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Abstract

A scoring rule is a device for eliciting and assessing
probabilistic forecasts from an agent. When dealing
with continuous outcome spaces, and absent any prior
insights into the structure of the agent’s beliefs, the rule
should allow for a flexible reporting interface that can
accurately represent complicated, multi-modal distribu-
tions. In this paper, we provide such a scoring rule based
on a nonparametric approach of eliciting a set of sam-
ples from the agent and efficiently evaluating the score
using kernel methods. We prove that sampled reports
of increasing size converge rapidly to the true score,
and that sampled reports are approximately optimal. We
also demonstrate a connection between the scoring rule
and the maximum mean discrepancy divergence. Exper-
imental results are provided that confirm rapid conver-
gence and that the expected score correlates well with
standard notions of divergence, both important consid-
erations for ensuring that agents are incentivized to re-
port accurate information.

Introduction
A scoring rule is a device for eliciting and assessing prob-
abilistic forecasts from an agent. The earliest scoring rules
were designed for probability distributions over a finite, ex-
haustive set of outcomes, or expectations of random vari-
ables (Savage 1971), and the theory has since been extended
to continuous outcome spaces and general statistics (Lam-
bert, Pennock, and Shoham 2008; Matheson and Winkler
1976). The broader field of elicitation now spans several dis-
ciplines, and includes the study of user interfaces and the ef-
fectiveness of eliciting various probability summaries from
experts; for an extensive review see (O’Hagan et al. 2006).
Encouraging selfish agents to accurately report their beliefs
is a fundamental problem in multi-agent systems, and a key
building block in systems that aggregate beliefs in order to
form a consensus view of uncertain events.

In this paper we are concerned with eliciting a density
function over a continuous outcome space. Density fore-
casting finds application in surveys of experts on macroe-
conomic indicators, and in the estimation of asset and port-
folio returns in finance, among other areas (Boero, Smith,
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and Wallis 2011; Tay and Wallis 2002). In practice, the main
difficulty stems from the simple fact that, generically, the
agent cannot specify a density function in full precision with
a finite-length report. Much of the literature therefore fo-
cuses on eliciting summaries such as mean and variance, me-
dian, or quantiles, and the challenging case of correlations
in the case of multivariate data (Clemen, Fischer, and Win-
kler 2000; Garthwaite, Kadane, and O’Hagan 2005). An-
other common approach is to bin the domain and effectively
elicit a histogram (Goldstein, Johnson, and Sharpe 2008).

These interfaces can all be construed as ‘parametric’ in
the choice of summaries they choose to elicit. We propose
instead a ‘nonparametric’ approach. Our central contribu-
tion is the design and analysis of a proper scoring rule that
scores an agent’s forecast communicated in terms of a repre-
sentative sample from its private density estimate. We argue
that this kind of scoring rule provides a versatile, modular
method for assessing forecasts that can complement the va-
riety of interfaces used for eliciting summaries of densities,
and that can also serve as an interface in its own right.

Sample-based reports are extremely flexible, and this al-
lows the forecast elicitor to offer the agent a large menu of
different interfaces that all hook into the same underlying
score. Our only requirement is that each of these interfaces
be associated with a sampling mechanism. For instance, his-
tograms have a straightforward sampling mechanism asso-
ciated with them. In a typical elicitation experiment, once
summaries are obtained, a common strategy is to then fit
a parametric density function to the summaries, which im-
mediately lends itself to sampling (Kadane et al. 1980;
O’Hagan 1998). Another important use case is if the agent’s
belief is a posterior predictive distribution approximated via
Markov chain Monte Carlo (MCMC). In this case the agent
can directly submit its MCMC samples to our scoring mech-
anism.

Our sample-based scoring rule is derived as an empiri-
cal estimate of the kernel score (Eaton 1982), which in fact
defines a family of scoring rules that depend on the choice
of a kernel function. A kernel function can have several in-
terpretations but we view it mainly as a density centered at
a point in outcome space (e.g., a Gaussian). We give con-
ditions on the kernel that make the score strictly proper, and
relate it to a measure of divergence between probability mea-
sures known as maximum mean discrepancy (Gretton et al.
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2006). In terms of the direct sampling interface, the choice
of representative sample to report is in principle a nontrivial
optimization. Our main incentive results show that simple
random sampling is an approximately optimal strategy. We
also show how to calibrate a per-sample reporting fee to con-
trol the size of the agent’s reported set of samples.

