
Graphical Representation of
Assumption-Based Argumentation

Claudia Schulz
claudia.schulz@imperial.ac.uk

Department of Computing
Imperial College London
London SW7 2AZ, UK

Abstract

Since Assumption-Based Argumentation (ABA) was intro-
duced in the nineties, the structure and semantics of an ABA
framework have been studied exclusively in logical terms
without any graphical representation. Here, we show how an
ABA framework and its complete semantics can be displayed
in a graph, clarifying the structure of the ABA framework as
well as the resulting complete assumption labellings. Further-
more, we show that such an ABA graph can be used to rep-
resent the structure and semantics of a logic program (LP),
based on the correspondence between the semantics of a LP
and an ABA framework encoding this LP.

1 Introduction and Background
Assumption-Based Argumentation (ABA) (Bondarenko et
al. 1997) provides a way to represent knowledge in a
machine-readable form and to reason about it in a human-
understandable way, namely in argumentative terms. In an
ABA framework, knowledge is represented as a set of rules
made of atoms and default elements called assumptions,
which are assumed to be true as long as the contrary can-
not be proven to hold.
Example 1. Consider the ABA frameworkABAwithR the
set of ABA rules, A the set of assumptions, and α denoting
the contrary of an assumption α ∈ A:
• R = {k ← π; p← κ; r ← ρ; r ← ρ, κ}
• A = {κ, π, ρ}; κ = k; π = p; ρ = r

Reasoning in ABA is based on the concepts of derivation
of a conclusion from a set of assumptions by applying the
rules, and attack of an assumption α by a set of assumptions
deriving the conclusion α, i.e. deriving the contrary of α.
Example 2. InABA, {π} (and any superset thereof) attacks
κ because there is a derivation for k from {π} and k is the
contrary of κ. Furthermore, {κ} (and any superset thereof)
attacks π, and {ρ} (and any superset thereof) attacks ρ.

The semantics of an ABA framework can then be deter-
mined by assigning one of the labels IN, OUT, or UNDEC to
every assumption, where the label of an assumption depends
on the label of the assumptions in attacking sets of assump-
tions (Schulz and Toni 2014). We are here focussing on the

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complete semantics: A labelling LabAsm is a complete as-
sumption labelling iff for each assumption α it holds that:

• if LabAsm(α) = IN then each set of assumptions attack-
ing α contains some β such that LabAsm(β) = OUT;

• if LabAsm(α) = OUT then there exists a set of assump-
tions AP attacking α such that AP ⊆ IN(LabAsm);

• if LabAsm(α) = UNDEC then each set of assumptions
attacking α contains some β such that LabAsm(β) 6= IN,
and there exists a set of assumptionsAP attacking α such
that AP ∩ OUT(LabAsm) = ∅.

Example 3. ABA has three complete assumption la-
bellings:

• IN(LabAsm1) = {κ}, OUT(LabAsm1) = {π},
UNDEC(LabAsm1) = {ρ};

• IN(LabAsm2) = {π}, OUT(LabAsm2) = {κ},
UNDEC(LabAsm2) = {ρ};

• IN(LabAsm3) = ∅, OUT(LabAsm3) = ∅,
UNDEC(LabAsm3) = {κ, π, ρ}.
Determining the complete assumption labellings of an

ABA framework is not easy for humans as it involves con-
sidering all sets of assumptions and all attacks between
them. We show how an ABA framework can be represented
graphically, which facilitates to understand the structure of
an ABA framework and to determine its complete assump-
tion labellings.

2 ABA graphs
Given that the ABA semantics are based on considering all
attacks between all sets of assumptions, the most intuitive
representation of an ABA framework is a graph with all sets
of assumptions as nodes, and edges between them indicating
attacks, as illustrated in Fig. 1. However, the large amount
of sets of assumptions and attacks makes this graph rather
complicated and unclear.

Thus, a more useful representation only displays
argument-supporting sets of assumptions, i.e. sets contain-
ing only those assumptions necessary for the derivation of
a conclusion, and attacks between them. This simplified
representation is equivalent to the previous one, since it
has been proven that determining complete assumption la-
bellings can be equivalently done considering all or only

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

4204



Figure 1: Attacks between all sets of assumption in ABA
along with the three complete assumption labellings (see Ex-
ample 3), indicated by the three differently coloured letters
above the singleton sets, where “U” is shorthand for UNDEC.

