
Better Be Lucky Than Good:
Exceeding Expectations in MDP Evaluation

Thomas Keller and Florian Geißer
University of Freiburg

Freiburg, Germany
{tkeller,geisserf}@informatik.uni-freiburg.de

Abstract

We introduce the MDP-Evaluation Stopping Problem, the op-
timization problem faced by participants of the International
Probabilistic Planning Competition 2014 that focus on their
own performance. It can be constructed as a meta-MDP
where actions correspond to the application of a policy on
a base-MDP, which is intractable in practice. Our theoretical
analysis reveals that there are tractable special cases where
the problem can be reduced to an optimal stopping problem.
We derive approximate strategies of high quality by relax-
ing the general problem to an optimal stopping problem, and
show both theoretically and experimentally that it not only
pays off to pursue luck in the execution of the optimal policy,
but that there are even cases where it is better to be lucky than
good as the execution of a suboptimal base policy is part of
an optimal strategy in the meta-MDP.

Introduction
Markov Decision Processes (MDPs) offer a general frame-
work to describe probabilistic planning problems of varying
complexity. The development of algorithms that act suc-
cessfully in MDPs is important to many AI applications.
Since it is often impossible or intractable to evaluate MDP
algorithms based on a theoretical analysis alone, the Inter-
national Probabilistic Planning Competition (IPPC) was in-
troduced to allow a comparison based on experimental eval-
uation. The idea is to approximate the quality of an MDP
solver by performing a sequence of runs on a problem in-
stance, and by using the average of the obtained results as
an approximation of the expected reward. Following the op-
timal policy (i.e., the policy that maximizes the expected re-
ward) leads to the best result in such a setting.

The work on this paper started with our preparation for
IPPC 2014, where each solver had to perform at least 30
runs within a given time limit, while only the last 30 runs
were used for evaluation. The decision when to stop the
sequence of runs could be taken at any point of the evalua-
tion with knowledge of the rewards that were collected in all
previous runs. We describe the MDP-Evaluation Stopping
Problem (MDP-ESP) as the optimization problem faced by
IPPC participants that focus on their own performance, and
show how it can be constructed as a meta-MDP with actions

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that correspond to the application of a policy on the base-
MDP. Interestingly, the computation of the optimal policy
is no longer the only objective of participating planners, and
the fact that the execution of other policies on the base-MDP
can be part of an optimal strategy for the MDP-ESP leads to
a problem that is intractable in practice.

However, there are special cases where the MDP-ESP
can be reduced to an instance of an optimal stopping prob-
lem (OSP). Two functions that depend only on the num-
ber of remaining runs – one that specifies the target reward
that is necessary to stop, and one that gives the policy that
is applied otherwise – suffice to describe an optimal pol-
icy. Based on these observations, we present four approx-
imate algorithms for the general problem. A strategy that
is inspired from a solution to the related Secretary Problem
(SecP) (Dynkin 1963; Ferguson 1989) can be applied even
when a policy for the base-MDP is computed online and not
known in advance. Two other algorithms require the knowl-
edge of the optimal policy and its expected reward. We show
that the expected reward of the optimal policy is a lower
bound for the expected performance of both strategies.

Our final algorithm switches between the application of
the optimal policy and the policy with the highest possible
outcome, which can be computed without notable overhead
in the Trial-based Heuristic Tree Search (THTS) framework
(Keller and Helmert 2013). We show theoretically and em-
pirically that all algorithms outperform the naı̈ve base ap-
proach that ignores the potential of optimizing evaluation
runs in hindsight, and that it pays off to take suboptimal base
policies in addition to the optimal one into account. Finally,
we discuss the influence of the MDP-ESP on the results of
IPPC 2014, and propose potential applications of our algo-
rithms by discussing them in the context of related work.

Background
Markov Decision Processes. In this paper we consider
problems of planning and acting under uncertainty, where an
agent interacts with an uncertain environment by performing
a sequence of runs. The environment is described in terms
of a finite-horizon MDP M = 〈V,A, T,R, s0, h〉 (Puter-
man 1994; Bertsekas and Tsitsiklis 1996) with a factored
representation of states (Boutilier, Dearden, and Goldszmidt
2000) that are induced by a set of state variables V as S =
2V . A is a finite set of actions such that A(s) gives the set of

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3540

s0

s⋆

π+

π⋆

π2

0.2 0.5 0.8

Figure 1: An example instance of the NAVIGATION domain
with the policies π? (dotted), π2 (dashed) and π+ (solid).

applicable actions in s ∈ S; T : S × A × S → [0, 1] is the
transition function which defines the probability P[s′ | s, a]
that applying a ∈ A(s) in s ∈ S leads to s′ ∈ S; R(s, a) is
the reward that is gained by applying a ∈ A(s) in s ∈ S; s0

is the initial state; and h ∈ N is the finite horizon.
The agent has access to the declarative model of the

MDP (i. e., transition probabilities and reward function are
known) to compute policies π1, . . . , πn that are executed
in a sequence of runs (φπ1

1 , . . . , φπnn). Each policy π in
the set of policies Π maps all states s ∈ S to an action
a ∈ A(s). When a policy π is applied in a state s, the cur-
rent state of the environment transitions to successor state
s′ ∈ S with probability P[s′ | s, π(s)]. A run is a sequence
φπ = (s0, a0, r0 . . . , sh−1, ah−1, rh−1, sh) that starts in s0

and where h actions are applied according to π, i. e., the se-
quence is such that at := π(st), st+1 ∼ T (st, at, ·), and
rt := R(st, at) for all 0 ≤ t < h. We denote the accumu-
lated reward of a run φπ with R(φπ) =

∑h−1
t=0 rt.

