicted distribution.
For positive examples, the gradient is always positive and
pushes theψ function value (ψ0+∆1+· · ·+∆m) closer to∞
and the probability value closer to 1. Similarly the gradients
for negative examples is negative and hence the ψ function
is pushed closer to −∞ and probability closer to 0.

Advice-based Learning: Incorporating advice in propo-
sitional domains to improve the learning process has been
explored in several directions (Kunapuli et al. 2013; 2010;
Towell and Shavlik 1994). Commonly, in all these meth-
ods, a single piece of advice is defined over some set of
the ground feature or example space. Traditionally advice
in PLMs have not been expressive and mainly consisted of
hand-coding the structure and possibly even the parameters
of the model. Such techniques have been used in many prob-
lems including natural language processing (Riedel et al.
2009; Yoshikawa et al. 2009; Poon and Vanderwende 2010).
While such techniques have been successful, the learning
algorithm does not modify the structure of the model. As a
result, they do not introduce potentially novel interactions
based on the training data. A related method by Natarajan

et al.(2013) used learned models from a source domain as
initial models in the target domain and boosted the gradients
based on examples from target domain. But if the training
data is sub-optimal, it is possible that the learning algorithm
will refine the model away from the advice (which is pre-
cisely the goal in transfer learning as the target domain is
different from the source domain). On the other hand, we
seek to use the advice throughout the learning process and
thereby handle noisy examples.

Advice-Based Learning in Relational Problems
As mentioned earlier, learning in PLMs, which is similar to
the propositional graphical models, has two components -
parameter learning and structure learning. Structure learn-
ing identifies the presence of a relationship between logi-
cal predicates while the parameters quantify the strength of
these relationships. Most of the structure learning in litera-
ture use an initial model from the expert and uses the data to
fix the mistakes in these models. As mentioned earlier, this
essentially fixes the mistake in the advice and does not ex-
plicitly model the systematic errors in the training instances.
We now present a model that effectively exploits user advice
to fix the systematic noise. To this effect, we adapt the func-
tional boosting approach with a modified objective function
that trades off between the effect of advice and the exam-
ples. We first present our definition of the user advice before
outlining the objective function and the modified algorithm.

Relational Advice
A natural question to ask is: what are the type and desider-
ata of good advice? We argue that this advice must be (1)
generalized (as against targeting a specific example), (2) de-
scribed using parameterized properties (as against example
identifiers), (3) preferential (i.e., must avoid quantifying the
importance of some of these properties as these numbers are
hard to be elucidated by the expert) and (4) in the same rep-
resentation as that of the learning algorithm. To this effect,
we employ the use of first-order logic to capture the expert’s
knowledge as a set of preference rules on the space of la-
bels/actions as a function of the attributes of the object or
related objects. Formally, our advice is defined as,

Definition 1. Relational advice set (RAS), R is specified as
a set of relational advice rules (RAR), r1, r2, . . . , rA. Each
RAR, ra is defined using the triple 〈F, l+, l−〉 where F is
the relational advice constraint (RAC) clause specifying the
subset of examples, l+ is the preferred label and l− is the
avoided label.

Definition 2. A relational advice constraint (RAC), F is de-
fined using a Horn clause ∧ifi(xi) ⇒ label(xe), where
∧ifi(xi) specifies the conjunction of conditions under which
the advice applies on the example arguments xe.

Example 1. Consider the problem of predicting whether
an actor has worked under a director on a movie. A po-
tential advice would be that if an actor, a has acted in a
movie which was directed by director, d then it is likely
that a has worked under d. Suppose, the advice set R con-
tains one rule, r1 = 〈F, l+, l−〉. Here F = actor(a) ∧
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Figure 1: An advice model in the IMDB domain for predicting
if an actor has worked under a director. Each node in the decision
tree is a relational condition. The leaf nodes represent whether or
not the advice will apply to examples that reach that leaf.

director(d) ∧movie(m, a) ∧movie(m, d)⇒ label(a, d),
l+ = workedUnder and l− = ¬workedUnder.

