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Abstract
In the Hierarchical Temporal Memory (HTM) paradigm
the effect of overlap between inputs on the activation
of columns in the spatial pooler is studied. Numerical
results suggest that similar inputs are represented by
similar sets of columns and dissimilar inputs are rep-
resented by dissimilar sets of columns. It is shown that
the spatial pooler produces these results under certain
conditions for the connectivity and proximal thresholds
at initialization. Qualitative arguments about the learn-
ing dynamics of the spatial pooler are then discussed.

Introduction
Inspired by the importance of time-dependent behavior and
prediction in the brain, Hierarchical Temporal Memory
(HTM) (Hawkins, Ahmad, and Dubinsky 2011), a machine
learning paradigm, enables real-time learning of sequences
and demonstrates predictive capabilities. Prior works have
explored the use of HTM for pattern recognition (Mal-
toni 2011), speech-based learning tasks (van Doremalen and
Boves 2008), and stock trading (Gabrielsson, Konig, and Jo-
hansson 2013). However, the mathematics of HTM has not
yet been studied widely.

As outlined in the HTM white paper (Hawkins, Ahmad,
and Dubinsky 2011), the spatial pooler, the first phase of
HTM, demonstrates efficient dimensionality reduction and
adaptation. The spatial pooler comprises a set of columns,
analogous to biological cortical columns, the fundamental
units of computation in the neocortex (Mountcastle 1997).
Each column has a set of synapses. Each synapse has an as-
sociated permanence value, the magnitude of which decides
whether the synapse is connected.

The spatial pooler is responsible for converting each in-
put into an internal representation called a sparse distributed
representation (SDR), which is a set of columns that are ac-
tivated by the input vector. In order to group similar inputs
and distinguish between differing inputs, the spatial pooler
should exhibit the following behavior: similar inputs map
to similar SDR’s, and dissimilar inputs map to dissimilar
SDR’s. The quality of these SDR’s is critical to the later pre-
dictive and temporal HTM phases, which predict and recog-
nize sequences of SDR’s.
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We consider inputs to be either overlapping or non-
overlapping. We use “overlapping” to describe inputs whose
binary representations share at least one on-bit and “non-
overlapping” to describe inputs whose binary representa-
tions share no on-bits. Here we study the specific initial con-
ditions for parameters to pool overlapping inputs into sim-
ilar sets of active columns and non-overlapping inputs into
dissimilar sets of active columns.

Formulation / Notation
We use the notation below to describe the status and behav-
ior of the spatial pooler. In our formulation synaptic activity
for columns is stored in a permanence matrix, P . Each row
of P is a vector of permanence values associated with a cer-
tain column in the spatial pooler. For example, the value at
Pij denotes the strength of the connection between the i-th
column and the j-th bit of the binary input vector. Another
matrix called the connectivity matrix is a binary version of
P . This connectivity matrix denoted by C can be described
by C = P > τC , where τC is the synaptic threshold. This
notation indicates entry Cij is set to 1 if Pij > τC and 0
otherwise. We use Cj , the j-th row of C, to denote the con-
nectivity of the j-th column in the spatial pooler.

If we consider the spatial pooler to be a function that maps
input vectors to SDR’s, the function can be formally charac-
terized as the following:

ov = Cx

c = ov > τo

where x is the input vector, ov is the vector of overlap scores
between the input x and C, and τo is the proximal threshold.
Here c is the SDR of x, and the proximal threshold, τo, de-
termines whether there is sufficient overlap between an input
x and a particular column Cj to activate Cj .

Initialization
From our numerical experiments we find the initialization
of parameters influences the learning dynamics of the spa-
tial pooler once inputs are introduced. Therefore, it is use-
ful to find potential restrictions on the parameters upon
initialization so that certain intended behavior is achieved.
One intended behavior of the spatial pooler is to map non-
overlapping inputs to distinct columns. Using probabilistic
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methods we can derive a relationship between the connectiv-
ity threshold, τC , the proximal threshold, τo, and the number
of on-bits, d, in the input vector.