The expected reward of a policy π can be computed as the
solution to a set of equations that describes V π := V π(s0),
which is given in terms of state-value functions V π(s) and
action-value functions Qπ(s, a), where

V π(s) =

{
0 if s is terminal
Qπ(s, π(s)) otherwise, and

Qπ(s, a) = R(s, a) +
∑
s′∈S P[s′ | s, a] · V π(s′).

The optimal policy π? can be derived from the related Bell-
man optimality equation (Bellman 1957; Bertsekas 1995) as
the policy with the highest expected reward among all poli-
cies, i. e., as π? := arg maxπ∈Π V

π .
Each policy π induces a set of outcomes Oπ , which con-

sists of each accumulated reward r that can be achieved un-
der application of π paired with the probability of r, i. e.,
Oπ = {(r,P[R(φπ) = r]) | P[R(φπ) = r] > 0}. We call
the highest possible outcome Pπ := max(r,p)∈Oπ r of a pol-
icy π the potential of π. We abbreviate the policy with the
highest potential among all policies with π+. Moreover, we
abbreviate the expected reward of π? (π+) with V ? (V +), its
potential with P ? (P+), its set of outcomes with O? (O+)
and a run under the policy with φ? (φ+).

An example MDP is depicted in Figure 1. It shows an
instance of the NAVIGATION domain of IPPC 2011, where
an agent is initially located in grid cell s0 and aims to reach

cell s? by moving within the grid. On its way, the agent has
to cross the middle row at some point, where it gets stuck
with increasing probability from left (20%) to right (80%).
The agent has no possibility to break free once it is stuck,
and it receives a reward of−1 in each step unless it is located
in s?. If we consider the IPPC horizon of h = 40, the agent
receives an accumulated reward of R(φ?) = −6, R(φπ2) =
−4, and R(φ+) = −2 if it successfully passes the middle
row, and of −40 if it gets stuck regardless of the applied
policy. The expected reward of π? is V ? = −12.8, and it
induces the set of outcomes O? = {(−6, 0.8), (−40, 0.2)}
with potential P ? = −6. For π+, we have V + = −32.4,
O+ = {(−2, 0.2), (−40, 0.8)}, and P+ = −2.

The MDP-Evaluation Stopping Problem. The problem
we face in this paper is the MDP-ESPuk , where a sequence
of at least k > 0 and at most u ≥ k runs is performed on
an MDP. A strategy σ assigns policies π1, . . . , πn to runs
on the MDP and stops the evaluation after n (k ≤ n ≤ u)
runs. The objective is to find a strategy σ that maximizes the
average accumulated reward of the last k runs, i.e., where

Ruk(σ) :=
1

k
·

n∑
i=n−k+1

R(φπii)

is maximal in expectation. The quality of a strategy σ is
measured in terms of its expected average reward E[Ruk(σ)].

An instance of the MDP-ESP not only optimizes the eval-
uation of a sequence of policies on a base-MDP, it can be
described in terms of a meta-MDP itself. A state in the
meta-MDP is given by a sequence of rewards (r1, . . . , rn),
where ri := R(φπii) for i = 1, . . . , n is the accumulated
reward of the runs that were performed before reaching a
state. The meta-MDP provides an action aπ for each pol-
icy π ∈ Π, which encodes the execution of policy π on the
base-MDP. Furthermore, there is a single action a⊗ that en-
codes the decision to stop the MDP-ESP and evaluate the
meta-run under σ based on the result of the last k runs on
the base-MDP. We describe the transition function of the
meta-MDP in terms of its actions: a⊗ is not applicable in
a state (r1, . . . , rn) if n < k, and it is the only applicable
action in a state (r1, . . . , ru). Its application leads determin-
istically to an absorbing terminal state and yields a reward
R((r1, . . . , rn), a⊗) = 1

k ·
∑n
i=n−k+1 ri. The application of

an action aπ in state (r1, . . . , rn) incurs no reward and leads
to a state (r1, . . . , rn, r), where r is drawn according to the
outcome function r ∼ Oπ of the executed policy π.

Theoretical Analysis
Upper and Lower Bounds. Most optimization problems
on MDPs have in common that the theoretical upper bound
of the expected reward of a policy is less than or equal to
the expected reward V ? of the optimal policy π?. Exam-
ples include the Multi-Armed Bandit problem and Online
Reinforcement Learning (RL), where a logarithmic regret on
V ? must be accepted (Lai and Robbins 1985) since all runs
are evaluation runs and π? must be derived from experience
of the interaction with the environment. In Offline RL (or
Probabilistic Planning), all runs are evaluation runs as well,

3541

but π? can be computed before evaluation starts and V ? can
hence be achieved if π? is available (Sutton and Barto 1998).

