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Abstract

The utilitarian solution criterion, which has been exten-
sively studied in multi-agent decision making under un-
certainty, aims to maximize the sum of individual util-
ities. However, as the utilitarian solution often discrim-
inates against some agents, it is not desirable for many
practical applications where agents have their own in-
terests and fairness is expected. To address this issue,
this paper introduces egalitarian solution criteria for se-
quential decision-making under uncertainty, which are
based on the maximin principle. Motivated by different
application domains, we propose four maximin fairness
criteria and develop corresponding algorithms for com-
puting their optimal policies. Furthermore, we analyze
the connections between these criteria and discuss and
compare their characteristics.

Introduction
Multi-agent Markov decision processes (MMDPs) provide a
powerful framework for studying sequential decision mak-
ing under uncertainty in the presence of multiple agents.
Existing techniques for MMDPs (Guestrin 2003; Kok and
Vlassis 2006; Zhang and Lesser 2011) have been focused
on optimizing the utilitarian criterion, where the central de-
cision maker aims to find a policy for maximizing the sum
of individual utilities. The computed utilitarian solution is
optimal from the perspective of the system where the per-
formance is additive. However, as the utilitarian solution of-
ten discriminates against some agents, it is not desirable for
many practical applications where agents have their own in-
terests and fairness is expected. For example, in manufactur-
ing plants, resources need to be fairly and dynamically allo-
cated to work stations on assembly lines in order to maxi-
mize the throughput; in telecommunication systems, wire-
less bandwidth needs to be fairly allocated to avoid “un-
happy” customers; in transportation systems, traffic lights
are controlled so that traffic flow is balanced.

To tackle these decision-making problems, we need to in-
troduce a notion of fairness in the computed policy. Fairness
has been studied for resource division in economics (An-
drews et al. 2001; Brams 1995), and primary goods distri-
bution in social science (Rawls 1971) and bandwidth alloca-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion in networking (Bonald and Massoulié 2001; Nace and
Pióro 2008). These existing works on fairness have been fo-
cused on one-shot decision-making in deterministic settings.
In this paper, we will study fairness in sequential decision-
making under uncertainty. Our fairness notion is based on
the maximin principle in Rawlsian theory of justice, maxi-
mizing the utility of the agents who are worse off. Motivated
by different application domains, we propose four different
maximin fairness solution criteria and develop correspond-
ing algorithms for computing fair policies. In order to iden-
tify proper fairness criteria for different domains, we also
formally analyze the connections between these four criteria
and discuss and compare their characteristics.

Multi-Agent Decision Making Model
We are interested in multi-agent sequential decision-making
problems, where agents have their own interests. We will
focus on centralized policies. This focus is sensible because
we assume that although agents have local interests, they are
cooperative. Such cooperation can be proactive, e.g., sharing
resources with other agents to sustain cooperation that ben-
efits all agents, or can be passive, where agents’ actions are
controlled by a central decision maker, as in many practical
resource allocation problems in manufacturing, cloud com-
puting, networking, and transportation.

We use a multi-agent Markov decision processes (MDP)
to model multi-agent sequential decision-making problems,
defined by a tuple 〈I, S,A, T, {Ri}i∈I , s1, H〉, where

I = {1, . . . , n} is a set of agent indices.

S is a finite set of states.

A = ×i∈IAi is a finite set of joint actions, where Ai is a
finite set of actions available for agent i.

T: S × A × S → [0, 1] is the transition function. T (s′|s, a)
is the probability of transiting to the next state s′ after a
joint action a ∈ A is taken by agents in state s.

Ri: S × A × S → < is a reward function of agent i and pro-
vides agent i with an individual reward Ri(s, a, s′) after a
joint action a taken in state s and resulting in state s′.

s1 is the initial state.

H is the horizon.
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In the multi-agent MDP model, each agent has its own re-
ward function, representing its interest. In this paper, our dis-
cussion is based on the finite horizon case, but most fairness
definitions and corresponding algorithms can be adapted for
the infinite horizon case, as we will discuss later.