Figure 2: Attacks between argument-supporting sets of as-
sumption in ABA and its complete assumption labellings.

argument-supporting sets of assumptions (Schulz and Toni
2015). As shown in Fig. 2, the simplified graph is consider-
ably clearer than the previous one (compare Fig. 1).

Fig. 2 illustrates that, for example, in order to determine
the label of π only {κ} and {κ, ρ} have to be examined,
instead of also considering {κ, π} and {κ, π, ρ} (see Fig. 1).

3 ABA graphs for Logic Programs
Another technique for representing knowledge and rea-
soning about it in an efficient but arguably less human-
understandable way is logic programming. Similarly to
ABA a logic program (LP) is a set of rules made of atoms
and default elements called negation-as-failure (NAF) lit-
erals, which are assumed to be true as long as their com-
plementary atom cannot be proven to hold. The semantics
of a LP are defined as tuples of true (T ) and false (F)
atoms which form a fixpoint of a function altering the ini-
tial LP (Baral and Gelfond 1994). Since this fixpoint defi-
nition can be difficult to retrace for humans, it is helpful to
have a graphical representation of the structure of the LP.
Two existing approaches are Extended Dependency Graphs,
where every node represents the head of one rule, and Rule
Graphs, where every node represents an atom (Costantini
and Provetti 2010). We suggest a new approach where every
node represents a possible derivation of an atom, displayed
as the set of NAF literals necessary for this derivation and
based on our ABA graphs.

Due to the similarity of representing knowledge in ABA
and logic programming, it is straightforward to encode a LP
in an ABA framework, where the ABA rules are formed by
the LP and the ABA assumptions are formed by NAF literals
(Bondarenko et al. 1997). Despite the different definitions of
the semantics, it turns out that, for example, the 3-valued sta-
ble models of a LP (Przymusinski 1989) coincide with the
complete assumption labellings of the encoding ABA frame-

work (Schulz and Toni 2015). More precisely, an atom a is
true (false) in a 3-valued stable model iff the NAF literal
not a is labelled OUT (IN resp.) in the corresponding com-
plete assumption labelling.
Example 4. Let P be the following logic program:
k ← not p ; p← not k ; r ← not r ; r ← not r, not k.
P has three 3-valued stable models: 〈T1 = {p}, F1 = {k}〉,
〈T2 = {k}, F2 = {p}〉, 〈T3 = ∅, F3 = ∅〉. P has the same
structure asR inABA (Example 1), where notk substitutes
κ, not p substitutes π, and not r substitutes ρ, resulting in
a direct correspondence between the 3-valued stable models
of P and the complete assumption labellings of ABA.

Due to this correspondence, an ABA graph can represent
the structure of a LP and its 3-valued stable models in terms
of the encoding ABA framework. Fig. 3 displays the graphi-
cal representation ofP in terms of the encoding ABA frame-
work (structurally equivalent to ABA). Such a graph clari-
fies the structure of the respective LP, in particular regarding
dependencies between literals. The graph can also be help-
ful to determine the 3-valued stable models of a LP in terms
of complete assumption labellings.

Figure 3: Graphical representation of P and its three 3-
valued stable models (Example 4).

4 Conclusion
We introduced a graphical representation of the structure
of ABA frameworks, which can help humans determine the
complete assumption labellings of this framework. Further-
more, these graphs can be used as a representation of LPs by
encoding a LP in an ABA framework and can help humans
to determine the 3-valued stable models of a LP.

References
Baral, C., and Gelfond, M. 1994. Logic programming and
knowledge representation. The Journal of LP.
Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997.
An abstract, argumentation-theoretic approach to default
reasoning. AI.
Costantini, S., and Provetti, A. 2010. Graph represen-
tations of logic programs: properties and comparison. In
LANMR’10.
Przymusinski, T. 1989. Every logic program has a natu-
ral stratification and an iterated least fixed point model. In
PODS’89.
Schulz, C., and Toni, F. 2014. Complete assumption la-
bellings. In COMMA’14.
Schulz, C., and Toni, F. 2015. Logic programming in
assumption-based argumentation revisited – semantics and
graphical representation. In AAAI’15.

4205