This is different in the MDP-ESP. Since the agent is al-
lowed to decide in hindsight if the last k runs were good
enough to be used for evaluation, there are strategies that al-
low an expected performance that is at least as good as V ?
for all instances of the MDP-ESPuk . Moreover, it is impossi-
ble to achieve a result that is higher than P+.
Theorem 1. V ? ≤ max

σ
E[Ruk(σ)] ≤ P+ for all k > 0 and

u ≥ k.
Proof sketch: We start with a discussion of the lower bound
V ? by considering the subset of instances where u = k.
The MDP-ESPkk, where each performed run is an evaluation
run reduces to Offline RL, and the optimal strategy is hence
the strategy that only executes π?. (We denote the strategy
that executes π? in each run and never stops prematurely
with σπ? in this proof sketch). Since the expected reward of
each run under π? is V ?, the expected average reward of the
whole sequence of k runs is V ? as well. If we apply σπ?
to instances where u > k, the additional, prepended runs
have no effect as they are not used for evaluation. Therefore,
E[Ruk(σπ?)] = V ? for any instance of the MDP-ESP, and
the lower bound is as stated in Theorem 1.
P+ is an upper bound of the MDP-ESPuk since it is the

highest possible outcome of all policies, and it is therefore
impossible to achieve a higher expected reward in a run and
a higher expected average reward in a sequence of k runs.
Moreover, the bound is tight for the MDP-ESP∞k , i. e., the
subset of instances with an infinite number of runs and a
finite number of evaluation runs. Since any sequence of out-
comes will occur eventually in an infinite number of runs,
the optimal strategy for the MDP-ESP∞k applies π+ in every
run until a sequence of k runs in a row yields P+, and the
expected average reward of this strategy is P+.
Optimal Strategies. Even though we have provided tight
upper and lower bounds for the MDP-ESP, the expected re-
ward of optimal policies in the space between the discussed
extreme cases is not yet clear. It is not hard to show that the
expected reward of the MDP-ESPuk under an optimal strat-
egy increases strictly from V ? to P+ with increasing u for
all k (unless π? = π+ and π? deterministic, in which case
maxσ E[Ruk(σ)] = V ? = P+ for all k > 0 and u ≥ k).
We omit a formal proof sketch for space reasons, though,
and turn our attention to the MDP-ESPu1 instead. It corre-
sponds to a finite-horizon version of the House-Selling Prob-
lem (Karlin 1962), where offers come in sequentially for a
house an agent wishes to sell. The offers are drawn from a
known probability distribution, and the agent has to accept
or decline each offer right after receiving it. The agent aims
to sell the house for the highest price among at most u offers.
The subset of instances where only a single run is used for
evaluation is interesting for our purposes because an optimal
strategy can be described with two simple functions: the tar-
get reward function t : {1, . . . , u − k} → R describes the
average reward t(n) of the last k runs that must have been
achieved in a state (r1, . . . , ru−n) to apply a⊗, and the pol-
icy application function app : {1, . . . , u− k} → Π specifies
the policy that is taken otherwise.

n π? π2 π+ app(n)

1 −12.8 −22 −32.4 π?

2 −7.36 −8.4 −10.64 π?

3 −6.272 −5.68 −6.288 π2

4 −5.936 −4.84 −4.944 π2

5 −5.768 −4.42 −4.272 π+

6 −5.654 −4.136 −3.8176 π+

Table 1: The optimal strategy for the MDP-ESPu1 on the
NAVIGATION instance of Figure 1 applies app(n) if the cur-
rent result is less than t(n) (in bold) and stops otherwise.

A solution for the MDP-ESPu1 is to compute these func-
tions by applying backward induction, a popular method to
solve full information optimal stopping problems where an
increasing number of available runs u is considered (Gilbert
and Mosteller 1966). We know that it is optimal to ap-
ply π? in the MDP-ESP1

1, and the expected reward is V ?,
i. e., app(1) = π?. Now consider the MDP-ESP2

1: if, after
the first run, our current result is higher than V ?, we stop
the evaluation, since the remaining problem is exactly the
MDP-ESP1

1 with expected reward V ?. Otherwise, we apply
app(1) = π?. The target reward function is therefore such
that t(1) = V ?. The policy that is applied in the first run of
the MDP-ESP2

1, app(2), can be computed as the policy that
maximizes the expected reward given t(1), which in turn al-
lows the computation of t(2) and so on.

Take for example the NAVIGATION domain that was pre-
sented earlier. We have app(1) = π? and t(1) = V ? =
−12.8. If we apply π? in the first run of the MDP-ESP2

1,
we achieve a reward of −6 with probability 0.8 and of −40
with probability 0.2. Since we prefer not to stop in the latter
case, we get t(2) = (0.8 · (−6)) + (0.2 · t(1)) = −7.36. Ta-
ble 1 shows these computations for all three policies of the
NAVIGATION instance that are depicted in Figure 1. It re-
veals that it is optimal to execute π+ if five or more runs are
left, and to stop only if a run successfully crosses the middle
row and yields a reward of −2. If three or four runs are left,
the strategy proposes the execution of policy π2, and π? is
executed only in the last two runs. The example shows that
restricting to strategies that consider only π? and π+ is not
sufficient for optimal behavior.

