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Abstract

We introduce an active learning framework designed to
train classification models which use informative pro-
jections. Our approach works with the obtained low-
dimensional models in finding unlabeled data for anno-
tation by experts. The advantage of our approach is that
the labeling effort is expended mainly on samples which
benefit models from the considered hypothesis class.
This results in an improved learning rate over standard
selection criteria for data from the clinical domain.

Introduction
Many applications of decision support systems require that
their users comprehend the labeling suggestions. We have
recently developed a method, called Regression for Infor-
mative Projection Retrieval (RIPR) (Fiterau and Dubrawski
2012), which learns compact models consisting of infor-
mative low-dimensional axis-aligned projections. The RIPR
models reveal predictive structure in data, provided that it
exists. We introduce an approach which recovers informa-
tive projections in the more challenging active learning set-
ting. Our innovation is the ActiveRIPR framework, which
enables active selection of yet unlabeled data which specifi-
cally targets the construction of accurate RIPR models.

Our framework selects samples to be labeled based on
the relevant dimensions of the current classification model,
trained on previously annotated data. The labeling effort is
thus shifted to labeling samples that specifically benefit the
low-dimensional models of our chosen hypothesis class. We
enhance standard active selection criteria using the informa-
tion encapsulated by the trained model. Thus, high accuracy
is achieved faster than with standard sampling techniques,
reducing the annotation effort exerted by domain experts.
An added benefit is that the informative projections high-
light structure that experts should be aware of and are avail-
able during labeling in addition to the full-featured data.

Despite the popularity of active learning, there is little
research in the direction of using it for feature selection.
Relevant contributions include (Bilgic 2012), introducing a
methods which performs PCA on the data during the query
selection process, selecting the features with the largest
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eigenvalues and performing L2 regularization on them. In
their setup, unlike here, the allowed number of features is in-
creased as more samples become available. The method of
(Raghavan, Madani, and Jones 2006) directly incorporates
human feedback in the feature selection procedure through
feature weighting, while (Rashidi and Cook 2011) introduce
a method that reduces the effort needed for labeling by se-
lecting, at each iteration, all samples matching a rule.

Active Informative Projection Recovery
Given a dataset {(x1, y1), . . . , (xn, yn)} ∈ {X ×{0, 1}}n, a
RIPR model contains a set Π of subspaces of X , where each
subspace is a group of up to d features. A classifier τi from
the hypothesis space T is trained on each projection πi. The
model also contains a selection function g which matches a
point x ∈ X to the projection/discriminator pair with which
this point will be classified. The dimensionality d of the sub-
spaces on which the classifiers in the ensemble are trained
depends on the application. Typically d ≤ 3 because of the
requirement that human users must understand the classifi-
cation process. The notation π(x) refers to the projection of
the point x onto the subspace π while τ(π(x)) represents the
predicted label for x. The RIPR model class is:

M = {Π = {π; π ∈ Π, |π| ≤ d},
τ = {τ ; τi ∈ T , τi : πi(X )→ Y ∀i = 1 . . . |Π|},
g ∈ {f : X → {1 . . . |Π|}} } . (1)

Active learning iteratively selects samples for labeling un-
til the model meets some accuracy criteria. Assume that,
at iteration k, the samples Xk

` are labeled as Y k` and the
samples Xk

u are available for labeling. Also let the RIPR
model built so far be Mk, with its components Πk, τk and
gk. The problem of selecting samples for informative pro-
jection recovery is reduced to finding a scoring function
s : M × X → R, used to select the next sample to be
labeled:

xk+1 = arg min
x∈Xk

u

s(Mk, x)

The expected error of a model Mk = {Πk, τk, gk} is

Err(Mk) = Ex∈X [I(τkgk(x)(π
k
gk(x)(x)) 6= y)]

We use the notation Mk
s to refer to a model obtained after

k iterations of labeling, using the scoring function s. The
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aim is to pick the query samples adequately, such that the
training error decreases (or at least not increases) with each
iteration: Err(Mk+1

s ) ≤ Err(Mk
s ). Given the maximum

acceptable error ε, and a set S of scoring functions, selecting
the optimal strategy can be expressed as follows:

s∗ = arg min
s∈S

min
k
{k s.t. Err(Mk

s ) ≤ ε} (2)