We conducted experiments to investigate the empirical
properties of the sample-based kernel score. Two experi-
ments are described. The first investigates how rapidly the
score converges as the reported set of samples increases in
size. The experiment confirms our theoretical result that con-
vergence is rapid and reliable. Our second experiment inves-
tigates the incentive properties of the sample-based method.
We found that the kernel-based score does a better job of
awarding high scores to accurate predictions than an al-
ternative score based on histograms. Moreover, we found
that a subsampled version of the sample-based kernel score
achieved nearly the same performance as the original vari-
ant, but had a better asymptotic run time.

Scoring rules can serve as a basis for a variety of multi-
agent elicitation and aggregation procedures. In the area of
multi-agent systems, scoring rules have been applied to de-
mand prediction for energy resource planning (Robu et al.
2012; Rose, Rogers, and Gerding 2012), and in the context
of distributed information systems (Papakonstantinou et al.
2011). In the final section of the paper we discuss how our
scoring rule could form the basis of aggregation procedures
such as market scoring rules, wagering and escrow mecha-
nisms, and cost-function based prediction markets.

Background
We consider probabilistic forecasts over a sample space Ω.
Formally, let Ω be a compact metric space with an associ-
ated Borel σ-algebra of events. A probabilistic forecast cor-
responds to a probability measure on Ω. We restrict our at-
tention to forecasts that are absolutely continuous with re-
spect to a σ-finite reference measure ν so that they have
probability densities. Throughout the paper it is understood
that densities and their integrals (including expectations) are
taken with respect to ν.

As an example the sample space could be a box in Rn with
the standard Euclidean metric and Lebesgue as the reference
measure. Our setting and results also apply to finite (perhaps
exponentially large) outcome spaces with the counting mea-
sure, but we will focus on continuous sample spaces in our
motivation and experiments.

Forecasts can be evaluated by means of a scoring rule,
which intuitively assesses how well a forecast agrees with
the eventual outcome. An agent seeks to report a forecast
that maximizes its expected score. Let P be a class of prob-
ability measures on Ω. Formally, a scoring rule is a real-
valued function S : P × Ω→ R such that for all P,Q ∈ P ,
the score S(P, ·) is integrable with respect to Q.

Following several authors we overload the scoring rule
notation and write

S(P,Q) = Eω∼QS(P, ω)

to denote the expected score of probabilistic forecast P un-
der belief Q. A scoring rule S is proper relative to the class

of probability measures P if for all P,Q ∈ P we have
S(Q,Q) ≥ S(P,Q). The score is strictly proper if the in-
equality is strict whenever P 6= Q. Proper scoring rules are
important from an elicitation standpoint because they incen-
tivize an agent to truthfully report its subjective distribution.
Two prominent examples of scoring rules are the quadratic
score and the logarithmic score.
Def. 1 (Quadratic score). For any P ∈ P with density p its
quadratic score is

SQ(P, ω) = p(ω)− 1
2‖p‖

2
2. (1)

Def. 2 (Logarithmic score). For any P ∈ P with density p
its logarithmic score is

SL(P, ω) = log p(ω). (2)
Both of these scores are proper scores for restricted classes
of probability measures (Gneiting and Raftery 2007). The
quadratic score is strictly proper with respect to measures
with square-integrable densities, and the log score is strictly
proper with respect to integrable densities (recall, this means
integrable with respect to ν).

Proper scores are closely related to statistical notions of
divergence (Dawid 1998). Given a strictly proper scoring
rule S, define

d(P,Q) = S(Q,Q)− S(P,Q), (3)
which yields a non-negative, possibly asymmetric function
such that d(P,Q) = 0 if and only if P = Q. This can be
viewed as a ‘distance’ between measures. In particular, the
quadratic score induces the squared L2 divergence, and the
log score induces the Kullback-Leibler divergence.