Complexity. It is not hard to see that finding an optimal
strategy for the general MDP-ESPuk is practically intractable.
It corresponds to solving the meta-MDP with a search space
of size (|Π| · Omax)u with Omax = maxπ∈Π |Oπ|, which is
intractable even if |Π| were manageable (which is usually
not the case). We have discussed three special cases of the
MDP-ESP, though, and we have shown that an optimal strat-
egy for two of them – the MDP-ESPkk and the MDP-ESP∞k –
can be derived in constant time under the assumption that the
cost of deriving policies in the base-MDP can be neglected.
For the third, we have provided an algorithm that regards all
outcomes of all policies π ∈ Π in at most (u− k) decisions,
and it is hence linear in u, |Π|, and Omax. Even though the

3542

u = k k < u <∞ u =∞

k = 1 O(1) O(u · |Π| · Omax) O(1)

1 < k <∞ O(1) O
(
(|Π| · Omax)u

)
O(1)

Table 2: Complexity results for different instances of the
MDP-ESPuk given an oracle for the underlying base-MDP.

dependence on |Π| is discouraging as the computation of all
policies is intractable, it also shows that efficient approxi-
mations of good quality are possible if we consider only a
subset of Π. The complexity results are summarized in Ta-
ble 2. The manageable cases all have in common that two
simple functions that map the number of remaining runs to
a target reward and a policy suffice to describe the strategy.
In the next section, we show how these ideas can be used to
approximate the general case with strategies of high quality.

Strategies for the MDP-ESP
We consider three possible states of a-priori information:
first, we look at the case where π? and V ? are unknown,
and assume that the computation of a policy and its execu-
tion are interleaved. We continue with MDPs where π? and
V ? can be computed, and present two strategies, one that
aims at avoiding bad luck and one that pushes its luck under
execution of π?. In the last part of this section, we present a
strategy that mixes π? and π+ and prove that it is theoreti-
cally superior to the other considered strategies.

Secretary Problem. While most instances of the IPPC are
such that they cannot be solved in the given time, it is always
possible to perform more than k runs. Even if the available
time is distributed equally among all planning steps before-
hand, there are reasons for spare time: the PROST planner
(Keller and Eyerich 2012) that is used for our experiments
detects reward locks; it recognizes states with only one rea-
sonable action; it is able to solve an encountered state even
in larger MDPs if the remaining horizon is small; and it
reuses decisions if it encounters a state more than once.

If the optimal policy is not available, the MDP-ESPuk is
similar to the SecP, which is a variant of the finite-horizon
House-Selling Problem where the underlying probability
distribution is not revealed to the agent. It involves a single
secretarial position and u applicants which are interviewed
sequentially in a uniformly random order. Applicants can
be ranked unambiguously, and the decision to hire a can-
didate has to be made right after the interview and is irre-
vocable. The objective is to have the highest probability of
selecting the best applicant of the whole group, and it can
be shown that an optimal solution is to reject the first bue c
applicants (≈ 36.8%) and select the first subsequent candi-
date that is ranked higher than all candidates before (e.g.,
Ferguson 1989; Bruss 2000).

To apply the SecP strategy to the MDP-ESPuk , we pretend
that all sequences of k consecutive runs are independent,
identically distributed data points. We perform bu−k+1

e c
runs and stop as soon as the last k runs yield a higher aver-

0 2 4 6 8 10 12 14

0

5

10

15

number of runs getting stuck (out of 30)

p
ro
b
a
b
il
it
y
in

%

Figure 2: Probability of getting stuck x times in 30 runs of
the example NAVIGATION instance.

age reward than all data points before. It is important to note
that the data points are of course not independent and iden-
tically distributed in our setting – each data point depends
on the previous one(s) unless k = 1, since two consecutive
samples differ only in a single reward. Our empirical eval-
uation (where only π? is executed) shows that the SecP is a
strategy that improves over V ? significantly nonetheless.

Meet-The-Expectations. The IPPC benchmarks offer
MDPs of varying complexity, including some instances
where π? can be computed. However, it is always possible
that the execution of a policy is unfortunate. Take, for exam-
ple, the NAVIGATION instance from Figure 1. If we execute
π? for k = 30 runs, the expected reward V ? is achieved if
the agent ends up stuck exactly six times. Figure 2, which
depicts how likely it is that the agent gets stuck, reveals
that the probability that it gets stuck more than six times
is roughly 40%. A strategy that avoids bad luck if more than
k runs are available is a first step in the right direction. We
call the strategy with tσMTE(n) = V ? and appσMTE

(n) = π?

for all n the Meet-The-Expectations (MTE) strategy.

Theorem 2. V ? ≤ E[Ruk(σMTE)] ≤ P ? for all k > 0 and
u ≥ k.

Proof sketch: If π? is deterministic, all inequalities are triv-
ially equalities. Otherwise, both inequalities hold since only
π? is applied. The first is strict for u > k since we accept
lucky results and improve unlucky ones, and the second is
strict even for most instances of the MDP-ESP∞1 since MTE
stops with a result between V ? and P+.

