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Abstract

Lazy Clause Generation (LCG) solvers dominate the
current constraint programming competitions. These
solvers successfully combine systematic propagation
based search, global constraints and conflict clause
learning from SAT solving into a hybrid approach. My
research project extends the LCG methodology by us-
ing a mix of eager and lazy encodings and a richer set of
constraint decompositions. Global Constraints exhibit a
whole hierarchy of different decomposition into more
basic constraints. In our work we want to take advantage
of such hierarchies and identify criteria on how con-
straints could be decomposed before and during search.

Lazy Clause Generation and Extensions
Boolean Satisfiability Solving (SAT) and finite domain
Constraint Programming (CP) solve hard combinatorial-
structured problems. Pracical SAT solving emerged from the
Model Checking and Verification community and constraint
programming has some of its success in solving scheduling
problems. One attempt to integrate both paradigms into a
hybrid solver came with the idea of LCG solvers by (Ohri-
menko, Stuckey, and Codish 2009). Early LCG systems
collect a clause for each domain filtering of a constraint
propagator which can then be used in SAT-style conflict
clause resolution. The work of (Abı́o and Stuckey 2012;
Abı́o et al. 2013) extends this approach to reactively decom-
pose Pseudo-Boolean constraints lazily during search. If the
number of generate clauses during search exceeds a certain
limit they decompose to a compact encoding using auxiliary
variables. We want to follow up on this strategy and extend
it to other constraints.

Constraint decomposition faces two challenges: Firstly,
the size of the decomposition might be to large. This is espe-
cially true in case of decompositions to conjunctive normal
form (CNF). Encodings of size O(n3) in the domain size of
integer variables might already exceed moderate size restric-
tions. Secondly, the decomposition loses the global view on
the constraint and this might hinder propagation, i.e. not all
inferences can be found by the filtering algorithms on the de-
composed constraints. It is not surprising that larger decom-
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positions tend to enforce higher consistency (more propa-
gation). Thus, the key to a good decomposition is a good
trade-off between size and consistency.

Contrary to the constraint decomposition approach we
have the space-efficient propagation algorithms that often
achieve higher consistency than a decomposition. Especially
when domains are large, eager CNF compilation often ex-
ceed reasonable size restrictions. The drawback with pure
propagation is the lack of auxiliary variables that often bene-
fit the learning mechanism. To find the right balance between
global constraint propagation and decomposition we want to
take advantage of a fine-grained view on different levels of
decomposition. Constraints can be decomposed into other
simpler global constraints that maintain a middle way of rep-
resentation size and consistency. Furthermore, such exten-
sive analysis will be a fruitful source for auxiliary variables
for learning beneficial clauses.

The lazy decomposition approach profits from extensive
knowledge in constraint decompositions and SAT encod-
ings. The next step in this direction of research is to tar-
get a healthy mix of global constraint propagation, expla-
nations for conflict clause learning and decompositions into
both non-clausal constraints and CNF. In the next section we
will show such a hierarchy by listing decompositions of the
ALL-DIFFERENT constraint. In addition to decomposition
hierarchies, we will consider various criteria to support the
decision of when to decompose and when to propagate such
constraints (due to space limitation not mentioned in this ex-
tended abstract). We coin the name Just in Time Hierarchical
Constraint Decomposition (JIT-HCD) for this methodology.

A Concrete Example: ALL-DIFFERENT
The constraint ALL-DIFFERENT([x1, . . . xn]) enforces that
the values taken by the integer variables are all different, i.e.
that xi 6= xj for i < j. This is a well studied constraint in the
CP community and many filtering algorithms and decompo-
sitions are known. In this section we describe the hierarchy
of ALL-DIFFERENT decompositions.

The standard domain representation in LCG solvers uses
the Boolean variables [[x = v]] and [[x ≥ v]] for each value
v ∈ D(x) in the domain of variable x, with [[x ≤ v]] ⇔
¬[[x ≥ v + 1]]. Let D be union of all domains.

The following decompositions are direct translations of
the definition of ALL-DIFFERENT:
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BinIn: Binary inequalities: xi 6= xj for i < j.

BinCl: Binary clauses: ¬[[xi = v]] ∨ ¬[[xj = v]] for i < j
and v ∈ D(xi) ∩D(xj).

Card: Set of cardinalities:
∑n

i=1[[xi = v]] ≤ 1 for v ∈
D. In the special case of |D| = n the equation becomes∑n

i=1[[xi = v]] = 1.

Log: Without going into details, this encoding uses the bit
representation of the values and specifies that each pair of
variables have to differ in at least one bit of their values.

The following decompositions introduce auxiliary vari-
ables (Boolean and Integer) and achieve a higher consis-
tency on ALL-DIFFERENT.

Feydy: Let cv ∈ {0, 1} with v ∈ V denote if value v is
taken by one of the variables, i.e. cv =

∑n
i=1[[x = v]] for

all v ∈ V . Then we can decompose to a set of linear equa-
tions as in (Feydy and Stuckey 2009) by further introduc-
ing counter variables sv ∈ V , with sv = sv−1 + cv . The
set of equations sv =

∑n
i=1[[x ≤ v]] enforces a weaker

form of bounds consistency.

Bounds: Let Ailu be auxiliary Boolean variables identify-
ing if xi ∈ [l, u], which can be encoded as Ailu ⇔
([[xi ≥ l]] ∧ ¬[[xi ≥ u + 1]]). The linear inequalities∑n

i=1 Ailu ≤ u− l + 1 will enforce bounds consistency,
l < u and l, u ∈ V . See (Bessiere et al. 2009) for details.

The CARDINALITY and ATMOSTONE constraints used in
the decompositions above can be translated to CNF in var-
ious ways. Without going into details, we denote common
translations as Sort, Count and Split in this brief analysis.

Propagators on ALL-DIFFERENT that achieve a higher
consistency can be explained by Hall sets. These are sets
of variables that are known only to take values from a set
(interval) of values that has the same size, i.e. these values
are blocked for other variables. The following clauses can
be extracted from such an explanation based propagator, see
(Downing, Feydy, and Stuckey 2012) for details:

Hall-I: Given a Hall-set H with the value interval [l . . . u],
an increased lower bound for xi 6∈ H can be explained
by
(
[[xi ≥ l]] ∧

∧
h∈H([[xh ≥ l]] ∧ [[xh ≤ u]])

)
⇒ [[xi ≥

u+ 1]].

Hall-S: Likewise if a Hall-set H with values S
is found, the propagation can be explained by(∧

h∈H,v∈V \S [[xh 6= v]]
)
⇒ [[xi 6= j]].

Figure 1 visualizes a possible hierarchy of decomposi-
tions of ALL-DIFFERENT that were presented in this sec-
tion. We choose to outline the graph in three levels where
the first is the constraint itself, the second are different de-
compositions in linear constraints, and on the bottom are de-
compositions in propositional clauses. An Arc corresponds
to a choice in a decomposition.

Preliminary Results and Next Steps
Preliminary work for this PhD has been in eager SAT encod-
ings for Pseudo Boolean and SEQUENCE constraint (Abı́o et
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Figure 1: Hierarchy of ALL-DIFFERENT constraint decom-
positions.

al. 2012; Artigues et al. 2014). Currently, the focus is on de-
compositions of ALL-DIFFERENT to extend the LCG solver
CHUFFED to take advantage of the JIT-HCD approach. We
plan to contribute strategies on when and how to decompose
ALL-DIFFERENT using the rich hierarchy available as de-
scribed in the previous section and possibly extend this to
other global constraints.
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