Our work is motivated by the fact that in practice an
agent may not be able to communicate its belief with full
accuracy over a continuous outcome space, and will neces-
sarily have to resort to some finite-length report. We con-
sider reports that take the form of representative samples
X = {x1, . . . , xm}. One approach to scoring such a re-
port would be for the center to first infer a probability den-
sity from the sample, and then apply a proper score such
as (1) or (2) to the density. For a generic inference proce-
dure the difficulty is in understanding how this incentivizes
the agent to form its reported sample, both in terms of its
size and the choice of data points. For certain scoring rules,
this approach may also be more computationally intensive
than necessary—for instance, the log score (2) only requires
a probabilistic inference at the realized outcome, not over
the entire sample space.

We will see that our nonparametric approach addresses
both the incentive and computation concerns, but it can nev-
ertheless be construed as an (implicit) application of an in-
ference procedure followed by scoring. The inference pro-
cedure is kernel density estimation, a standard workhorse of
nonparametric statistics. Let K : Ω× Ω→ R be a symmet-
ric kernel function over the sample space such that K(ω, ·)
integrates to 1 for all ω ∈ Ω. Given a sample X , the ker-
nel density estimate (KDE) is defined as the average kernel
value for the sample points:

pK,X(ω) =
1

m

m∑
i=1

K(xi, ω). (4)
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The KDE can be seen as ‘smoothing’ the empirical measure
of the sample

P̂X(E) =
1

m

m∑
i=1

I[xi ∈ E] (5)

to form a smooth density estimate; here E ⊂ Ω is an event
and I is the 0-1 truth predicate. See (Wand and Jones 1995)
for a standard reference on KDE.

We specifically make use of positive definite (p.d.) ker-
nels, drawing on work in machine learning that uses such
kernels for nonparametric comparison of probability distri-
butions (Smola et al. 2007; Sriperumbudur et al. 2010). A
kernel is p.d. if, given any sample {x1, . . . , xm}, the ma-
trix formed from the entries K(xi, xj) is positive definite.
Associated with a p.d. kernel K is a reproducing kernel
Hilbert space (RKHS) of functions over Ω, denoted HK .
The RKHS has a reproducing property in the sense that
K(x, ·) ∈ HK for each x ∈ Ω and the inner product sat-
isfies 〈f,K(x, ·)〉 = f(x) for each f ∈ HK . It is common
to view φ(x) ≡ K(x, ·) as a ‘feature map’ sending x to a
(possibly infinite-dimensional) vector of features φ(x). We
refer to (Schölkopf and Smola 2002) for a comprehensive
treatment of kernel methods.

Theory
In this section we develop the ideas leading to our sample-
based scoring rule and examine its incentive properties. A
p.d. kernel can be used to directly define a proper scor-
ing rule called the kernel score (Eaton 1982; Gneiting and
Raftery 2007).
Def. 3 (Kernel score). For p.d. kernel K on Ω×Ω and any
probability measure P ∈ P , the kernel score is

SK(P, ω) = Ex∼PK(x, ω)− 1
2Ex,x′∼PK(x, x′). (6)

The kernel score can be represented concisely via inner-
products in the RKHS HK associated with K using the
mean map µ : P → HK . This function µ maps proba-
bility measures P to expected evaluation functions—these
are elements of HK such that, for any f in HK , EP f(x) =
〈µ[P ], f〉. The mean map exists for P if Ex,x′∼PK(x, x′) <
∞ (Borgwardt et al. 2006). With this notation the kernel
score can be rewritten as

SK(P, ω) = 〈µ[P ], φ(ω)〉 − 1
2 〈µ[P ], µ[P ]〉 . (7)

Like other scoring rules this gives rise to a divergence: in this
case a particular squared maximum mean discrepancy (Gret-
ton et al. 2006).
Def. 4. Let F be a class of functions f : Ω → R, and
let P,Q be probability measures on Ω. The maximum mean
discrepancy (MMD) is

MMD[F , P,Q] = sup
f∈F

EP [f(x)]− EQ[f(y)].

This definition of distance makes intuitive sense: P = Q if
and only if EP f(x) = EQf(x) for all f ∈ F . The MMD
finds a ‘witness function’ f that highlights the difference
between P and Q.

The connection between the kernel score and the MMD
becomes apparent from (7).

Lem. 1. The divergence associated with the kernel score is
the squared MMD based on B, the unit ball inHK .