Pure Strategy. We have presented a strategy that avoids
bad luck while applying π?, so the question naturally arises
how to push the envelope and aim for good luck. After all,
Figure 2 shows that the probability of getting stuck less than
six times is also approximately 40%. Since an optimal target
reward function is intractable in practice even if appσPS

= π?

for all n, we use a simulation approach in the Pure Strat-
egy (PS) to estimate tσPS . PS performs a sequence of m
simulations (�1, . . . ,�m) (m is a parameter of the algo-
rithm), where each �i consists of u runs (φ?i1, . . . , φ

?
iu). We

use the simulations to compute the target reward function
as tσPS(n) = median(Rnmax(�1), . . . ,Rnmax(�m)), where
Rnmax(�i) = maxl∈{1,...,n}(

1
k

∑l+k−1
s=l R(φ?is)).

3543

Algorithm 1: Mixed Strategy for MDP-ESPu
k with u > k

compute mixed strategy(u, k,m):1
let all t(n)← −∞, app(n)← π? and n0 ← 12
for i = 0, . . . , k do3

sample run sequences(u, k,m, i)4
update strategy(u, k, i)5

sample run sequences(u, k,m, i):6
for j = 1, . . . ,m do7

for n = 1, . . . , u do8
if (n mod k) < i then rn ← sample(π+)9
else rn ← sample(π?)10
if n > k then11

tij(n−k)← maxl∈{1,...,n}(
1
k

∑l+k−1
s=l rs)12

for n = 1, . . . , u− k do13
ti(n)← median(ti1(n), . . . , tim(n))14

update strategy(u, k, i):15
for n = u− k, . . . , n0 do16

if ti(n) > t(n) then t(n)← ti(n)17
else18

for l = n0, . . . , n do19
if (l mod k) < i then app(n)← π+20

n0 ← n and return21

Theorem 3. V ? ≤ E[Ruk(σPS)] ≤ P ? for all k > 0 and u ≥
k. For all finite k > 0, E[R∞k (σPS)] = P ? and E[Ruk(σPS)]
is monotonically increasing in u and converges to P ?.
Proof sketch: V ? and P ? are bounds since only π? is
applied and E[tσPS(n)] ≥ V ? for a sufficiently large m.
E[tσPS(n)] increases monotonically in n from V ? to a value
≤ P ? for u > k since the number of considered data points
in the simulations grows, and it reaches P ? for u = ∞ and
therefore E[R∞k (σPS)] = P ?. E[Ruk(σPS)] is monotonically
increasing since the expected reward is bounded from below
by a probability weighted sum of all target rewards.

Mixed Strategy. π+ can not only be derived when Oπ
is available for all π, but it can be computed as π+ :=
maxπ∈Π P

π(s0), which is described by the set of equations

Pπ(s) =

{
0 if s is terminal
Wπ(s, π(s)) otherwise, and

Wπ(s, a) = R(s, a) + max
s′∈succ(s,a)

Pπ(s′),

with succ(s, a) := {s′ | P[s′ | s, a] > 0}. Note that the
only difference to the Bellman optimality function is that
Wπ(s, a) only cares about the best outcome while Qπ(s, a)
uses the weighted average of all outcomes. By turning these
equations into assignment operators that extend the backup
function of a THTS algorithm, we can describe algorithms –
in our case a UCT? variant – that derive π+ as a side-effect
of the π? computation and without notable overhead.

While it is possible to use π+ as the base-policy of PS,
it turns out that u has to be prohibitively large to outper-
form PS based on π?. Instead, we generate a policy that is
inspired by our analysis of the MDP-ESPu1 , where a func-
tion appσMS

(n) is used to describe which policy is executed

solely in terms of the number of remaining runs. We restrict
ourselves to the policies π? and π+ in our version of a Mixed
Strategy (MS), but adding more policies is an interesting
(and certainly non-trivial) topic for future work. Initially,
MS computes a function t0 (the index stands for the number
of runs under π+ in each data point) which is equivalent to
tσPS . MS, which is depicted in Algorithm 1, continues by
performing simulations where π+ is executed in i out of k
runs. The functions tσMS and appσMS

are updated after the ith
iteration by finding the largest n where t(n) ≥ ti(n), i. e.,
by finding the element in the sequence where the number of
runs is small enough that an additional execution of π+ does
not pay off anymore. Note that our implementation stops the
computation prematurely when a ti does not alter tσMS in the
update procedure (unlike the depicted Algorithm 1).
Theorem 4. E[Ruk(σPS)] ≤ E[Ruk(σMS)] for all k > 0 and
u ≥ k and E[R∞k (σMS)] = P+ for all finite k > 0.

Proof sketch: If we assume that the number of simulations
is sufficiently high, then it is either not beneficial to apply π+

and MS reduces to PS, or it is beneficial and E[Ruk(σMS)] >
E[Ruk(σPS)]. MS converges towards P+ with an increasing
number of u since at some point it pays off to only apply π+

with an expected reward of P+ in the limit.

