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Introduction
Online advertising is market communication over the inter-
net. This form of advertising has proven its importance in the
golden digital age. In this work, we approach the business
problem of improving the effectiveness of ad campaigns
and targeting a wider range of online audience via discov-
ering the intrinsic structures of the websites. We introduce
a stochastic blockmodeling framework for discovering the
website structures, propose two vertex clustering algorithms
based on the Bayesian information criterion, and compare
the performance with a goodness-of-fit method and a de-
terministic graph partitioning method. We demonstrate the
effectiveness of our proposed algorithms on simulation and
the AOL website dataset.

Background
A graph G = (V,E) represents a collection of interacting
objects, where the objects are vertices in the vertex set V :=
{1, 2, . . . , } containing n vertices, and the interactions are
edges in the edge setE. The adjacency matrixA of the graph
G is an n×n matrix. In this work, we assume that the graph
G is undirected, unweighted, and not loopy. That implies
the adjacency matrix A is symmetric, binary and hollow. A
random graph is a graph-valued random variable: G : Ω →
Gn, where Gn represents the collection of all 2(n

2) possible
graphs on the vertex set V . Associated with the adjacency
matrix A, there exists a communication probability matrix
P ∈ [0, 1]n×n, where each entry Pij denotes the probability
of edge existence between vertex i and vertex j.

One very general random graph is the latent position
graph (Hoff, Raftery, and Handcock 2002). Each vertex vi
is associated with a latent position Xi drawn independently
from some distribution F on RD. The edge probability be-
tween vertices i and j is Pij = Bernoulli(l(Xi, Xj)), where
l : RD × RD → [0, 1] is the link function. The stochas-
tic blockmodel (Holland, Laskey, and Leinhardt 1983) is a
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special case of the latent position graph, where its latent po-
sitions are point masses. The vertices are partitioned in to K
blocks, and the edges are conditional independent Bernoulli
trials.
Definition 1. Stochastic blockmodel (SBM) Let K be the
number of block memberships. Let π be the block member-
ship function of lengthK vector such that

∑K
k=1 πk = 1. Let

{Yi}ni=1 ∼ Categorical([K], π) be the block memberships.
Let B ∈ [0, 1]K×K be a symmetric probability matrix de-
noting the block probabilities. Then A ∼ SBM([n], B, π)
if

Pij = Prob(Aij = 1|Xi, Xj)

= Prob(Aij = 1|Yi, Yj) = BYi,Yj
.

The BIC-Based Vertex Clustering Algorithms
In the classical setting for unsupervised learning, we ob-
serve independently identically distributed feature vectors
X1, X2, . . . , Xn, where each Xi : Ω → RD is a random
vector for some probability space Ω. Here we consider the
case when the feature vectors X1, X2, . . . , Xn are unob-
served. Instead we observe a latent position random graph
G(X1, X2, . . . , Xn) on n vertices. We intend to cluster the
vertices using the observed graph.

For stochastic blockmodels with K blocks and a known
model dimension D, (Sussman et al. 2012) and (Rohe et al.
2011) respectively have shown that adjacency spectral em-
bedding and Laplacian spectral embedding are consistent es-
timates of the latent positions. The resulted embedding is a
K-mixture and D-variate Gaussian distributions asymptot-
ically. Such results motivate us to propose a model-based
clustering approach on the embedded space of the stochastic
blockmodel. The optimal number of clusters and covariance
structure correspond to the model selection criterion by the
Bayesian information criterion (BIC). Our approach is pre-
sented in Algorithm 1. We denote the algorithms by ASE
and LAP respectively, if M is either the adjacency matrix or
the Laplacian matrix.

We compare ASE and LAP with the integrated clas-
sification likelihood (ICL) method (Daudin, Picard, and
Robin 2008), which is a likelihood maximization method for
stochastic blockmodels, and the Louvain algorithm (Blondel
et al. 2008), which optimizes graph modularity and performs
efficiently for large graphs.
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Algorithm 1 The BIC-based Vertex Clustering Approach

Input: An input square matrix M of order n, an integer
K ≥ 1, and an embedding dimension D.
Step 1 : Compute the first D orthonormal eigenpairs of
M , denoted by (UM , SM ) ∈ Rn×D × RD.
Step 2: Define the D-dimensional embedding of M to be
M̂ := UMS

1/2
M .

Step 3:
for k in 1 : K do

Fit Gaussian mixture models with different covariance
types and k clusters to M̂ , and compute the BIC.
end for
Step 4: Cluster the vertices using the optimal model se-
lected via the maximum BIC.

Experiments
Clustering Validation
For simulation, we measure clustering performance using
the adjusted rand index (ARI) (Hubert and Arabie 1985).
The higher ARI indicates a better clustering performance.
For real data experiment, one challenge for clustering valida-
tion is the lack of ground truth. We examine the significance
of the clusters using external datasets including website top-
ics, revenue per website, number of clicks on ads per web-
site, and impressions (the volume of ad display) per website.

Simulation
In this experiment, only ASE and LAP correctly select the
number of blocks with an average ARI above 90%. As the
number of clusters increases, the ARIs of ASE and LAP de-
crease due to the phenomenon of bias-variance tradeoff.

AOL Website Graph
We use the relational events of online users who visit the
websites during the day July 1, 2014 under one campaign,
and build a graph containing websites as vertices. An edge
exists between websites vi and vj , if they share at least
one common user. The resulted adjacency matrix is sym-
metrized, binarized, hollow, and of size 1569×1569. In prac-
tice, the true model dimension D of the stochastic block-
model is unknown. We estimate D using a profile likelihood
maximization method (Zhu and Ghodsi 2006).

The ARIs for comparing the 6 pairs of algorithms indicate
the partitions by ASE and LAP are most similar, while ASE
detects most block signal. The partitions by ICL and Lou-
vain are least similar. In terms of website topics, Cluster 1
discovered by ASE mainly contains references and popular
sites. Cluster 5 discovered by ASE mainly contains websites
on politics, baby, teen, gallary. The clusters discovered by
the other clustering algorithms do not correspond to any sig-
nificant topic clusters.

In addition, we evaluate the clusters using revenue, clicks
and impressions. For each pair of clusters in each clustering
algorithm, we apply two-sided Wilcoxon rank sum test with
the null hypothesis that the revenue/clicks/impressions are
the same. At a significance level of 5%, ASE discovers more

statistically significant clusters based on the business metrics
than other algorithms.

See https://sites.google.com/site/lichenjhuresearch/home
for details.

Discussion
In this work, we introduce a stochastic blockmodeling
framework for online advertising, and propose two BIC-
based vertex clustering algorithms: ASE and LAP. We
demonstrate in simulation that our proposed algorithms are
able to detect the correct number of blocks. In the AOL web-
site graph experiment, our proposed algorithm ASE is able
to detect significant website clusters validated via impres-
sions, revenue and number of clicks. The applications of our
approach not only extend to further cluster-based inference,
but also can serve as a basic guidance for website inven-
tory acquisition. While our proposed approach is presented
for undirected and unweighted graphs, it adapts to directed
and weighted graphs. We are optimistic that random graph
framework is valuable for online advertising research.
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