ActiveRIPR starts by requesting labels of a set of r0 ran-
domly selected samples, building a RIPR model. The stan-
dard selection criteria are adapted to RIPR models. The un-
certainty sampling score simply considers the lowest condi-
tional entropy on the projections of the model Mk

uncrt :

suncrt(x) = min
π∈Πk

uncrt ,τ∈τk
ĥ(τ(π(x))|π(x)) (3)

where ĥ denotes the conditional entropy estimator for a label
given a subset of the features and ŷ(x) is the prediction:

gk(x) := arg min
(π,τ)∈(Πk,τk)

ĥ(τ(π(x))|π(x)); ŷ(x) := τkgk(x)(x)

Query by committee Mk
qbc is simply performed by com-

paring the labels assigned by each of the classifiers in τkqbc:

sqbc(x) = max
τi,τj∈τk

qbc

I(τi(πi(x)) 6= τj(πj(x))) (4)

In order to sample according to the information gain crite-
rion, we use the notation Ĥk

X0,Y0
(X1) to represent the esti-

mated conditional entropy of the samples X1 given the sam-
plesX0 and their labels Y0. LetXk

`,ig be the labeled samples
by and Xk

u,ig the unlabeled ones. The InfoGain score is:

∀x ∈ Xk
u,ig , sig(x) = Ĥk

X`,Y`
(Xk

u,ig)

− p0Ĥ
k
X`∪{x},Y`∪{0}(X

k
u,ig)− p1Ĥ

k
X`∪{x},Y`∪{1}(X

k
u,ig)

Selecting samples with high uncertainty makes sense
when there are aspects of the data not yet learned, however,
once the informative projections have been discovered, se-
lecting samples with high uncertainty often leads to the se-
lection of purely noisy samples. In this case, selecting the
data for which the classification is the most confident im-
proves the model. The score for this query selection criteria
is simply the opposite of the uncertainty sampling score:

smc(x) = 1− min
π∈Πk

mc,τ∈τk
mc

ĥ(τ(π(x))|π(x)).

Experimental Results
The set of synthetic data used in our experiments has 10 fea-
tures and contains q = 3 batches of data points, each made
classifiable with high accuracy using one of the available 2-
dimensional subspaces (x1

k, x
2
k) with k ∈ {1 . . . q}. The data

in batch k also have the property that x1
k > tk, where tk is

a constant. We also add points that cannot be classified us-
ing any low-dimensional models as their labels are assigned
randomly. The curves in Figure 1 are averaged over twenty
executions of the algorithm. The InfoGain score consistently
outperforms the alternatives, followed by the MC score.

Figure 1: ActiveRIPR on artificial and real data.

We have also used ActiveRIPR to filter out alerts com-
ing from a cardio-respiratory monitoring system, which col-
lects multiple vital signs indicative of the health status of pa-
tients. The alerts, each associated to a vital sign, are issued
whenever some form of instability requires attention, how-
ever, a substantial fraction of these are triggered by malfunc-
tions or inaccuracies of the sensing equipment (artifacts).
We extracted a total of 50 features, 800 labeled samples and
roughly 8000 unlabeled ones. We use ActiveRIPR to clas-
sify oxygen saturation alerts, treating the existing labeled
data as the pool of samples available for active learning. We
performed 10-fold cross validation, training the ActiveRIPR
model on 90% of the samples and using the remainder to
calculate the learning curve shown in Figure 1 (right). Info-
Gain once again outperforms the rest, with accuracy of 0.88
achievable by labeling less than 25% of the total samples.
The accuracy decreases because the useful samples have
been expended and the samples are not, in fact, iid.

We also used ActiveRIPR with InfoGain sampling to clas-
sify blood pressure alerts. This time, we used other classi-
fiers with uncertainty sampling. The table presents the mean
leave-one-out accuracy of after 20, 50 and 75 labels. Ac-
tiveRIPR performs well, despite using only 6 features.

Samples K-nn K-SVM RF ActiveRIPR
20 0.61 0.64 0.65 0.65
50 0.58 0.66 0.71 0.70
75 0.6 0.63 0.71 0.75

Table 1: Active learning for blood pressure alerts

To summarize, we introduced ActiveRIPR, a method for
active learning with feature selection, which improves the
learning rates of clinical alert classification while maintain-
ing compact, user-friendly models.
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