Given the label preferences, the goal is to learn a model
that has higher probabilities for the preferred labels as com-
pared to the avoided labels. Consider s to be the set of train-
ing examples for which the advice is applicable, i.e., s =
{si | B,F ` label(si)}, where B is the background knowl-
edge and F is the advice constraint. The learned model
should have a higher probability of the preferred target than
the probability of the avoided target in the training examples,
i.e., ∀si ∈ s, P (l + (si)) ≥ P (l − (si)).

Example 2. For the example presented earlier, any ac-
tor a and director d that appear in the same movie,
P (workedUnder(a, d)) ≥ P (¬workedUnder(a, d)).

Our advice can also handle sets of preferred and avoided
labels by converting them into multiple advice rules for
every pair of preferred and avoided labels. This is espe-
cially relevant when dealing with more than two labels.
E.g., an expert might say that if the director is “Michael
Bay”, then the preferred genre of the movie is “action”,
i.e., if director(“Michael Bay”, movie) then ∀ g 6= “action”,
P(genre(movie,“action”))≥ P(genre(movie,g)). Also we are
not limited to Horn clauses for specifying the advice con-
straints. We can also use RRTs (Blockeel 1999) to specify
the regions of the example space where advice is applicable.
Note that implementation of this is not difficult, since every
path from root to leaf can be viewed as a Horn clause and
thus a tree is a decision-list of Horn clauses.

Example 3. Figure 1 shows the relational advice con-
straints as a relational tree for our earlier example. The ad-
vice is applicable on examples which reach the green node
and not applicable for examples reaching the red node.

Knowledge-based Objective Function
One simple way to use this type of advice is to define the
advice as the first tree of the boosted model and subsequent
models can be learned based on data. The key issue is that
this method in the worst case, can undo the advice to bet-
ter fit the (possibly noisy) training instances. As mentioned
earlier, if the training examples are noisy, we do not want to
fit only to the training examples but the advice rules as well.
Hence, there is a necessity to faithfully and seamlessly inte-
grate the advice into the learning model. We achieve this by

modifying the objective function and including a cost to ac-
count for explicitly considering the value the expert advice.

Inspired by prior work of Gimpel and Smith (2010), we
introduce a cost function in the denominator of the log-
likelihood function. While they employ the use of a regu-
larization term for a log-linear model, we employ this as a
penalty term for violating the advice provided by the ex-
pert. This modified log-likelihood (MLL) function using the
functional representation is given as,

MLL(x,y) =
∑
xi∈x

log
exp

(
ψ(xi; yi)

)∑
y′ exp

(
ψ(xi; y′) + c(yi, y′, ψ)

)
(2)

Our cost function is used to penalize the model that does
not fit to the advice. Since the cost function penalty depends
only on the advice and the current model, and not on the
example labels y and y′; we can redefine it as c(xi, ψ). We
define the cost function as

c(xi, ψ) = −λ× ψ(xi)× [nt(xi)− nf (xi)] (3)

We use nt to indicate the number of advice rules that prefer
the example to be true and nf to be the number of rules that
prefer it to be false. We use λ to scale the cost function and
ψ(xi) is the current value of the ψ function for the xi.
Example 4. In our movie domain, consider two advice
rules r1 = 〈 movie(m,MichaelBay) ⇒ label(m),
action, horror 〉 and r2 = 〈 movie(m,WillArnett) ⇒
label(m), comedy, action〉.

The Transformers movie has Michael Bay but
doesn’t have Will Arnett. Hence for the example ac-
tion(Transformers), only the first rule applies where
action is the preferred label. So nt = 1 and nf = 0
for action(Transformers), while nt = 0 and nf = 1 for
horror(Transformers). Whereas, the new Teenage Mutant
Ninja Turtles (TMNT) movie has both Michael Bay and
Will Arnett. While both the rules apply on action(TMNT),
action is the preferred label in one rule and avoided label
in the other. Hence nt = 1 and nf = 1 for action(TMNT).

