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Abstract

In Constraint Processing, many algorithms for enforcing the
same level of local consistency may exist. The performance
of those algorithms varies widely. In order to understand what
problem features lead to better performance of one algorithm
over another, we utilize an algorithm configurator to tune the
parameters of a random problem generator and maximize the
performance difference of two consistency algorithms for en-
forcing constraint minimality. Our approach allowed us to
generate instances that run 1000 times faster for one algo-
rithm over the other.

Introduction
Constraint Processing is an expressive and powerful frame-
work for modeling and solving constrained combinatorial
problems. A Constraint Satisfaction Problem (CSP) is de-
fined by a set of variables, their respective domains, and
a set of constraints over the variables restricting the com-
binations of values that can be assigned to the variables at
the same time. A solution to a CSP assigns all variables a
value from their respective domains such that no constraint
is violated. Determining the satisfiability of a CSP is NP-
complete, and a solution is typically found using backtrack
search search and/or constraint propagation. Many propaga-
tion algorithms exist with widely varied effectiveness. An
important research direction is the selection of the appro-
priate consistency algorithm to employ in solving a given
problem instance. As a step in that direction, we consider
the inverse question: we investigate what problems are par-
ticularly suited to the strengths of a given consistency algo-
rithm. By investigating what type of problems an algorithm
performs best on, we aim to improve our abilities to select
the right algorithm in the appropriate context.

Consistency Algorithms Considered
We consider two consistency algorithms, PerTuple and All-
Sol(Karakashian et al. 2010; Karakashian 2013). Both algo-
rithms enforce constraint minimality, which guarantees that
every tuple in every relation can be extended to a full solu-
tion to the CSP (Montanari 1974). The importance of mini-
mality was established for knowledge compilation (Gottlob
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2012) and solving difficult CSPs with higher levels of con-
sistency (Karakashian, Woodward, and Choueiry 2013). In
particular, we are interested in applying AllSol and PerTuple
locally to the clusters of a tree decomposition (Geschwen-
der et al. 2013). The performance of the two algorithms vary
widely in practice: Indeed, one algorithm may finish rea-
sonably fast while the other fails to terminate in a given
time threshold. This performance difference makes the al-
gorithms ideal candidates for our configuration study.

Configuration of RBGenerator
We use an algorithm configurator that guides a random CSP
generator to generate instances on which we execute PerTu-
ple and AllSol. After comparing their performances on the
generated instances, the configurator selects new parameters
for the CSP generator in order to influence the performances.
Figure 1 shows the components of the configuration system.
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Figure 1: Operation of the configurator

RBGenerator. We use the random CSP generator RBGen-
erator (Xu et al. 2007), which is based on the model RB
and allows for easy generation of hard satisfiable instances
at the phase transition. RBGenerator uses the following pa-
rameters:

1. k ≥ 2 denotes the arity of the constraints
2. n denotes the number of variables
3. α determines the domain size d = nα of each variable
4. r determines the number m = r · n · ln(n) of constraints

5. δ determines the constraint tightness, t = pcr + δ
1000 ,

where pcr = 1− e−α
r is the location of phase transition

6. forced whether instances are forced satisfiable
7. merged whether constraints of similar scopes are joined
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Sequential Model-based Algorithm Configuration. To
tune RBGenerator’s parameters, we use of the algorithm
configurator “Sequential Model-based Algorithm Configu-
ration” (SMAC) (Hutter, Hoos, and Leyton-Brown 2011).
We give SMAC a list of the input parameters with ranges
and default values. We provide a list of 30 instances (in this
case, random seeds for the RBGenerator). Finally, we give
SMAC a custom algorithm wrapper that runs RBGenerator,
PerTuple, and AllSol. SMAC takes an initial default con-
figuration, performs an algorithm execution, and determines
its performance based on the wrapper output. It iterates the
process, selecting new configurations (based on a continu-
ally improving regression model) and evaluating them.
Algorithm Wrapper. The algorithm wrapper encapsulates
several programs to be run together. Initially, RBGenerator
runs with the parameters provided by SMAC, and generates
a CSP instance on which our two consistency algorithms
PerTuple and AllSol are then executed. The execution times
of PerTuple and AllSol are recorded, and are compared by
taking the base-10 logarithm of their ratio. Taking the loga-
rithm ensures that equal weights are given to fractional val-
ues when the results are averaged in SMAC’s model.

Experimental Results

In our experiments, we evaluate how well SMAC is able
to generate instances that favor a given algorithm. To this
end, we test two cases: those where SMAC is allowed to
adjust all parameters (denoted adjustable size), and those
where SMAC has a restricted set of parameters (denoted
fixed size). For the restricted set of parameters, we fix n
to 16 and α to 1 (i.e., 16 variables each with a domain
size of 16). Thus, we only allow SMAC to control the con-
straints and not the size of the CSP. For each the fixed and
adjustable cases, we generate instances favoring PerTuple
and instances favoring AllSol (for a total of four tests). Each
test is performed with ten different configuration runs, each
with a different SMAC configuration seed. Each configura-
tion ran for four days on a single core of an Intel Xeon E5-
2670 2.60GHz processors and given 3 GB memory.

In all four test cases, the configurator finds parameter
settings that cause one algorithm to significantly outper-
form the other. The average speedup across all 10 seeds for
each test is as follows: adjustable-AllSol: 108, adjustable-
PerTuple: 981, fixed-AllSol: 98, and fixed-PerTuple: 306.
Figure 2 shows the progressive improvement of the
adjustable-PerTuple configuration over time. The x-axis
shows the amount of time configuration has run, while the
y-axis shows ratio of execution times. The ten lines are the
ten different configuration runs, each with a unique seed.

Our approach allowed us to identify the r and δ param-
eters as important for the configuration. We found that low
values of r and δ (fewer, looser constraints) favor PerTuple,
and high values of r and δ (more, tighter constraints) favor
AllSol. To apply this to real-world problems, a measure such
as constrainedness (Gent et al. 1996) may be used. For addi-
tional detail on our experiment and results, see our technical
report (Geschwender, Woodward, and Choueiry 2014).

Figure 2: Improvement of the adjustable-PerTuple configuration.

Conclusions & Future Work
We successfully used configuration on a random CSP gen-
erator to create problem instances favoring PerTuple over
AllSol and vice versa. The ratio of the execution time dif-
ference was in excess of 100. Additionally we have shown
that highly constrained problems favor AllSol and under-
constrained problems favor PerTuple. We intend to use this
information in building an algorithm portfolio. In the future,
we will apply our approach to other algorithms, both for en-
forcing the same and different levels of consistency. Further,
we will use other generators with more configuration param-
eters in order to capture deeper behaviors of the algorithms.
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