Experimental Evaluation
To evaluate our algorithms empirically, we perform exper-
iments on the domains of IPPC 2011 and 2014. We use
the UCT? algorithm (Keller and Helmert 2013) to solve the
base-MDP, an algorithm that is specifically designed to find
high-quality policies in finite-horizon MDPs even of larger
size when a declarative model of the MDP is provided. It
is a THTS algorithm that can be described in terms of four
ingredients: the action selection is based on the UCB1 for-
mula (Auer, Cesa-Bianchi, and Fischer 2002), Monte-Carlo
sampling is used to simulate stochastic outcomes, and a par-
tial Bellman backup function is used to propagate collected
information in the search tree. Since we use the implementa-
tion of UCT? that comes with the probabilistic planning sys-
tem PROST, the used heuristic function is the default heuris-
tic of the planner. It performs a lookahead based on a se-
quence of iterative deepening searches on the most-likely
determinization of the MDP (Keller and Eyerich 2012).

We have altered the THTS framework to perform a se-
quence of searches with an increasing horizon, a change that
is inspired by the Reverse Iterative Deepening approach that
is used in GLUTTON (Kolobov et al. 2012). A higher num-
ber of instances can be solved since state-values of solved
states are reused, which occurs more often if the horizon
is increased iteratively (the possibly weaker anytime perfor-
mance is not important here). The resulting algorithm is able
to solve 34 instances of the 120 existing IPPC benchmarks:
four of CROSSING TRAFFIC, five of ELEVATORS, three of
GAME OF LIFE, all NAVIGATION instances, and six both
of SKILL TEACHING and TRIANGLE TIREWORLD. Apart
from the ELEVATORS domain, where π? can be derived for
the instances 1, 2, 4, 7, and 10, the instances with the lowest
indices are solved. The number of evaluation runs k is set to
30 in all experiments, which corresponds to the number of

3544

Figure 3: Results for an increasing number of available runs
u on the first instance of the CROSSING TRAFFIC domain
with V ? ≈ −4.43, P ? = −4, and P+ = −2.

evaluation runs at both IPPC 2011 and 2014, and the values
for u are increased from 30 to 10000. Each experiment is
conducted 20 times and average results are reported.

Figure 3 shows the average reward of the experiments on
the first instance of CROSSING TRAFFIC with increasing u.
We have selected the instance since comparably small values
of u showcase our theoretical results. Nevertheless, if u is
large enough, any instance could have been selected. Table 3
shows normalized IPPC scores which are computed over the
average of the results of the experiment sets for u = 200 and
u = 1000. A score of 1.0 is assigned to the best performing
strategy, and a score of 0.0 is assigned to an artificial base-
line solver with an average reward of V ? in all instances. All
other scores are normalized with the procedure that is used
at IPPC with the described minimal and maximal values.

The expected reward in the depicted CROSSING TRAFFIC
instance is V ? ≈ −4.43. The simple MTE strategy is al-
ready an improvement over the baseline solver. It reliably
avoids bad luck already with only a few extra runs. How-
ever, it has converged to −4.35, a value that is only little
above V ?, in the CROSSING TRAFFIC instance already with
u = 100 and does not improve any further. The same can be
observed in Table 3, where the result does not improve when
u is increased from 200 to 1000. In that experiment set,
merely 35 to 40 runs suffice to avoid bad luck reliably over
all instances, and in between 100 and 200 runs suffice for
convergence. Except for special cases like an MDP-ESPu1
with |{(r, p) ∈ O? | r ≥ V ?}| = 1, MTE converges to a
value that is greater than V ? yet less than P ?.

The SecP strategy does not suffer from this problem – the
larger u, the better the result in our experiments. It quickly
outperforms MTE even though the availability of the optimal
policy is no condition for the applicability of the strategy. It
should nevertheless be noted that the presented SecP results
are based on an implementation that executes the optimal
policy in all experiments to allow a better comparison of the
strategies. In this setting, the SecP converges to P ? with

growing u: since only π? is applied, it cannot improve over
P ?, and since bu−k+1

e c grows with u, the target reward and
in turn the expected average reward approach P ?.

The two sampling-based strategies yield comparable re-
sults in the experiment on all solvable IPPC instances that
is given in Table 3, and both outperform the other consid-
ered algorithms significantly and in all domains. Obviously,
simulation based approaches are well-suited to create strate-
gies of high quality. It is not surprising that PS outperforms
MTE with increasing u since PS converges to P ? accord-
ing to Theorem 3 while MTE usually does not, and since PS
reduces to MTE if it ever were reasonable. The theoretical
relation between the performance of PS and SecP is an open
question, but it appears that the latter converges to P ? with
a slower pace. PS often has an edge over MS when u and
k are close, since applying π+ is rarely reasonable in these
cases and MS can hence only be misled by its additional
possibilities. Increasing the number of simulations m will
neglect the slight advantage PS has in some instances. The
larger u compared to k, the larger the advantage of MS over
PS. Figure 3, which depicts one of the smaller instances of
the used benchmarks, shows this clearly: MS quickly out-
performs all other strategies (as soon as it starts to mix in
runs under π+) and converges to P+ = −2. Table 3 also
supports this claim since MS outperforms PS in all domains
with u = 1000. The only exception is the ELEVATORS do-
main, where Pπ(s0) = 0 for all policies π since there is a
small chance that no passenger shows up. If ties were bro-
ken in favor of better action-values in our implementation
of π+ (instead of uniformly at random), MS and PS would
perform equally in the ELEVATORS domain.