Intuitively when the example label is the preferred target
in more advice rules than the avoided target, nt−nf is pos-
itive. Higher (positive) regression value, in this case, will
result in a lower (negative) cost function. Since a high pos-
itive regression value corresponds to higher probability of
example being true, the cost function is lower when the re-
gression function aligns with the advice. On the other hand,
if the regression value is negative, the cost is positive since
the regression function doesn’t align with the advice. Sim-
ilarly, when nt − nf is negative, negative regression value
will have a lower negative cost and positive regression value
will have a positive cost.

Knowledge-based RFGB
We now use functional-gradient boosting to maximize our
modified objective function (MLL). The cost function in
Equation 2 can be replaced with Equation 3

MLL(x) =
∑
i

log exp(ψ(xi; yi))− log

(∑
y′

exp
(
ψ(xi; y

′)
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−λ× ψ(xi)× [nt(xi)− nf (xi)]
))

=
∑
i

log expψ(xi; yi)− log
∑
y′

exp(ψ(xi; y
′))

− log exp(−λ× ψ(xi)× [nt(xi)− nf (xi)])

=
∑
i

logP (yi, xi;ψ) + λ · ψ(xi) · [nt(xi)− nf (xi)]

Obtaining functional gradients of MLL,

∂MLL(x)

∂ψ(xi; yi)
=

∂

∂ψ(xi; yi)
logP (yi, xi;ψ)

+ λ · ψ(xi) · [nt(xi)− nf (xi)]

∆(xi) = I(yi = 1)− P (yi = 1;ψ)

+ λ · [nt(xi)− nf (xi)]

Intuitively when the example label is the preferred tar-
get in more advice models than the avoided target, nt(xi)−
nf (xi) is set to be positive. This will result in pushing the
gradient of these examples in the positive direction (towards
+∞). Conversely when the example label should be avoided
in more advice models, nt(xi)−nf (xi) is set to be negative
which will result in pushing the gradient of this example in
the negative direction (towards −∞). Examples where the
advice does not apply or has equally contradictory advice,
nt(xi) − nf (xi) is 0. Hence, our approach can also handle
conflicting advice for the same example. We rewrite our gra-
dients by setting η = α and λ = (1− α)/η to get

η ·∆(xi) = α · (I(yi = 1)− P (yi = 1;ψ))

+(1− α) · [nt(xi)− nf (xi)]

Our approach can now be understood as linearly trading-
off between the data and the advice as controlled by α.
The RRTs are learned stagewise as explained in the previ-
ous section and shown in figure 2. As shown in algorithm 1,
the strength of our approach not only comes from the con-
cise way that our method is able to handle advice, but also
that this advice is used to improve the model throughout the
learning process. Using the advice just as the initial model
will result in the learning algorithm undoing the advice if the
examples are noisy. This can also be seen in our empirical
evaluation.

Adaptations for Multiple Frameworks
Note that the objective function that we modified is a general
one used in prior literature for relational domains. Thus we
can use our knowledge-based RFGB for any model that uses
RFGB. We show the adaptation of our work in two direc-
tions: (1) what can be learned and (2) what problems can be
solved. To this effect, we show that we can learn the struc-
ture of both RDNs and MLNs. We also show that we can
apply these models for relational policies and transfer learn-
ing. This can also be employed in other similar formalisms.

What can be learned?
RDN: Based on prior work for RDNs (Natarajan et al.
2012), we learn the structure of RDNs by learning a se-
quence of relational regression trees (RRT) for every predi-

Figure 2: Standard RFGB is shown inside the black square
(advice penalty equal to 0 for all examples) where relation
regression trees are learned in a stage-wise fashion. When
provided expert advice, the gradients for each example for
which the advice applies are pushed in the direction of the
advice (positive if the advice corresponds to the probability
of the target being higher and vice versa).

cate independently. We use the modified gradients to calcu-
late the regression values for each ground example and use
the modified regression examples to learn the RRTs.

MLN: Since MLNs make the conditional independence
assumption only during learning, prior work (Khot et al.
2011) iteratively learned one tree for each predicate and used
the previous trees for all the predicates for calculating the
gradients. We also used the same approach with the modi-
fied gradients presented here.

What problems can be solved?

