
Accelerating SAT Solving by Common Subclause Elimination

Yaowei Yan1, Chris E. Gutierrez2, Jeriah Jn-Charles2, Forrest S. Bao1 and Yuanlin Zhang2

1 Dept. of Electrical & Computer Engineering, University of Akron, Akron, OH, USA
2 Dept. of Computer Science, Texas Tech University, Lubbock, TX, USA

{yy28, fbao5}@uakron.edu, {chris.e.gutierrez, y.zhang}@ttu.edu, jjncharles@hotmail.com

Abstract

Boolean SATisfiability (SAT) is an important problem in AI.
SAT solvers have been effectively used in important indus-
trial applications including automated planning and verifi-
cation. In this paper, we present novel algorithms for fast
SAT solving by employing two common subclause elimina-
tion (CSE) approaches. Our motivation is that modern SAT
solving techniques can be more efficient on CSE-processed
instances. Empirical study shows that CSE can significantly
speed up SAT solving.

Introduction

Boolean SATisfiability (SAT) is a well-known and inten-
sively studied NP-complete problem in Computer Science
and Artificial Intelligence. A SAT problem is a set of clauses
each of which is a set of literals. A subclause is a subset or
subsequence of a clause. In this paper, two subclauses (from
distinct clauses) are called common subclauses if they are
equal (as sets or as sequences). Common subclauses are not
rare. For instance, more than 90% of problems in SAT Com-
petition 2013 contain common subclauses (Table 2).

Inspired by common subexpression elimination research
in programming languages, we mean to replace all occur-
rences of the common subclause by a new variable, and in-
troduce new clauses to represent the equivalence between
the new variable and the common subclause. We assume
that CSE likely has a positive impact on SAT solving, taking
the advantage of SAT solving techniques such as unit prop-
agation (Katsirelos et al. 2013). Consider this SAT prob-
lem: {{a, b, c}, {a, b, d}}, where each letter represents a
Boolean variable. Replacing the common subclause {a, b}
with a new variable e, we get new clauses {{e, c}, {e, d}}
and those resulting from e ↔ a ∨ b: {e,¬a}, {e,¬b} and
{¬e, a, b}. If e is true then there is only one simplified clause
{a, b} left, and similarly when e is false.

In the following of this paper, we propose using CSE in
SAT solving and empirically evaluate how it affects the effi-
ciency of a SAT solver.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CSE Algorithms
We propose two approaches to CSE: frequency based and
LZW based.

Frequency Based CSE
The frequency based CSE is to eliminate the most
frequent common subclauses first and repeat this pro-
cess until there is no common subclause more frequent
than a preset threshold. For example, consider clauses
{{a, b, c}, {a, b, c, d}, {a, b, e}}. {a, b} and {b, c} are both
common subclauses but the former is the most frequent one
and hence is to be replaced first. After eliminating com-
mon subclause {a, b} with new variable f , we have new
clauses {{f, c}, {f, c, d}, {f, e}} and clauses resulting from
f ↔ a∨b. Note that the subclause {b, c} is no longer a com-
mon subclause afterwards and its frequency is now 0. Our
algorithm updates the frequency of the common subclause
after each elimination of a common subclause. To find all
possible common subclauses and their frequencies effec-
tively, we borrow the ideas from frequent item set mining
(also called association rule mining) (Agrawal, Imieliński,
and Swami 1993).

LZW Based CSE
The LZW based CSE employs the techniques of the LZW
compression algorithm to rapidly replace some common
subclauses in a given SAT problem. As a result, the order
of the variables in each clause matters in identifying com-
mon subclauses. Each clause now is defined as a sequence
of literals. A clause c is a common subclause of two clauses
c1 and c2 if c is a subsequence of c1 and c2. For example, the
(ordered) clauses (a, b), (a, b, c), (a, c) have only one com-
mon subclause (a, b). Replacing (a, b) with a new variable
d, we get (d), (d, c), (a, c) and add d↔ a∨ b to form a new
equivalent problem.

Like LZW, a dictionary is used to keep track of subclauses
and codes assigned to subclauses. Unlike in LZW, a sub-
clause is substituted only after being found common (i.e.,
appear in more than one clauses).