Proof. Let B = {f : ‖f‖HK
≤ 1}.

dK(P,Q) = SK(P, P )− SK(Q,P )

= 1
2 〈µ[P ], µ[P ]〉 − 〈µ[P ], µ[Q]〉+ 1

2 〈µ[Q], µ[Q]〉
= 1

2‖µ[P ]− µ[Q]‖2HK

= 1
2MMD2[B, P,Q].

The final line follows from (Borgwardt et al. 2006).

We see from (3) that a proper scoring rule incentivizes the
agent to minimize the associated divergence to its subjec-
tive distribution. If the reporting interface does not allow the
agent to exactly describe its belief (e.g., an interface based
on summaries or intervals), then Lemma 1 implies that the
agent will report the closest permissible density according
to MMD. This shows that the kernel score is effective in the
sense of Friedman (1983): the expected score is a strictly de-
creasing function of the distance between reported and sub-
jective distributions, in the RKHS metric.

Lemma 1 also allows us extend Theorem 4 from Gneit-
ing and Raftery (2007) to identify conditions under which
the kernel scoring rule is strictly proper. A kernel K is uni-
versal if its RKHS is dense in C(Ω), the set of continuous
real functions on Ω (Steinwart 2002). Gaussian and Laplace
radial basis functions are both universal, for instance.
Prop. 1. The kernel score associated with p.d. K is strictly
proper for the class of probability measures P0 where
Ex,x′∼PK(x, x′) <∞ if K is universal.
The key property that makes the kernel score appealing is
that it can be estimated usingm samplesX = {x1, . . . , xm}
drawn from P . The empirical estimate of (6) leads to our
proposed scoring rule for a reported sample from the agent.
Def. 5 (Sample score). For a p.d. kernel K on Ω × Ω and
any finite sample X ∈ Ωm (m > 0), the sample score is

ŜK(X,ω) =
1

m

m∑
i=1

K(xi, ω)− 1

2m2

m∑
i,j=1

K(xi, xj). (8)

Using properties of RKHS, one can confirm that this es-
timator is exactly the quadratic score applied to (4), the
KDE base on the samples. Note also that ŜK(X,ω) =

SK(P̂X , ω), meaning that the kernel score is implicitly do-
ing KDE, but density estimation is not needed as an inter-
mediate step in order to evaluate the score.

The main properties of the sample score stem from the
fact that the estimate (8) converges quickly to the kernel
score.
Lem. 2. Let K be a p.d. kernel with K(ω, ω) ≤ κ for all
ω ∈ Ω. For any probability measure P ∈ P , unit ball B ⊂
HK and any set X = {x1, . . . , xm} drawn i.i.d. from P ,

MMD2
b [B, P,X] = sup

f∈B

∣∣∣∣∣EP [f(x)]− 1

m

m∑
i=1

f(xi)

∣∣∣∣∣
2

> ε

with probability at most δ = 2 exp (−mε/2κ) .
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Proof sketch. The kernel is bounded; changing a single sam-
ple has a bounded effect on the MMD. Therefore, we apply
McDiarmid’s inequality to obtain the stated bound.

Thm. 1. For any probability measure P ∈ P , and set of m
samples X , SK(P, P )− ŜK(X,P ) > ε with probability at
most δ = exp (−mε/2κ) .

Proof. Let φ(x) = K(x, ·) ∈ HK be the point evaluation
function. The mean map embedding for P̂X is 1

m

∑m
i φ(xi).

|SK(P, P )− ŜK(X,P )| = 1

2

∥∥∥∥∥µ[p]− 1

m

m∑
i

φ(xi)

∥∥∥∥∥
2

HK

= 1
2MMD2

b [B, P,X].

Result follows from Lem. 2.

This result is useful for reasoning about the agent’s incen-
tives. If sampling is free—there are no costs associated with
it—then a rational strategy for an agent is to sample from its
belief. This is a consequence of the above convergence and
the fact that the kernel score is strictly proper. Unfortunately,
for general P there will always be an incentive to add an ad-
ditional sample to the report. We would like to encourage
reports of manageable (and certainly finite) size.

Suppose that there is a cost τ > 0 for reporting a data
point, leading to the score

S̃K(X,P ) = ŜK(X,P )− τ |X|.

The cost may stem from exogenous introspective costs asso-
ciated with sampling, an endogenous per-sample fee levied
by the center, or a combination thereof. The addition of τ
distorts the scoring rule and muddies the incentive story;
there might now be some alternative report that does better
than straightforward sampling.