Discussion
We started with the work at hand due to the evaluation
schema that was used at IPPC 2014. Only three IPPC solvers
made use of the rule that more than 30 runs are allowed: both
versions of PROST and G-PACK, a variant of the GOUR-
MAND planner (Kolobov, Mausam, and Weld 2012). The
latter does not reason over the MDP-ESP, though. It simpli-
fies the original MDP by considering at most N outcomes
for all actions, and computes and executes the policy with
highest expected reward in the simplified MDP. If time al-
lows, this process is repeated with a larger N , which is the
only reason that more than k evaluation runs are performed.

Therefore, only our submissions actually considered the
MDP-ESP as the relevant optimization problem. However,
most of the work described in this paper was done after the
competition – only the SecP strategy and a PS variant with
a target reward that is independent from the number of re-
maining runs were applied at IPPC 2014. Note that both
are strategies that aim at optimizing the evaluation of π? or
a near-optimal policy. PROST 2011 applied the SecP strat-
egy in 33 out of 80 instances, while PROST 2014 used it in
28 and PS in another six instances. Even though we were
able to improve the average reward in 22 (19) instances with
the SecP strategy and in five with the PS variant in the 2014
(2011) version, the total IPPC scores are mostly unaffected:
had we stopped evaluation after 30 runs in all instances with
both solvers, the final result would differ only slightly with

3545

CROSSING ELEVATORS GAME NAVIGATION SKILL TIREWORLD Total
u 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

MTE 0.21 0.21 0.26 0.26 0.28 0.28 0.37 0.37 0.23 0.23 0.27 0.27 0.27 0.27
SecP 0.34 0.45 0.34 0.59 0.27 0.52 0.57 0.85 0.37 0.63 0.38 0.68 0.38 0.62
Pure 0.59 0.84 0.59 0.98 0.63 0.98 0.74 0.93 0.57 0.97 0.62 0.96 0.62 0.94
Mixed 0.57 1.00 0.55 0.93 0.68 0.98 0.73 1.00 0.60 0.96 0.62 0.99 0.63 0.98

Table 3: IPPC scores of the proposed algorithms for the MDP-ESPu30 on instances of IPPC 2011 and 2014 that can be solved
with PROST. The expected reward V ? of the optimal policy π? is used as the minimum for normalization.

total IPPC scores of 0.816 (-0.09) and 0.773 (+0.04) for the
PROST versions and of 0.739 (+0.05) for G-PACK. Even
though the differences are small (we believe this is due to the
poor minimum policy at IPPC, the individual results indicate
that considering the MDP-ESP does pay off), we would like
to emphasize that the PROST competition results should not
be used for comparison. Otherwise, this includes instances
where PROST achieved a result that is far above V ?.

There are many applications for OSPs, including spon-
sored search (e.g., Babaioff et al. 2007; Zhou and Naro-
ditskiy 2008), online auctions (e.g., Hajiaghayi, Kleinberg,
and Parkes 2004), or optimal stock market behavior (e.g.,
Griffeath and Snell 1974; Shiryaev, Xu, and Zhou 2008).
Most applications are based on variants of the SecP that
differ in the number of applicants that must be selected as
in the Multiple-Choice SecP (MCSP) (Freeman 1983), that
have full information as in the House-Selling Problem or
where the selected values must be maximized under con-
straints on each element as in the Online Knapsack Problem
(Marchetti-Spaccamela and Vercellis 1995). The MDP-ESP
differs from the MCSP in two details: first, the selected ap-
plicants must show up consecutively, and second, the proba-
bility distribution that gives the next sample must be selected
from a known set of probability distributions.

The former difference does not alter the applicability of
our algorithms, since scenarios where k consecutive data
points must be selected exist, e. g., with resources that decay
with time, goods on an assembly line, or in traffic control.
Moreover, our algorithms can also be applied to a variant
of the MDP-ESP where k results can be selected in arbitrary
order. An exemplary application is, as in the MCSP, the plan
to hire k employees. In our scenario, all applicants have pro-
vided application documents, which allow the estimation of
a probability distribution over the candidate’s aptitude (e. g.,
grades or experience influence the expectation and the rest
of the CV the variance and hence the potential). We invite
at most u of the applicants (more than u applicants are nec-
essary since we do not restrict the number of times a “type
of applicant” is selected), and we have to decide right after
the interview if we hire the candidate with knowledge of the
aptitude. This problem differs from the MDP-ESP only in
the way the k applicants are selected. However, it is easy
to see that Theorem 1 also holds, that the MTE algorithm
can be applied with the same bounds on the expected reward
(i. e., Theorem 2 holds) and that Theorems 3 and 4 hold for
versions of PS and MS where line 12 of Algorithm 1 is re-

placed with an equation that sums the k largest rewards in-
dependently from their position. Since this is a simple and
useful generalization of the popular MCSP, it is well-suited
to describe existing OSP applications more realistically.