The objective of multi-agent MDPs is to find a centralized
policy that optimizes a certain solution criterion. A policy
can be deterministic or stochastic. A deterministic policy π :
S → A is a function that returns action a = π(s) for state
s. A stochastic policy π : S × A → [0, 1] is a function that
returns the probability π(s, a) of taking joint action a ∈ A
for any given state s ∈ S. Because we focus on the finite
horizon, we will use non-stationary policies, whose action
choices also depend on the time in addition to the state.

Solution Criteria and Algorithms
To define fairness criteria for multi-agent MDPs, we em-
ploy the maximin principle in the Rawlsian theory of jus-
tice (Rawls 1971), which states that social and economic in-
equalities should be arranged such that “they are to be of the
greatest benefit to the least-advantaged members of society.”
In other words, an unequal distribution can be just when it
maximizes the minimum benefit to those with the lowest al-
location of welfare-conferring resources.

Motivated by different application domains, we propose
four maximin fairness criteria and develop corresponding al-
gorithms for computing the optimal policy: maximizing the
minimum expected utility of agents (MMEU), maximizing
the expected minimum utility of agents (MEMU), greedy
MMEU, and greedy MEMU.

For brevity, we use ψ(i, π) to denote a random variable
that represents the sum of rewards gained by agent i over
the horizon H under policy π:

ψ(i, π) =
H∑
t=1

Ri(st, at, st+1) (1)

where st and at are the state and the action chosen under
policy π at time t, resulting in the next state st+1.

Maximizing the Minimum Expected Utility
(MMEU)
The first maximin fairness criterion we propose is called
MMEU fairness (Maximizing the Minimum Expected Util-
ity), where the central decision maker maximizes the ex-
pected utility of the agent with the least. This criterion as-
sumes agents’ individual objectives are relatively indepen-
dent and agents are concerned with fairness based on the
expected long-term utility over the whole horizon instead of
fairness at every decision step.

For example, in cloud computing (Perez et al. 2009),
when allocating sharable resources (CPU cycles or net-
work bandwidth), the system needs to consider the fairness
among different classes of customers to avoid ”unhappy”
customers. As long as it is fair, a customer is usually not
concerned with the resource utilization of other customers.
In addition, a customer only cares about the expected quality
of the service it received (e.g., how fast its jobs are finished

or the response time of its web services) over a time period,
and does not care how computing resources are actually al-
located to its jobs at each time step during the execution.
Therefore, based on the maximin principle, the system is
considered to be fair by customers if it maximizes the mini-
mum expected service quality received by customers.

Formally, under the MMEU fairness criterion, the goal of
solving multi-agent MDPs is to find the optimal policy that
maximizes the following stage-to-go value function V πmmeu:

V πmmeu = min
i∈I

E[ψ(i, π)|π, s1] (2)

where the expectation operator E(·) averages over stochastic
transitions. The optimal policy π∗mmeu = argmaxπ V

π
mmeu.

We develop a linear programming (LP) approach to com-
puting the optimal MMEU fairness policy. Similar to the lin-
ear programming formulation of single-agent MDPs (Put-
erman 2005), our approach uses frequencies of state-action
visitations to reformulate the maximin objective function as
defined in (2). For a multi-agent MDP, given a policy and
the initial state, frequencies of visiting state-action pairs at
each time step are uniquely determined. We use xtπ(s, a) to
denote the probability, under policy π and initial state s1,
that the system occupies state s and chooses action a at time
t. Using this frequency function, we rewrite the MMEU ob-
jective function as follows:

V πmmeu = min
i

H∑
t=1

∑
s,s′∈S

∑
a∈A

xtπ(s, a)T (s
′|s, a)Ri(s, a, s′)

The MMEU optimization is formulated as a LP problem:

Maximizex,z z

Subject to

z ≤
H∑
t=1

∑
s∈S

∑
a∈A

∑
s′∈S

xtπ(s, a)T (s
′|s, a)Ri(s, a, s′), ∀i ∈ I∑

a∈A

x1(s, a) = b(s),

∑
a∈A

xt(s, a) =
∑
s′∈S

∑
a∈A

T (s|s′, a)xt−1(s′, a), t = 2, . . . , H

and xt(s, a) ≥ 0, ∀a ∈ A,∀s ∈ S, and t = 1, . . . , H (3)

where b is the vector with all zeros except for the position
for initial state s1 with b(s1) = 1. The first set of constraints
is used to linearize the objective value function by introduc-
ing another variable z, which represents the minimum ex-
pected total reward among all agents. The remaining con-
straints are included to ensure that xt(s, a) is well-defined.
The second constraint set is to ensure the probability of visit-
ing state s at the initial time step is equal to the initial prob-
ability of state s. The third set of constraints requires that
the probability of visiting state s′ is equal to the sum of all
probabilities of entering into state s′.