If τ is small relative to S(P, P ) then we expect that the
principal effect will be as a sparsifying ‘regularizer’ that in-
duces the agent to submit a finite-sample report. We justify
this claim in the next two results. We first show that Thm. 1
bounds the marginal benefit of reportingm+1 samples over
m samples ex-ante—prior to the revelation of either agent
belief or particular sample points.

Thm. 2. If the cost per sample is τ , then with probability
at least 1 − δ a rational agent will not report more than
(2κ/τ) log(2/δ) samples.

Proof. Let n > m, X ∼ Pm, and Y ∼ Pn. The larger
report Y is preferred if

S̃(X,P ) < S̃(Y, P )

⇒ τ < Ŝ(Y, P )− Ŝ(X,P ) ≤ S(P, P )− Ŝ(X,P )

From Thm. 1, |S(P, P )− Ŝ(X,P )| is more extreme than τ
with probability less than δ if m ≥ 2κ/τ log(2/δ). There-
fore, with probability at least 1−δ the difference is less than
or equal to τ , so S̃(X,P ) ≥ S̃(Y, P ).

Since this bound does not use any prior information about P ,
the result can be used by the center prior to interaction with
the agent to roughly calibrate transaction costs and obtain
appropriately sized reports.

Finally, we justify our focus on sampling by the fact that
it is a good strategy when costs are small. This follows from
Prop. 1 when τ = 0, and from Thm. 1 when τ > 0.
Cor. 1. Let X ∼ Pm where m > 0. Then

sup
Y ∈Ωm

S̃K(Y, P )− S̃K(X,P ) ≤ ε

with probability at least 1− 2 exp (−εm/2κ) .

For large reports the above corollary states that an opti-
mal choice of Y will not be much better than reporting |Y |
i.i.d. samples, while potentially being much more difficult
to figure out. On the other hand, the bound will be weak if
there is a small report Y that attains a sample score close
to SK(P, P ). However, in this regime it becomes easier for
the agent to find an optimal representative sample, and we
are not as concerned with providing an alternative approxi-
mately optimal strategy. Recall that in any case an optimal
report will minimize the MMD to the agent’s true belief.

Experiments
Our experiments fall into two main categories: characteriz-
ing kernel score convergence and establishing the quality of
the kernel score by comparing it to L2 divergence. These
experiments were repeated in D = 1, 2, 3 dimensions to in-
dicated scaling behavior.

We used the Gaussian radial basis function (RBF) kernel
for the kernel score. Our benchmark was to uniformly bin
samples in [−1, 1]D, and use the standard quadratic score on
the resulting piecewise constant function. We also evaluated
a ‘stochastic’ version of the kernel score that subsampled
5m of the m2 elements from the summation in (8). This is
an asymptotically faster version of the kernel score that does
not have a Θ(m2) dependence on the number of samples.

Our experiments require a way to generate a distribution
P for the ground truth of an event and a distributionQ for the
agent’s beliefs. We generate P and Q independently from
the same distribution of distributions. We used a mixture of
between five and ten isotropic Laplace densities with band-
width 0.05. Centers for the individual Laplace densities were
located in [−1, 1]D uniformly at random, and had weights
drawn uniformly from [0, 1]. The Laplace density was used
because the Gaussian RBF kernel is not a ‘perfect fit’ for
it—the Gaussian is too smooth and its tails are too light. A
synthetic distribution was used in part to remain agnostic to
particular applications, and in part because current surveys
of density forecasts appear to be limited to one-dimensional
binned reports (Boero, Smith, and Wallis 2011, for exam-
ple). The nonparametric approach advocated in this paper
could allow experts to submit more sophisticated forecasts.

Our primary interest is how scores motivate an agent to
reveal information. Therefore we are agnostic to affine trans-
formations of the score. The score S(P, ω) is equivalent to
aS(P, ω) + b for any a > 0 and b in terms of incentives.
Because of this, we avoided evaluating experiments using
metrics that distinguished between equivalent scores.
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Figure 1: Convergence in median log absolute error, as a
function of sample size in 3D. Thin lines indicate the 25%-
75% interquartile range. Kernel bandwidth was 0.25, bin-
ning used 43 bins.