Conclusion
We have shown how the MDP-ESP is constructed as a meta-
MDP where actions encode the execution of a policy in an
underlying base-MDP. The expected reward of the optimal
policy of the base-MDP is a lower bound for optimal strate-
gies in the MDP-ESP. We have derived a procedure from
the Bellman optimality equation to compute the policy that
maximizes its potential, and have presented an upper bound
for MDP-ESP strategies that corresponds to the potential of
π+. While the general MDP-ESP is intractable in practice,
we have shown that there are special cases – the MDP-ESPkk,
the MDP-ESP∞k , and the MDP-ESPu1 – where the knowl-
edge of π? or π+ suffices to compute an optimal strategy.

We have introduced four different strategies for the MDP-
ESP based on our theoretical analysis. A strategy that is
derived from the related SecP not only allows us to treat
MDPs as MDP-ESP instances even though the optimal strat-
egy cannot be computed , but is furthermore a strategy of
high quality that allows to exceed the average expected re-
ward of the underlying policy both in the experiments pre-
sented in this paper and at IPPC 2014. If π? is available,
we show that avoiding bad luck is already an improvement
over a base policy that stops after k runs of π?. However, by
pushing the luck under application of the optimal policy, we
derive a strategy that converges towards P ? and hence to a
result that can only be achieved in a very lucky set of eval-
uation runs. We showed empirically that the corresponding
strategy PS is of high quality if u and k are similar. The
use of MS, which switches between executing π? and π+,
becomes more appealing with an increasing difference be-
tween u and k. It outperforms all other approaches signifi-
cantly in our empirical evaluation and demonstrates that it is
indeed sometimes better to be lucky than good.

Acknowledgments. We would like to thank Scott Sanner
from ANU Canberra and Malte Helmert from the University
of Basel for pointing us to the Secretary Problem, and An-
drey Kolobov from Microsoft Research, Redmond for valu-
able information about GLUTTON and GOURMAND.

3546

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of the Multiarmed Bandit Problem. Journal
of Machine Learning Research 47:235–256.
Babaioff, M.; Immorlica, N.; Kempe, D.; and Kleinberg, R.
2007. A Knapsack Secretary Problem with Applications.
In Proceedings of the 10th International Workshop on Ap-
proximation (APPROX 2007), 16–28. Berlin, Heidelberg:
Springer-Verlag.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.
Bertsekas, D. 1995. Dynamic Programming and Optimal
Control. Athena Scientific.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic Dynamic Programming with Factored Represen-
tations. Artificial Intelligence (AIJ) 121(1–2):49–107.
Bruss, F. T. 2000. Sum the Odds to One and Stop. The
Annals of Probability 28(3):1384–1391.
Dynkin, E. B. 1963. The Optimum Choice of the Instant for
Stopping a Markov Process. Soviet Mathematics Doklady 4.
Ferguson, T. S. 1989. Who Solved the Secretary Problem?
Statistical Science 4(3):282–289.
Freeman, P. R. 1983. The Secretary Problem and its
Extensions: A Review. International Statistical Review
51(2):189–206.
Gilbert, J. P., and Mosteller, F. 1966. Recognizing the Max-
imum of a Sequence. Journal of the American Statistical
Association 61(313):35–73.
Griffeath, D., and Snell, J. L. 1974. Optimal Stopping in the
Stock Market. The Annals of Probability 2(1):1–13.
Hajiaghayi, M. T.; Kleinberg, R.; and Parkes, D. C. 2004.
Adaptive Limited-supply Online Auctions. In Proceedings
of the 5th ACM Conference on Electronic Commerce, 71–80.
New York, NY, USA: ACM.
Karlin, S. 1962. Stochastic Models and Optimal Policy for
Selling an Asset. Studies in Applied Probability and Man-
agement Science 148–158.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2012), 119–127. AAAI Press.
Keller, T., and Helmert, M. 2013. Trial-based Heuristic
Tree Search for Finite Horizon MDPs. In Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS 2013), 101–105.
Kolobov, A.; Dai, P.; Mausam; and Weld, D. 2012. Reverse
Iterative Deepening for Finite-Horizon MDPs with Large
Branching Factors. In Proceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS
2012), 146–154.
Kolobov, A.; Mausam; and Weld, D. 2012. LRTDP vs.
UCT for Online Probabilistic Planning. In Proceedings of

the 26th AAAI Conference on Artificial Intelligence (AAAI
2012), 1786–1792.
Lai, T. L., and Robbins, H. 1985. Asymptotically Efficient
Adaptive Allocation Rules. Advances in Applied Mathemat-
ics 6(1):4–22.
Marchetti-Spaccamela, A., and Vercellis, C. 1995. Stochas-
tic On-line Knapsack Problems. Mathematical Program-
ming 68(1):73–104.
Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley.
Shiryaev, A.; Xu, Z.; and Zhou, X. Y. 2008. Thou Shalt Buy
and Hold. Quantitative Finance 8(8):765–776.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA, USA: MIT Press.
Zhou, Y., and Naroditskiy, V. 2008. An Algorithm for
Stochastic Multiple-Choice Knapsack Problem and Key-
words Bidding. In Proceedings of the 17th International
World Wide Web Conference (WWW 2008), 1175–1176.

3547