Relational policies: Imitation learning uses expert trajecto-
ries to directly learn a policy that best fits the expert tra-
jectory. For relational domains, RFGB has been used to
learn the relational policy by learning RRTs for every ac-
tion (Natarajan et al. 2011). Since our trajectories can be
noisy, we use advice to compute the modified gradients for
every action to learn knowledge-based relational policy.

Transfer learning: Transfer learning can be viewed as
learning from a source task that has systematic differences
with the target task. Previous work used RFGB to learn a
model for a target domain by using the model from the
source domain as an initial model (Natarajan et al. 2013)
and refining the model with target examples. We are able
to learn only by using source examples. Expert advice can
make source examples more applicable to target domain by
focusing on key differences between source and target tasks.

Experiments
We present empirical analysis to study different questions:
1) how effective is advice for relational classification, 2) can
we employ advice in sequential problems (specifically, im-
itation learning), 3) does our method leverage knowledge
across domains (transfer learning), and 4) how does the ad-
vice help in standard domains for learning MLNs?.
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Algorithm 1 ARFGB: Advice for Relational Function Gra-
dient Boosting

function ADVICEBOOST(Data,Advice)
. Iterate through the predicates

for 1 ≤ k ≤ K do
. Iteration through the gradient steps

for 1 ≤ m ≤M do
Sk = GENEXAMPLES(k,Data,F k

m−1,Advice)
∆m(k) = FITRELREGRESSTREE(Sk,L)
F k
m = F k

m−1 + ∆m(k)
end for

. ψk is obtained by grounding F k
M

P (Yk = yk|Pa(Xk)) ∝ ψk

end for
end function
function GENEXAMPLES(k,Data,Advice)

S = ∅
for 1 ≤ i ≤ Nk do . Iterate over all examples

. Probability of the predicate being true
Compute P (yik|xik, Pa(Xi

k))
Compute Ci = nt(xi)− nf (xi)
∆(yik, x

i
k, Advice) = (1− α)[

I(yi = 1)− P (yik = 1|Pa(xik))
]

+αCi

S = S
⋃

[(yik, x
i
k,∆(yik, x

i
k, Advice)]

end for
return S

end function

We use two baseline approaches to compare against our
method (called Gradient in the results). To evaluate the im-
portance of advice for RFGB, we compare against RFGB
without using any advice rules called RFGB in the results.
Also, we compare our approach against using the advice as
initial model for RFGB (called Initial) to demonstrate the ef-
fectiveness of our approach for incorporating advice. As the
advice itself rarely specifies enough information to build a
complete model, we show the relative influence of the advice
in table 1, where we show the fraction of training examples
to which the advice applies. Although our advice only cov-
ers a part of the example space, the key intuition is that there
are several small yet important regions where good advice
might be crucial, which we also show empirically. To com-
pare the approaches, we use test-set accuracy averaged over
multiple folds. We evaluate the results across three data sets.
Figure 3 presents two of these experimental domains.

Figure 3: Domains: Drosophila (LEFT) - different grayscale val-
ues represent different segment classes, and Driving (RIGHT) -
the blue car is driving to avoid other cars on the highway.

Table 1: Domain and Advice Descriptions

Domain RC IL TL IMDB
Advice Coverage 27.2 55.3 38.0 85.3

Relational Classification
We evaluate our approach on Relational Classification in an
image labeling domain where the goal is to label the seg-
mented regions of an image. We use the Drosophila dataset
(Cardona et al. 2010), which has 20 stacks of microscopic
images of fruit flies ventral nerve cord. The possible la-
bels include extra-cellular region, intra-cellular region, mi-
tochondria, and membrane. This domain is naturally rela-
tional as the different regions have spatial relationships, e.g.
membrane surrounds the cell (intra and mitochondria) and
the number of segments can vary across images. We assume
that we are given a perfectly segmented image (each region
corresponds to one and only one object). Our features in-
clude region properties including color, color variance, area,
perimeter, circularity, number of neighbors as well as edge
features (representing boundary between two regions) such
as length, shape, area and color difference between regions.