All experiments were coded in MATLAB, and run on a
3.40GHz i5-3570K with 8GB RAM.

Convergence
In this set of experiments we measured the convergence of
kernel and binned scores Ŝ(X,P ) for X ∼ Pm to their true
value as the number of samples m = |X| increased. We
incrementally generated N = 100 different Laplace mix-
tures (P1, . . . , PN ). For each Pi, we ran M = 250 test in-
stances. Each instance j ≤ M consisted of generating two
m = 10, 000 sample sets Xi,j , X

′
i,j ∼ Pm

i . For each in-
stance the agent reported a prefix of k elements of Xi,j and
was evaluated against the set X ′i,j . We tracked the absolute
error between the scores for the prefixes and the scores for
reporting the full sample:

AbsError(i, j) =
∣∣∣Ŝ(Xi,j , X

′
i,j)− Ŝ(X

(1:k)
i,j , X ′i,j)

∣∣∣ .
We used absolute error rather than relative error because of
our indifference to affine transformation.

Both scoring rules converged rapidly and reliably. Fig-
ure 1 shows convergence for one of the N distributions, and
is representative of the convergence that we saw in the other
distributions. Again, due to our indifference to affine trans-
formation, the y-intercept is unimportant.1 We are primarily
concerned with the slope of the convergence.

For most instances both scores exhibited similar lin-
ear rates of convergence. Least-square fitting in log-space
showed that binned scoring had a slope of−1.18, while ker-
nel scoring had a slope of −1.21. The linear convergence
for the kernel series was anticipated by Thm. 1. Figure 1 also
shows that the stochastic variant of the kernel score also con-
verged reliably, but at a noticeably slower rate; least-square
fitting found a slope of −0.78.

1In fact, scores were scaled to tease apart the series and make
Figure 1 visually clearer.

Figure 2: How score correlates with L2 divergence.

These convergence plots also give an empirical way of
calibrating per-sample costs for a particular distribution. For
example, based on these experiments, a per-sample cost of
0.014 will prevent roughly 90% of agents from reporting
more than 1000 samples to the kernel scoring rule.

Incentive Properties
The next set of experiments explored how the scores re-
warded accurate beliefs. We want beliefs that are closer to
the ground truth to obtain higher scores.

We investigated this by generatingN = 160 Laplace mix-
tures (P1, . . . , PN ) to serve as our true distributions, and for
each distribution instance Pi generating another M = 250
mixtures (Qi,1, . . . , Qi,M ) for agent beliefs. Since both the
binned and kernel scores are based on the quadratic score,
we used squared L2 distance (evaluated numerically) to
measure the divergence between the ground truth and the
various beliefs mixtures. For each belief instance Qi,j we
evaluated the sampled kernel score and binned score using a
m1 = 1500 sample report Xi,j ∼ Qm1

i,j and a m2 = 10, 000

sample evaluation set Yi,j ∼ Pm2
i . The setting of m1 =

1500 was intended to represent a moderately sized report.
Each belief instance Qi,j generated an ordered triple

(BSi,j ,KSi,j , Di,j) of binned score, kernel score and diver-
gence. Figure 2 shows a scatter plot of the pairs (Di,j , BSi,j)
and (Di,j ,KSi,j) for a particular ground truth distribution..
Visually, the kernel score correlates better with divergence.

For each triple we examined how often worse beliefs
(with respect to divergence) obtained higher scores. We
called this metric unfairness. For the kernel score unfairness
is defined as:

UnfairKS(j|i) =

∑
k I[(KSi,k > KSi,j) ∧ (Di,k > Di,j)]∑

k I[Di,k > Di,j ]
.

UnfairBS can be defined similarly for the binned score.
These capture situations where the incentives are opposite
to what one would expect. One way of aggregating unfair-
ness over multiple belief instances is to report the area under
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Figure 3: Box and whisker plot for AUUC for each dimen-
sion, alternating score type.

the unfairness CDF (AUUC). The AUUC is 1 if the score is
never unfair with respect to the divergence, and about 0.5 if
the score is random. We also examined Kendall’s τ which is
a more standard rank correlation coefficient.