We can employ existing LP solvers (e.g., interior point
methods) to compute an optimal solution x∗ for problem (3)
and derive a state-to-go policy π∗ from x∗ by normalization:

πt(s, a) =
xt(s, a)∑
a∈A x

t(s, a)
(4)
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Note that the optimal MMEU fairness policy can be stochas-
tic. This is because this LP problem has |H||S| + |I| rows
with only |H||S| variables, and, as a result, for some state s
at time t, it is possible that xt(s, as) > 0 for more than one
action as ∈ A.

Although we define the MMEU fairness criterion for the
finite horizon case, it can be readily adapted to the infinite
horizon case by multiplying the reward at time t by a dis-
count factor λt. For the infinite horizon, the optimal fairness
policy can be stationary, which does not depend on the time.
Hence we can use the stationary frequency function x(s, a)
that does not depend on the time. The second and third con-
straint sets in the LP problem need to be substituted by the
following constraint set:∑
a∈A

x(s′, a) = b(s′) +
∑
s∈S

∑
a∈A

λT (s′|s, a)x(s, a),∀s′ ∈ S

which ensures that the probability of visiting state s′ is equal
to the initial probability of state s′ plus the sum of all proba-
bilities of entering into state s′. The optimal MMEU policy
for the infinite horizon case can be derived through normal-
ization from the solution of the LP problem.

Maximizing the Expected Minimum Utility
(MEMU)
Although the MMEU criterion provides a fairness solution
for many decision-making problems, it may not be appro-
priate for applications where agents’ objectives interact. For
example, in manufacturing, resources need to be dynami-
cally and fairly allocated to different work cells in an as-
sembly line in order to optimize its throughput. The objec-
tive of each work cell is to maximize its own throughput.
Work cells’ objectives interact because the throughput of
the assembly line is determined by the minimum throughput
among work cells. In order to maximize the throughput for a
given horizon, it is more sensible for the system to maximize
the expected minimum total throughput of work cells.

In order to address such similar decision-making prob-
lems, we propose a MEMU (Maximizing the Expected Min-
imum Utility) fairness criterion, where the central decision
maker aims to maximize the expected minimum total re-
wards gained by agents over the time horizon. Under the
MEMU fairness criterion, the stage-to-go value function
V πmemu for policy π is defined as follows:

V πmemu = E[min
i∈I

ψ(i, π)|π, s1] (5)

where the expectation operator E(·) averages over stochastic
transitions. The optimal policy π∗memu = argmaxπ V

π
memu.

The MEMU objective function looks similar to that of
MMEU fairness except for the order of the expectation and
minimization operators. However, this difference leads to a
more fine-grained fairness than that of MMEU. MMEU fair-
ness focuses on individual agents’ objectives and attempts to
maximize the total reward for the agent with the least, while
the MEMU fairness solution focuses more on the system ob-
jective based on execution traces with finite horizonH , max-
imizing the expected minimal total rewards gained by agents
over an execution trace. (Note that different execution traces

of a multi-agent MDP may have different agents with the
least total reward.)

The MEMU optimization problem may be difficult to
solve directly, since evaluating the expectation of the min-
imum can be hard. However, as shown by the following
proposition, we can use the MMEU fairness policy to pro-
vide an approximate MEMU solution with both lower and
upper bounds.
Proposition 1. Let V ∗memu be the value of the optimal
MEMU fairness policy, V ub be the value of the optimal
MMEU policy π∗mmeu evaluated with its own objective func-
tion defined by (2), and V lb be the value of the optimal
MMEU policy π∗mmeu evaluated with the MEMU value func-
tion defined by (5). We then have:

V lb ≤ V ∗memu ≤ V ub

Proof. First, by definition, the value of any policy evaluated
with the MEMU objective function will be less than or equal
to V ∗memu. Therefore, V lb ≤ V ∗memu. Furthermore,

V ∗memu = max
π

E[min
i∈I

ψ(i, π)|π, s1]

≤ max
π

min
i∈I

E[ψ(i, π)|π, s1]

= V ub (6)

Note thatψ(i, π) is a linear function and convex and the min-
imum operator is a concave function. The inequality in the
proof holds due to Jensen’s Inequality (Jensen 1906), which
states that the concave transformation of a mean is greater
than or equal to the mean after concave transformation.