We divide the dataset into 4 train and test sets, where each
training set consists of 3 layers, while each test set consist
of 2 layers that are 10 layers away from the training set. We
introduced targeted noise in the membrane labels to emulate
the natural mistakes in segmentation. Thus it is difficult to
classify membrane regions in the noisy space. Our advice is
then given on the noisy space to mimic a human expert.

In addition to relational models, we also compare against
propositional models learned with a limited set of features
(Prop) which do not have the spatial information or rela-
tional neighborhood information, while the relational (Rel)
models have the full feature set. We compare models learned
without advice to ones with advice with our method (Gradi-
ent) and our baseline method (Initial). All the boosting ap-
proaches learn five trees in this domain.

In table 2.LEFT, we show the overall accuracy over all
the labels where the label distribution is heavily skewed to-
wards membrane.

All advice methods are able to outperform those that did
not have access to the advice. When comparing the advice
models, our Gradient method is able to outperform the base-
line Initial method. Even the Gradient (Prop) model which
was learned from propositional feature space outperforms
the Initial (Rel) method which had access to the neighbor-
hood information too. Recall that this is due to the Initial
method starting with the advice and then refining the model
away from the advice, while our Gradient method enables
refining the models towards the advice at each step. Our
method Gradient is able to combine information from both
the training data and the advice model; thus achieve perfor-
mance gains from both.

Imitation Learning
We next consider Imitation Learning setting using a driving
simulator extended from Judah et al (2014). The goal in this
domain is to navigate on a 5-lane highway, changing lanes in
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Model ACC
FGB (Prop) 68.6 ±0.4
RFGB (Rel) 69.3 ±0.5
Adv-Initial (Prop) 68.8 ±0.6
Adv-Initial (Rel) 91.6 ±0.4
Adv-Gradient (Prop) 97.0 ±0.5
Adv-Gradient (Rel) 99.1 ±0.4

Model ACC
RFGB 52.5 ±5.0
Adv-Initial 52.2 ±5.9
Adv-Gradient 96.0 ±0.4

Model mit other total
FGB (Prop) 73.0 92.1 92.0 ±0.9
RFGB (Rel) 79.7 91.7 91.6 ±0.4
Adv-Initial (Prop) 84.3 90.1 90.0 ±0.7
Adv-Initial (Rel) 86.3 90.3 90.3 ±0.6
Adv-Gradient (Prop) 83.6 99.8 99.7 ±0.2
Adv-Gradient (Rel) 75.2 99.5 99.4 ±0.1

Table 2: Relational Classification - Drosophila (LEFT), Imitation Learning - Driving (CENTER), Transfer Learning - Drosophila (RIGHT)

order to avoid other cars that are traveling at various speeds.
The driver may either stay in the current lane, or move to
the right or left lane. This domain is naturally relational as
the spatial information is crucial to making driving decisions
and the number of cars changes across different scenarios.
For example, if there is a car in front of an agent and a car
to the right of the car in front, then moving into right lane
might not be the correct action.

We learn from 10000 training examples (100 trajectories)
of an expert acting in the domain but choosing a suboptimal
action in certain states (like always driving in the left lane)
and test on another 10000 (100 trajectories) examples of an-
other expert driving correctly. This is averaged over 5 runs.
In this domain, sample advice could be to drive in the right-
most lane when possible, even though human drivers often
prefer to ride in the left lanes. In our experiments, the advice
was to stay in the current lane unless there are cars ahead.

The results, table 2.CENTER, show that our method with
advice is able to significantly outperform Natarajan et al
(2011) which learns without advice. In this domain too, we
successfully leverage data and advice to make a more accu-
rate prediction.

Transfer Learning
We next verify how our advice framework can assist in trans-
fer learning in a relational domain. This could be especially
useful if there is a related domain whose data points could be
useful but the label space either has incorrect distribution or
the space is simply different. Our advice can make the data
in this form more applicable to the target domain, thus in-
creasing the value of these examples for the target problem.