Experimental Results
Two benchmarks from SAT competitions were used:

• SAT13: SAT Competition 2013

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

4224



Table 1: SAT Solving Performance Change by CSE

benchmark CSE
approach timeout

instances solved total solving
time shorten
by (%)

instances speedup

before CSE after CSE % solving time shorten by

mean (%) std (%)

3SAT
LZW 15m 60 60 8.07 54.24 11.39 24.59

48h 188 187 −0.40 54.55 7.74 19.06

Freq(2,2) 15m 60 57 5.29 41.04 19.62 28.08
48h 188 188 0.38 51.87 12.06 21.59

SAT13

LZW 15m 163 188 6.68 47.55 47.40 30.38
48h 507 507 1.69 51.81 39.44 34.03

Freq(2,2) 15m 67 76 0.96 58.93 37.48 26.97
48h 302 305 3.59 55.00 29.33 28.30

Freq(3,2) 15m 43 45 21.15 60.61 43.73 20.47
48h 228 225 2.38 57.78 27.70 26.32

• 3SAT: Problems that were explicitly labeled as 3SAT in
SAT Competitions from 2007 to 2013 (to examine CSE
on short clauses)

Two CSE approaches are compared:

1. LZW: LZW-based approach

2. Freq(s, f): Frequency-based approach with size thresh-
old s and frequency threshold f . Only common sub-
clauses containing more than s literals and appearing in
more than f clauses will be replaced. 3SAT problems
cannot be processed by Freq(3, f) for any f .

We focus our experiments on instances containing com-
mon subclauses. They are considered eliminable. Table 2
lists number of eliminable instances found using different
CSE approaches in all 2 benchmarks used. Note that fre-
quency based CSE has less eliminable instances than the
LZW based CSE because of resource limitation (the former
consumes much more CPU time and memory than the lat-
ter).

Table 2: Number of eliminable instances
SAT 3SAT Total

(raw #) (1030) (496) (1526)
LZW 931 496 1427

Freq(2,2) 674 490 1164
Freq(3,2) 471 N/A 471

Results on CSE’s impact to SAT solving are given in Ta-
ble 1. The column “total solving time shorten by (%)” means
the percentage of solving speed increases on all instances
in corresponding benchmark (column “benchmark”) using
a particular CSE approach (column “CSE approach”) un-
der a given time limit (column “time limit per instance”).
Total solving time is shorten by a positive number indi-
cates solving speed increases after CSE. Further analysis on
accelerated instances are reported under banner “instances
speedup”.

With only one exception (LZW on 3SAT with 48hr time
limit), total solving times are reduced on all benchmarks and
all CSE approaches. Even for the exceptional case, more in-
stances (54.55%) are solved faster after CSE. The speedup is
particularly obvious for 15-minute time limit. For example,
when time limit is 15 minutes, Freq(3,2) achieved 21.15%
speedup on SAT13.

For each benchmark in each CSE approach, most in-
stances (percentages given in % column under “instances
speedup” banner of Table 1) are solved faster after CSE.
There are two exceptions: 3SAT-Freq(2, 2) 15-min and
SAT13-LZW 15-min. The good news is that they both have
relatively high overall speedup (5.29% and 6.68%, respec-
tively).

We further look into the speed change happened on
speedup instances. On SAT13, all three CSE approaches un-
der either time limit can solve speedup instances by 27.70%
to 47.40% faster. On 3SAT, these numbers range from
7.74% to 19.62%. Also, standard deviation of speed increase
is moderate, ranging from 19.06% to 28.08%.

Overall speaking, through CSE, total solving time can
be shorten, with more speedup instances than slowdown
instances, and with stable and major speed increase on
speedup instances.

Additional info of this work will be posted at https://sites.
google.com/site/yanyaw00/aaai15

Acknowledgment
Chris Gutierrez and Yuanlin Zhang are partially supported
by NSF grant IIS-1018031.

References
Agrawal, R.; Imieliński, T.; and Swami, A. 1993. Mining associa-
tion rules between sets of items in large databases. In Proceedings
of the 1993 ACM SIGMOD international conference on Manage-
ment of data, SIGMOD’93, 207–216.
Katsirelos, G.; Sabharwal, A.; Samulowitz, H.; Simon, L.; et al.
2013. Resolution and parallelizability: Barriers to the efficient par-
allelization of sat solvers. In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, 481–488.

4225