The lower bound on the value of the MEMU policy is
readily evaluated through Monte Carlo simulation. When
V lb and V ub are close, we can conclude that the policy
π∗mmeu is almost optimal under the MEMU criterion.

Similar to the MMEU criterion, the MEMU criterion can
also be adapted to the infinite horizon by introducing a dis-
count factor. Since Jensen’s inequality holds for an infinite
discrete form, Proposition 1 still holds and the approximate
computation approach is valid for the infinite horizon case.

Greedy MMEU
Both MMEU and MEMU fairness criteria assume agents are
interested in fairness based on long-term utilities (e.g., to-
tal rewards gained over the whole horizon). However, there
are applications where the system needs to take account of
both extended-time and immediate fairness. For example, in
traffic light control (Houli, Zhiheng, and Yi 2010), the sys-
tem not only balances the extended-time traffic flow, but also
considers the waiting time of current drivers at different di-
rections. When using MMEU or MEMU fairness policy, it is
likely that the interval of changing traffic lights will be rel-
atively long, because frequent changes will slow down the
traffic flow. As a result, some drivers will wait for quite a
long time to pass an intersection.

To address this type of optimization problems, we pro-
pose a variant of the MMEU fairness criterion, called greedy
MMEU. The greedy MMEU criterion aims to maximize the
minimum “expected utility” at every time step. The “ex-
pected utility” under the greedy MMEU criterion is defined
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differently from MMEU. As shown below, its stage-to-go
value function V πgmmeu for policy π is defined iteratively:

V π
t

gmmeu(st) = min
i

E[Ri(st, π
t(st), st+1) + V π

t+1

gmmeu(st+1)]

V π
H

gmmeu(sH) = min
i

E[Ri(sH , π
H(sH), sH+1)] (7)

where t = 1, . . . ,H − 1 and the expectation operator E(·)
averages the stochastic transition function. From the defini-
tion, we can see that the greedy MMEU policy attempts to
achieve fairness at each decision step with a consideration of
long-term expected utilities starting from that step. There-
fore, greedy MMEU provides a more fine-grained fairness
than MMEU, which focuses on fairness for the starting step
based on expected utilities gained over the whole horizon.

Exploiting the iterative definition of the greedy MMEU
criterion, we design a backward induction algorithm to com-
pute the optimal stage-to-go value function V t

∗

gmmeu and the
optimal policy πt

∗

gmmeu, which is described as following:

1. Set time t = H and compute V H
∗

gmmeu(sH) and
πH
∗

gmmeu(sH) for all state sH ∈ S by

V H
∗

gmmeu(sH) = max
a∈A

min
i

∑
s∈S

T (s|sH , a)Ri(sH , a, s)

πH
∗

gmmeu(sH) = argmax
a∈A

min
i

∑
s∈S

T (s|sH , a)Ri(sH , a, s)

2. Substitute t − 1 for t and compute V t
∗

gmmeu(st) and
πt
∗

gmmeu(st) for each st ∈ S by

V t
∗

gmmeu(st) = max
a∈A

min
i

∑
s∈S

T (s|st, a)(Ri(st, a, s)

+ V t+1∗

gmmeu(s))

πt
∗

gmmeu(st) = argmax
a∈A

min
i

∑
s∈S

T (s|st, a)(Ri(st, a, s)

+ V t+1∗

gmmeu(s))

3. If t = 1 stop; otherwise, go to step 2.

It is quite straightforward to prove the optimality of this
backward induction algorithm by using induction. The com-
plexity of this algorithm is linear with the horizon. Unlike
the MMEU criterion, the greedy MMEU criterion has a de-
terministic optimal policy.