We use a version of the Drosophila dataset from the previ-
ous section. However, we assume that the source data has a
limited label space. The source data is over whether a region
is inside a cell or outside a cell. For our training data, we as-
sume that intra-cellular and mitochondria regions are inside
the cell, while extra-cellular and membrane regions are out-
side of the cell. However, the target problem is determining
whether or not a region belongs to the mitochondria class.
Notice that while the source data has a relationship with the
target problem, it alone will not be sufficient to build a model
for mitochondria detection as there are a significant number
of other object inside a cell. Advice is used to identify inter-
esting objects (mitochondria) in the cell.

The results (shown in table 2.RIGHT) show that the
advice is able to filter out many of objects that are non-
interesting (not mitochondria) and thus significantly im-
prove the model. This is shown in the Gradient models im-

Table 3: Relational Classification - IMDB

Model 5% Noise 10% Noise 25% Noise
RFGB 55.5 ±9.3 55.9 ±7.6 57.6 ± 9.0
Adv-Gradient 84.5 ±6.0 81.0 ±2.3 75.9 ±4.4

proved accuracy on the non-interesting classes (other).

IMDB
Finally, we also evaluate our advice framework in learning
MLNs on a standard relational dataset, IMDB.

The IMDB dataset (Mihalkova and Mooney 2007) has in-
formation about movies, actors, and directors represented
with five predicates: actor, director, genre,
gender and workedUnder. We predict the workedUn-
der relationship between the people in this dataset. We per-
formed five-fold cross-validation on this domain. We apply
uniform noise (5%, 10%, 25%) to this dataset repeated five
times for each fold and average the results. Unlike other do-
mains, the IMDB dataset has a relatively large number of
negative examples and hence even with 25% noisy positive
examples, the impact on the negative examples is marginal.
Hence, we also reduce the number of negative examples in
all our approaches in this domain.

Table 3 shows the accuracy of our approaches on this do-
main for learning MLNs. Our approach (Gradient) outper-
forms learning without advice (RFGB), showing that our ap-
proch can be useful even when dealing with noisy examples
and not just systematic noise.

Trade-off Between Advice and Data
From our experiments across the domains for different α
values, we noticed that the learning method is robust to rea-
sonable α (0.25-0.75) values. While the optimalα value may
require parameter tuning, our experimental evidence sug-
gests that as long as it is reasonably set, the system can ben-
efit from good advice. Large α pushes the model to trust the
advice too much while low α makes it ignore the advice.

Conclusion and Future Work
We propose a novel method for allowing rich interaction be-
tween experts and PLMs. The main contribution of our ap-
proach is that it continuously leverages advice provided by
domain experts while learning as against traditional methods
that consider it as an initial model. We demonstrate empiri-
cally that our approach is effective when learning from noisy
training examples and can still perform well when dealing
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with few examples. Our framework can control the relative
impacts of advice and training data on the learned model.

Going forward, we will work on providing a theoretical
understanding of our update to the gradients. Currently our
approach considers all advice to be equal, but this may not
always be the case. We will work on associating weights
with the expert advice which can either be learned or pro-
vided by the expert. While we discussed some initial results
suggesting that the trade-off between advice and data is ro-
bust to reasonable values of α, we propose to study the im-
pact of this trade-off with noisy advice.

Acknowledgements
SN and PO thank Army Research Office (ARO) grant num-
ber W911NF-13-1-0432 under the Young Investigator Pro-
gram. SN and TK gratefully acknowledge the support of the
DARPA DEFT Program under the Air Force Research Lab-
oratory (AFRL) prime contract no. FA8750-13-2-0039. Any
opinions, findings, and conclusion or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the view of the DARPA, ARO, AFRL, or
the US government.