Assume we have two non-overlapping inputs, xa and xb.
Assume xa activates column Cj , i.e. ovac is greater than τo,
and assume all inputs are equally likely. Without loss of gen-
erality, we assume xa = [1, . . . , 1, 0, . . . , 0]. Denote these
assumptions as event Z. Using the linearity of expectation,
we compute the expected value,En, for the overlap between
xb and Cj given Z. This gives:

En = E[
L∑

k=1

xbkCjk|Z] =
L∑

k=1

P[xbk = 1, Cjk = 1|Z]

=
L∑

k=d+1

P[xbk = 1, Cjk = 1|Z].

Using Bayes’ theorem we compute:

En =
L∑

k=d+1

P[xbk = 1|Cjk = 1, Z]× P[Cjk = 1|Z].

Considering all possible xb, the probability for each entry of
xb to be 1 is d

L−d resulting in:

En =
L∑

k=d+1

d

L− d
× P[Cjk = 1|Z] = d× P[Cjk = 1|Z].

The threshold for connectivity is τC so the expected number
of 1’s within a row of the connectivity matrix is L(1− τC).
The number of 1’s in the first d entries of column Cj is
equal to ovac because we assumed xa = [1, . . . , 1, 0, . . . , 0].
Therefore, the number of 1’s left for column Cj to overlap
with xb is equal to L(1− τC)− ovac. This results in:

En = d× L(1− τC)− ovac

L− d
.

The proximal threshold τo can provide a loose upper bound
for En to ensure on average xb will not activate Cj . We can
substitute ovac by τo, since xb should not activateCj as long
as xa activates Cj . We then find:

d× L(1− τC)− τo
L− d

≤ τo

1− τC ≤
1

d
τo.

This preceding relationship provides guidelines for the ini-
tialization of τC and τo that on average will prohibit input
xb from activating column Cj . We can also perform a sim-
ilar analysis for two overlapping inputs to obtain numerical
relationships between parameters upon initialization.

Incremental learning
Moving beyond the initialization phase, we can make obser-
vations about the interaction between non-overlapping in-
puts and the spatial pooler during the learning phase. If the
parameters are initialized such that each non-overlapping

input activates a distinct column, we claim this behavior
will continue during the learning phase. Suppose input xa
activates column Cj and no other input activates Cj ini-
tially. Once learning starts, xa will readily activate Cj , and
ovac will increase incrementally. However, another non-
overlapping input xb will not activate Cj . Thus, xa will con-
tinue to activateCj during the learning phase, while all other
inputs will have no effect on Cj . We can extend this reason-
ing to all other non-overlapping inputs and columns to en-
sure non-overlapping inputs activate distinct columns.

We can also make qualitative arguments about the behav-
ior of overlapping inputs during the learning phase. Let us
examine a specific example for two overlapping inputs. Sup-
pose we have two inputs, xa and xb, which have sufficient
overlap to activate the same columnCj , and suppose the val-
ues of P corresponding to this column are not so close to the
connectivity threshold, τC , that one update of P will result
in a change of C. If xa and xb are the only inputs and they
are presented to the spatial pooler the same number of times
in an alternating fashion,Cj will reinforce the common parts
of xa and xb. During learning when xa activates Cj , the en-
tries in P that are associated with Cj and correspond to the
on-bits in xa will be incremented, while the entries of P that
are associated with Cj and are unique to xb will be decre-
mented. Similar changes in P will occur when xb activates
Cj . The entries of P corresponding to the shared on-bits of
xa and xb will be incremented twice, while the entries of P
associated with the on-bits that are unique to either xa or xb
will be incremented for one input and decremented for the
other. This results in the reinforcement of the common parts
of xa and xb. Under these assumptions we see a mechanism
for how the spatial pooler groups similar inputs.

Summary
We show that with careful initialization of parameters the
spatial pooler maps distinct inputs into distinct SDR’s as
indicated by the column activity. Assuming appropriate pa-
rameter selection, we make observations about the learning
dynamics for both non-overlapping and overlapping inputs.
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