Greedy MEMU
Similarly, we also propose a variant of the MEMU fairness
criterion, called greedy MEMU, which aims to maximize the
expected total minimum rewards at every time step. Under
the greedy MEMU fairness criterion, the stage-to-go value
function V πgmmeu for policy π is defined as follows:

V πgmemu = E[
H∑
t=1

min
i
Ri(st, π

t(st), st+1)|π, s1] (8)

where the expectation operator E(·) averages the stochastic
transition function.

The greedy MEMU criterion intends to achieve fairness
at each decision by maximizing the expected the sum of
minimum rewards received by agents at each step, while the
MEMU criterion focuses on fairness on the starting step by
maximizing the expected minimum of total rewards gained
by agents over the whole horizon. Therefore, greedy MEMU
provides a more fine-grained fairness than MEMU.

We can derive the Bellman equation for the stage-to-go
value function V πgmemu as follows:

V π
t

gmemu(st) = E[min
i
Ri(st, π

t(st), st+1) + V π
t+1

gmemu(st+1)]

V π
H

gmemu(sH) = E[min
i
Ri(sH , π

H(sH), sH+1)] (9)

where t = 1, . . . ,H − 1. This iterative form looks similar
to the definition of the greedy MMEU value function except
for the order of the expectation and minimization operators.
This reverse order results in a more fine-grained fairness of
greedy MEMU than that of greedy MMEU. This is because
greedy MEMU assumes agents are interested in actual re-
wards received at each step while greedy MMEU assume
agents are interested in expected rewards at each step.

The greedy MEMU criterion can find applications in do-
mains that require very strict fairness, such as telecommu-
nication wireless systems (Eryilmaz and Srikant 2005) and
sewage flow control systems (Aoki, Kimura, and Kobayashi
2004). For example, in telecommunication systems, the
greedy MEMU policy for allocating wireless bandwidth is
more desirable than that of greedy MMEU, because users
care more about actual bandwidth allocated to them at each
time step than expected bandwidth (which has uncertainty).

By exploiting the Bellman equation of the stage-to-go
value function, we can revise the backward induction al-
gorithm described in the previous section by changing the
order of the expectation and minimization operators, and
use this revised algorithms to compute the optimal greedy
MEMU fairness policy.

The greedy MEMU policy for a multi-agent MDP is
equivalent to the utilitarian policy of the single-agent MDP
derived from the multi-agent MDP by using a reward
function R(st, π

t(st), st+1) = miniRi(st, π
t(st), st+1).

Therefore, we can adapt the definition of the greedy MEMU
criterion in (8) to the infinite horizon case by introducing
a discount factor and use existing techniques (e.g., value
iteration, linear programming) to solve the derived single-
agent MDP to find an optimal greedy MEMU fairness pol-
icy, which is deterministic and stationary.

Discussions
To better understand fairness criteria proposed in the previ-
ous section, in this section, we will analyze their connections
and discuss and compare their characteristics. This analysis
and comparison are intended to help choose proper fairness
criteria for different applications.

Connections among Fairness Criteria
We first formally analyze the ordering relationships of
the objective function among four fairness criteria, which
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are shown by the following two propositions. Using these
propositions, we then discuss how different granularities of
fairness affects both system and individual performance.

Proposition 2. For any policy π, V πgmemu ≤ V πmemu ≤
V πmmeu.

Proof. The first inequality holds because
∑H
t=1 miniRi ≤

mini
∑H
t=1Ri for any sequence number.

V πgmemu = E[
H∑
t=1

min
i
Ri(st, π

t(st), st+1)|π, s1]

≤ E[min
i

H∑
t=1

Ri(st, π
t(st), st+1)|π, s1]

= V πmemu

Because the minimization operator is a concave function,
using Jensen’s inequality, we have :

V πmemu = E[min
i∈I

ψ(i, π)|π] ≤ min
i∈I

E[ψ(i, π)|π] = V πmmeu

Although Proposition 2 is proved for the finite horizon
case, it also holds for the infinite horizon case.

Proposition 3. For any stage-to-go policy π, for all state
s ∈ S, V πgmemu(s) ≤ V πgmmeu(s) ≤ V πmmeu(s).

Proof. The first inequality is proved by induction. For time
t = H , using Jensen’s inequality, we directly have

V π
H

gmemu(sH) = E[min
i
Ri(sH , π

H(sH), sH+1)]

≤ min
i

E[Ri(sH , π
H(sH), sH+1)]

= V π
H

gmmeu(sH)

Assume the first inequality holds for time t + 1. Now let us
show it holds for time t.

