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Abstract

Drug and vaccination therapies are important tools in
the battle against infectious diseases such as HIV and
influenza. However, many viruses, including HIV, can
rapidly escape the therapeautic effect through a se-
quence of mutations. We propose to design vaccines, or,
equivalently, antibody sequences that make such eva-
sion difficult. We frame this as a bilevel combinatorial
optimization problem of maximizing the escape cost,
defined as the minimum number of virus mutations to
evade binding an antibody. Binding strength can be
evaluated by a protein modeling software, Rosetta, that
serves as an oracle and computes a binding score for
an input virus-antibody pair. However, score calculation
for each possible such pair is intractable. We propose a
three-pronged approach to address this: first, applica-
tion of local search, using a native antibody sequence
as leverage, second, machine learning to predict bind-
ing for antibody-virus pairs, and third, a poisson regres-
sion to predict escape costs as a function of antibody
sequence assignment. We demonstrate the effectiveness
of the proposed methods, and exhibit an antibody with
a far higher escape cost (7) than the native (1).

We formulate antibody design as a formal bi-level op-
timization problem, where the “designer” chooses an an-
tibody so as to maximize the shortest sequence of muta-
tions that lead to escape. This formulation can be viewed
as a Stackelberg game (Paruchuri et al. 2008) (Brückner
and Scheffer 2011) between the designer and the virus in
which the virus minimizes the cost of escaping the antibody
chosen by the designer. The designer-virus game poses two
challenges: 1) enormous search space for both the designer
and the virus (≥ 1050 in each case), and 2) determination
whether an arbitrary antibody-virus pair bind. To tackle the
former challenge, we propose, and compare the performance
of, several stochastic local search heuristics (Hoos and Stut-
zle 2004), using the native antibody as a “springboard”.
Even for computing virus escape alone, this approach scales
poorly. The major bottleneck is the second challenge: bind-
ing evaluation. For this purpose we make use of Rosetta,
a premier computational protein modeling tool (Gray et al.
2003). Rosetta, however, can be extremely time consuming
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even for a single evaluation (which could take nearly an
hour, as it makes use of its own sophisticated amalgam of
local search techniques to simulate a binding complex). To
significantly speed up the search, we use classification learn-
ing to predict whether or not an antibody-virus pair bind,
limiting Rosetta evaluations only to cases in which the clas-
sifier predicts that they do not. While this makes the virus
escape search practical, the bi-level nature of the problem
means that antibody design is still quite time consuming. To
address this, we make use of Poisson regression to predict
virus escape cost. Making use of the resulting predictions
now makes antibody design viable, with “inner loop” (virus
escape) evaluations restricted to a small set of candidate an-
tibodies predicted to be difficult to escape.

In summary, we make the following contributions:
1. A bi-level optimization (Stackelberg game) model of an-

tibody design and virus escape interaction,
2. stochastic local search techniques to determine optimal

virus escape, with classifier-in-the-loop used to speed up
the evaluations, and

3. stochastic local search techniques for optimal antibody
design, making use of Poisson regression to predict mini-
mal virus escape time.

Our methods ultimately exhibit antibodies that are far more
robust to mutations than the native antibody.

Related work include (Lathrop and Pazzani 1999),
(Hernandez-Leal et al. ), (Lathrop et al. 1999), (Richter, Au-
gustin, and Kramer 2010).

Antibody Design as a Stackelberg Game
Let v0 denote the native virus, which we treat simply as a
sequence (vector) of amino acids, and v and a arbitrary virus
and antibody sequences, respectively. Let O(a, v) represent
binding energy for the antibody-virus pair (a, v), which is
computed by Rosetta. We stylize the “dilemma” faced by the
virus as the following constrained optimization problem:

min
v∈V
‖v0 − v‖0 (1a)

s.t. : O(a, v) ≥ θ, (1b)

where V is the space of virus sequences under considera-
tion, and θ is a threshold on binding energy which desig-
nates escape (that is, once binding energy is high enough,
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Figure 1: The native antibody, H and L, with the native virus,
G (left) and antibody with escape cost=7 (right). The arrows
point at some significant differences.

the proteins will no longer bind);1 this threshold is typically
domain-dependent. The l0 norm simply computes the num-
ber of sequence positions in v that are different from v0.

While in principle we could consider the space of all pos-
sible virus sequences in this subproblem, since virus struc-
ture and, consequently, its binding properties can be affected
by a change in any residue (amino acid) in its sequence.
However, first-order affect in regard to its antibody binding
properties is determined by the sequence that is a part of the
native virus binding site. Therefore, we only consider the
problem of virus escape in terms of binding site mutations.

The optimization problem 1 can be viewed as a best re-
sponse of the virus to a fixed antibody a. Now we consider
the problem of designing an antibody, a, that is robust to
virus escape. The target, virus escape, is now precisely de-
fined by the virus optimization problem 1. Let v(a) be the
solution to this problem—naturally, a function of the anti-
body choice a. The designer’s decision problem is then

max
a∈A
‖v0 − v(a)‖0, (2)

where A is the antibody design space, which we restrict to
the native binding site for the same reasons as for the virus.
Alternatively, we can write this is a bi-level optimization
problem composing 2 with 1.

Evaluation
To evaluate our approach we used a native antibody-virus
interaction for HIV.

The native structure is the co-crystal structure of the an-
tibody VRC01 complexed with the HIV envelope protein
GP120.

The binding site on the virus is chain G with 45 residues,
while the binding site on the antibody includes chains H and
L with a total of 52 residues.

The visual representation of the native binding structure
is shown in Figure 1 (left).

The actual set of antibodies we generated as a part of
our search process, ranked in terms of evaluated escape cost
(Figure 2). It is noteworthy that we found many antibod-
ies which are much more robust to escape than the native
when θ = 0. In particular, our best has escape cost of 7,

1This idea may seem counterintuitive at first, but it is a reflec-
tion of the well-known tendency of chemical compounds towards
low-energy states.
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Figure 2: Evaluated antibodies for θ = 0, ranked by escape
cost. The native antibody escape cost is 1.

and the resulting antibody complexed with the native virus
is shown in Figure 1 (right). Visually, the differences appear
quite small, but make a significant difference in the ultimate
breadth of binding, emphasizing the importance of a com-
putational micro-level design approach.

Elaborated information on this research is at https://drive.
google.com/file/d/0B3IRzPZ3ARZhdmh2SVBBVzhjQU0/
edit?usp=sharing, and https://drive.google.com/file/d/
0B3IRzPZ3ARZhX0FiR0U2Vjhzelk/edit?usp=sharing.
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González, J. A.; Sucar, L. E.; and Tonantzintla, S. M. Con-
trasting temporal bayesian network models for analyzing hiv
mutations.
Hoos, H. H., and Stutzle, T. 2004. Stochastic Local Search:
Foundations & Applications. Morgan Kaufmann.
Lathrop, R. H., and Pazzani, M. J. 1999. Combinatorial opti-
mization in rapidly mutating drug-resistant viruses. Journal
of Combinatorial Optimization 3(2-3):301–320.
Lathrop, R. H.; Steffen, N. R.; Raphael, M. P.; Deeds-Rubin,
S.; Pazzani, M. J.; Cimoch, P. J.; See, D. M.; and Tilles,
J. G. 1999. Knowledge-based avoidance of drug-resistant
hiv mutants. AI Magazine 20(1):13.
Paruchuri, P.; Pearce, J. P.; Marecki, J.; Tambe, M.; Ordóñez,
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