The quality of the binned score—both in terms of AUUC
and Kendall’s τ—depended strongly on the number of bins
used. The settings used in this experiment were found
through an initial set of calibration experiments. In 1D
roughly 45 bins seemed reasonable, whereas 62 bins was
the best in 2D, and 43 bins was the best in three dimensions.
The quality of the kernel score was less sensitive to band-
width. Experiments indicated that a bandwidth between 0.1
and 0.7 seemed reasonable for all three dimensions, with a
slight benefit to broader kernels in 3D. We used 0.25 as our
bandwidth in all three dimensions.

In all three dimensions, the kernel scoring rule had a
significantly higher median AUUC and τ than the binned
score.2 More emphatically, 90% confidence intervals (over
the 160 true distribution instances) did not overlap for ei-
ther AUUC or τ in any dimension. Figure 3 summarizes the
AUUC distribution as a function of dimension. The kernel
score exhibits a slightly stronger dimensional dependence
than binning, but this is likely due to our use of the same
bandwidth for all three dimension—allowing the bandwidth
to grow with dimension may ameliorate this. Despite this
handicap the kernel score consistently outperforms the more
carefully tuned binned approach in all dimensions.

Analyzing each distribution instance more closely we
found that the kernel score’s unfairness CDF stochastically
dominated the binned score in a number of instances. This
means that the elicitor would prefer the kernel score over the
binned score as long as their utility function for an agent’s
report decreases with increasing L2 distance. Dominance
occurred in 77% of the 1D instances, 71% of the 2D dis-
tributions and 48% of the 3D instances.

Interestingly, the stochastic version of the kernel scoring
rule was not significantly different than the deterministic

2Mann-Whitney, p < 0.01, two-sided.

kernel score in terms of either median AUUC or median τ ,2
despite the aggressive subsampling. The 90% confidence in-
tervals for AUUC and τ were nearly identical for the two
variants, and the CDFs for AUUC and τ were not signifi-
cantly different in any dimension.3 This suggests that while
stochastic sampling adds noise to the kernel score (as seen in
the convergence experiments), it could be a useful approxi-
mation in applications where the Θ(m2) kernel scoring rule
proves too slow.

Discussion

In this paper we have been concerned with the fundamental
problem of eliciting a single agents’ subjective density. A
promising avenue for future work is to use our kernel-based
sample score as the basis for multi-agent elicitation and ag-
gregation procedures. We discuss several alternatives.

In a wagering mechanism agents place a wager along with
their forecasts. Lambert et al. (2008) have proposed a wager-
ing mechanism with several desirable properties including
truthfulness and budget-balance; see also (Chen et al. 2014).
Their mechanism is based on a proper scoring rule: the pay-
off to an agent is proportional to its wager according to the
difference between its score and the (wager-weighted) score
of the group. Our scoring rule can in principle form the ba-
sis of these mechanisms, but the implications of sampling in
this context must still be worked out.

Under a market scoring rule, introduced by (Hanson
2003), agents arrive sequentially and an agent’s payoff is the
difference between the score of its forecast and the previ-
ous agent’s forecast, according to a proper scoring rule. If
an agent reports P ′ while the previous report was P , the
agent’s payoff if ω occurs is simply S(P ′, ω) − S(P, ω),
which clearly inherits the incentive properties of the under-
lying scoring rule. As described the payoffs all occur when
the outcome materializes, but for our rule there is also a de-
composition that takes an amount in ‘escrow’:

〈µ[P ′]− µ[P ], φ(ω)〉︸ ︷︷ ︸
payout

− 1
2

(
‖µ[P ′]‖2 − ‖µ[P ]‖2

)︸ ︷︷ ︸
escrow

.

The escrow (which may be negative) depends on the extent
to which the agent changes the “complexity” of the forecast
distribution, measured in terms of RKHS norm.

Cost-function based prediction markets represent a more
sophisticated decomposition of market scoring rules (Aber-
nethy, Chen, and Wortman Vaughan 2011). An agent buys a
portfolio of shares and is charged according to a convex cost
function. Prediction markets for continuous outcome spaces
are an active area of research (Chen, Ruberry, and Vaughan
2013; Gao, Chen, and Pennock 2009). It may be possible to
design markets based on the nonparametric ideas in this pa-
per using the known duality relationships between scoring
rules and cost functions.

3Kolmogorov-Smirnov test, p < 0.01
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