V π
t

gmemu(st) = E[min
i
Ri(st, π

t(st), st+1) + V π
t+1

gmemu(st+1)]

≤ E[min
i
Ri(st, π

t(st), st+1) + V π
t+1

gmmeu(st+1)]

≤ min
i

E[Ri(st, π
t(st), st+1) + V π

t+1

gmmeu(st+1)]

= V π
t

gmmeu(st)

We can also prove the second inequality by induction. For
time t = H , by definition,

V π
H

gmmeu(sH) = min
i

E[Ri(sH , π
t(sH), sH+1)] = V π

H

mmeu(sH)

Assume the second inequality holds for time t+1. Now let

us show it holds for time t.

V π
t

gmmeu(st) = min
i

E[Ri(st, π
t(st), st+1) + V π

t+1

gmmeu(st+1)]

≤ min
i

E[Ri(st, π
t(st), st+1) + V π

t+1

gmmeu(st+1)]

= min
i

E[Ri(st, π
t(st), st+1)

+ min
i

E[

H∑
k=t+1

Ri(sk, π
t(sk), sk+1)]]

≤ min
i

E[Ri(st, π
t(st), st+1)

+E[

H∑
k=t+1

Ri(sk, π
t(sk), sk+1)]]

= V π
t

mmeu(st)

As discussed in the previous section, among four fair-
ness criteria, MMEU is the most coarse-grained and greedy
MEMU is the most fine-grained fairness. Proposition 2 and
3 indicate that, for any policy, the more fine-grained the fair-
ness criterion, the lower the objective value of a given pol-
icy. Immediately following Proposition 2 and 3, Corollary
1 shows the ordering relationships of the optimal objective
value among four fairness criteria.

Corollary 1. For all state s ∈ S, V ∗gmemu(s) ≤
V ∗gmmeu(s) ≤ V ∗mmeu(s) and V ∗gmemu(s) ≤ V ∗memu(s) ≤
V ∗mmeu(s).

The objective value of a policy indicates the long-term ex-
pected utility gained by the system. Therefore, from the sys-
tem perspective, the optimal objective value reflects its best
performance under a particular criterion, even though the
value function is defined differently with different criteria.
Corollary 1 implies that the more fine-grained the fairness
criterion, the lower the system optimal performance. In con-
trast, from the individual agent’s perspective, the expected
total rewards (i.e., E[

∑H
t=1R

t
i]) reflects its performance.

By definition, the optimal policy under the MMEU fair-
ness criterion maximizes the expected total rewards of the
agent with the least performance. Therefore, for this agent,
the optimal policy under this most coarse-grained fairness
criterion (i.e., MMEU) yields its highest individual perfor-
mance among four criteria. In other words, using a more
fine-grained fairness potentially results in lower system and
individual performance.

Comparison of Fairness Criteria
Table 1 summarizes some characteristics of four fairness
criteria we proposed. All fairness criteria except Greedy
MMEU can be defined for both finite and infinite horizon.
In this paper, we developed exact algorithms for computing
the optimal policy under fairness criteria of MMEU, greedy
MMEU, and greedy MEMU. It is not clear whether there
exists a polynomial exact algorithm for computing the op-
timal MEMU policy. The complexity of the backward in-
duction algorithm for greedy MMEU and greedy MEMU is
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Table 1: Comparison of different fairness criteria
Criterion Horizon Algorithm Complexity Optimal policy Granularity
MMEU finite or infinite exact polynomial stochastic coarse-grained
MEMU finite or infinite approximate polynomial stochastic coarse-grained

Greedy MMEU finite exact linear deterministic fine-grained
Greedy MEMU finite or infinite exact linear or polynomial deterministic fine-grained

O(H|I||A||S|2), which is linear in the horizon H . There-
fore, solving the greedy MMEU or greedy MEMU fairness
policy is much more efficient than solving the MMEU prob-
lem, which uses LP and has complexity O(n3.5) (where
n = H|A||S| is the number of variables).