References
Baffes, P., and Mooney, R. 1996. A novel application of
theory refinement to student modeling. In AAAI.
Blockeel, H. 1999. Top-down induction of first order logical
decision trees. AI Communications 12(1-2).
Boutilier, C. 2002. A pomdp formulation of preference elic-
itation problems. In IAAI.
Cardona, A.; Saalfeld, S.; Preibisch, S.; Schmid, B.; Cheng,
A.; Pulokas, J.; Tomancak, P.; and Hartenstein, V. 2010.
An integrated micro- and macroarchitectural analysis of the
drosophila brain by computer-assisted serial section electron
microscopy. In PLoS Biol.
Cristianini, N., and Shawe-Taylor. 2000. An Introduction to
Support Vector Machines and Other Kernel-based Learning
Methods. Cambridge University Press.
DeJong, G., and Mooney, R. 1986. Explanation-based learn-
ing: An alternative view. Machine Learning 1(2):145–176.
Domingos, P., and Lowd, D. 2009. Markov Logic:An Inter-
face Layer for Artificial Intelligence. Morgan & Claypool.
Drummond, J., and Boutilier, C. 2014. Preference elicitation
and interview minimization in stable matchings. In AAAI.
Friedman, J. 2001. Greedy function approximation: A gra-
dient boosting machine. In Annals of Statistics.
Fung, G.; Mangasarian, O.; and Shavlik, J. 2002.
Knowledge-based support vector machine classifiers. In
NIPS.
Gimpel, K., and Smith, N. A. 2010. Softmax-margin crfs:
Training log-linear models with cost functions. In HLT-
NAACL.
Heckerman, D. 1999. A Tutorial on Learning with Bayesian
Networks. MIT Press.

Judah, K.; Fern, A.; Tadepalli, P.; and Goetschalckx, R.
2014. Imitation learning with demonstrations and shaping
rewards. In AAAI.
Karwath, A.; Kersting, K.; and Landwehr, N. 2008. Boost-
ing relational sequence alignments. In ICDM.
Kersting, K., and Driessens, K. 2008. Non-parametric policy
gradients: A unified treatment of propositional and relational
domains. In ICML.
Khot, T.; Natarajan, S.; Kersting, K.; and Shavlik, J. 2011.
Learning markov logic networks via functional gradient
boosting. In ICDM.
Kunapuli, G.; Bennett, K. P.; Shabbeer, A.; Maclin, R.; and
Shavlik, J. W. 2010. Online knowledge-based support vector
machines. In ECML, 145–161.
Kunapuli, G.; Odom, P.; Shavlik, J.; and Natarajan, S. 2013.
Guiding autonomous agents to better behaviors through hu-
man advice. In ICDM.
Mihalkova, L., and Mooney, R. 2007. Buttom-up learning
of markov logic networks. In ICML.
Mitchell, T. 1997. Machine Learning. Mcgraw Hill.
Natarajan, S.; Joshi, S.; Tadepalli, P.; Kersting, K.; and Shav-
lik, J. 2011. Imitation learning in relational domains: A
functional-gradient boosting approach. In IJCAI.
Natarajan, S.; Khot, T.; Kersting, K.; Gutmann, B.; and
Shavlik, J. 2012,. Gradient-based boosting for statistical re-
lational learning: The relational dependency network case.
Machine Learning 86(1).
Natarajan, S.; Odom, P.; Joshi, S.; Khot, T.; Kersting, K.;
and Tadepalli, P. 2013. Accelerating imitation learning in
relational domains via transfer by initialization. In ILP.
Neville, J., and Jensen, D. 2007. Relational dependency
networks. JMLR 8.
Ng, A.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In ICML.
Poon, H., and Vanderwende, L. 2010. Joint inference for
knowledge extraction from biomedical literature. In NAACL.
Riedel, S.; Chun, H.; Takagi, T.; and Tsujii, J. 2009. A
Markov logic approach to bio-molecular event extraction.
In BioNLP.
Schapire, R., and Freund, Y. 2012. Boosting: Foundations
and Algorithms. MIT Press.
Torrey, L.; Walker, T.; Shavlik, J.; and Maclin, R. 2005. Us-
ing advice to transfer knowledge acquired in one reinforce-
ment learning task to another. In ECML.
Towell, G., and Shavlik, J. 1994. Knowledge-based artificial
neural networks. Artificial Intelligence 69:119–165.
Wiewiora, E.; Cottrell, G.; and Elkan, C. 2003. Princi-
pled methods for advising reinforcement learning agents. In
ICML.
Yoshikawa, K.; Riedel, S.; Asahara, M.; and Matsumoto, Y.
2009. Jointly identifying temporal relations with Markov
logic. In ACL.

3570