The LP approach for solving MMEU and MEMU fairness
problems computes a stochastic policy, while the backward
induction algorithm computes a deterministic optimal policy
for both greedy MMEU and greedy MEMU criteria. Under
the MMEU criterion, the optimal deterministic policy may
exist for some problems, but not for other problems. While
in most applications there is no reason to exclude stochastic
policies a priori, there can be cases when stochastic policies
are clearly undesirable or even unethical. For example, if
the policy determines the critical medical equipment usage
among a group of patients, then flipping a coin to determine
the course of action may be inappropriate.

As discussed in the previous section, MMEU provides
the most coarse-grained fairness among four proposed crite-
ria, greedy MEMU provides the most fine-grained fairness,
and MEMU and greedy MMEU provides in-between fair-
ness. Since the MMEU criterion optimizes the fairness based
on the long-term objectives of individual agents, one of its
strengths is that its optimal fairness provides the greatest
minimum expected long-term utility among all four crite-
ria, i.e., the best expected performance from the system per-
spective. However, with the MMEU policy, for a particular
execution trace, the minimum total rewards of agents might
be low for applications with a high variance of individual
rewards from one run to another. Therefore, the MMEU cri-
terion works best for problems where decision process is
repeated, the decision maker is concerned with individual
agents’ objectives but not with their interactions, and agents
are not myopic and are interested in expected long-term util-
ities.

In contrast to the MMEU criterion that considers the min-
imum expected total reward averaged over repeated runs, the
MEMU criterion more specially considers more detailed in-
formation, the minimum total rewards for individual runs.
The MMEU criterion works best for decision-making prob-
lems where the decision maker needs to consider interac-
tions between individual agents’ objectives and focuses on
the long-term performance of the system instead of individ-
ual agents. Greedy MMEU and greedy MEMU criteria at-
tempt to achieve fairness at every decision, which potentially
results in lower optimal system and individual performance.
Therefore, it is better to only apply them to problems where
agents are myopic and fairness is necessary at every deci-
sion, unless the computational complexity is of concern.

Related Work
The notion of maximin fairness is widely used in vari-
ous areas of networking, such as bandwidth sharing, con-
gestion control, routing, load-balancing and network de-
sign (Bonald and Massoulié 2001; Nace and Pióro 2008).
Maximin fairness has been applied in combinatorial opti-
mization in multi-agent settings, where agents have differ-
ent evaluation functions about combinatorial problems (Es-
coffier, Gourvès, and Monnot 2013). Unlike our work, these
works are dedicated to one-shot deterministic decision mak-
ing problems and does not consider the dynamics and uncer-
tainty of users and the environment (e.g., dynamic changes
to users’ demands and resource availability).

Our multi-agent MDPs can be viewed as multi-objective
MDPs (Roijers et al. 2013). Existing work on multi-
objective MDPs focuses on linear scalarization function
(similar to the utilitarian criterion) and strictly monoton-
ically increasing scalarization functions (similar to our
MMEU criterion) in the infinite horizon case. In contrast,
this paper studied fairness in infinite and finite horizon with
three additional solution criteria.

Fairness has also been studied in goods division (Chen
et al. 2010; Chevaleyre et al. 2007; Procaccia 2009). Fair
division theory focuses on proportional fairness and envy-
freeness. Most existing work in fair division involves a static
setting, where all relevant information is known upfront and
fixed. Only a few approaches deal with dynamics of agent
arrival and departures (Kash, Procaccia, and Shah 2013;
Walsh 2011). However, unlike our work, these approaches
in fair division do not address uncertainty or other dynam-
ics, such as changes of resource availability and demands.

Conclusion
Fairness is an important criterion for decision making in
many practical domains. In this paper, we proposed four dif-
ferent fairness solution criteria for sequential decision mak-
ing under uncertainty and developed optimal computational
algorithms for three of them and a bounded approach for
the remaining one. In order to help choose proper fairness
criteria for different applications, we formally analyzed on
the relationships among these solution criteria and discussed
and compared their characteristics. By introducing solution
concepts and baseline algorithms, this paper provides an ini-
tial effort for studying fairness in sequential decision making
under uncertainty. In future work, we are interested in de-
veloping methods for computing decentralized fairness poli-
cies, algorithms for learning fairness policies, and more scal-
able approaches for computing fairness policies by exploit-
ing problem structures.
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