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Abstract
In many applications, training data is provided in the
form of related datasets obtained from several sources,
which typically affects the sample distribution. The
learned classification models, which are expected to
perform well on similar data coming from new sources,
often suffer due to bias introduced by what we call ‘spu-
rious’ samples – those due to source characteristics and
not representative of any other part of the data. As stan-
dard outlier detection and robust classification usually
fall short of determining groups of spurious samples,
we propose a procedure which identifies the common
structure across datasets by minimizing a multi-dataset
divergence metric, increasing accuracy for new datasets.

Problem statement
Often, the data available for learning is collected from dif-
ferent sources, making it likely that the differences between
these groups break typical assumptions such as the samples
being independent and identically distributed. In general,
when data is collected from different sources, the data inher-
its idiosyncrasies of its source - for instance, in an intensive
care environment, what should be considered alarming vital
measurements may not be the same for all patients. We will
refer to samples which are specific to the collection source
as ‘spurious’, as they are not representative of data for which
the model will be used.

The focus of this paper is the identification and removal
of spurious samples from related training sets collected from
multiple sources, with the objective of improving model per-
formance on data from sources yet unobserved, under the
assumption that the majority of samples come from a distri-
bution common across all sources. This problem is an arises
in a multitude of scenarios. One example involves building a
predictive clinical model meant to be applied to all patients
rather than training new models for every new patient.

In practice, we observe that a superior training set can
be constructed using the most representative samples across
datasets, by simply withholding groups of dataset-specific
samples that are substantially different from the common
distribution. We introduce a ‘clipping’ procedure which re-
moves samples from a dataset such that a model learned on
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it is more representative of the other available datasets. The
‘clipped model’ we obtain has improved accuracy compared
to the standard model trained on all the data.

Assume the training data is given in the form of N
datasets, each coming from a different source:Xi ∈ Rni×m,
Yi ∈ {0, 1}ni , where i ∈ {1 . . . N}. We will refer to the rth
sample of dataset i as (xi,r, yi,r). Each sample is drawn from
a distribution pi as follows:

pi(x, y) =

{
p0(x, y) with prob. q0i (y)

p1i (x, y) with prob. 1− q0i (y)
(1)

The distribution p0 is common to all datasets, whereas the
distributions p1i for i ∈ {1 . . . N} are responsible for the
spurious samples. If the sample distribution was identical
across datasets, then q0i (y) = 1, that is, there would be no
spurious samples. By removing the spurious samples from
the distributions p1i (x, y), we have the opportunity to im-
prove classification accuracy on samples drawn from p0. We
use the notation (X̄i, Ȳi) to identify only the samples of
dataset i which belong to the common distribution p0. Con-
sider two models from hypothesis class H, h̄ and h, where
h̄ is learned from training data sampled only from distribu-
tion p0 and h is learned from training data sampled from
all distributions present. Within the previously-established
framework, we have that, for a test set (Xt, Yt) ∼ p0:

mean(I[h̄(Xt) 6= Yt]) ≤ mean(I[h(Xt) 6= Yt]) (2)

The key notion of considering the source of each outlier
sets our works apart from standard outlier removal tech-
niques such as Robust Mahalanobis Distance-based detec-
tion, Local Outlier Factor (Breunig et al. 2000) and Local
Reconstructive Weights (Onderwater 2010). Some research
does focus on leveraging different training sets, for instance
Zou et al. (2013) proposed using multiple data sets to im-
prove performance of HMMs in contrastive learning. Lee
et al. (2013) recovered underlying structure, assuming the
presence of several samples generated from the same under-
lying distributions with different mixing weights. However,
our method is designed to work under more general settings.

Spurious sample removal procedure
Our approach builds on the intuitive use of density estima-
tion in outlier detection, while using the information pro-
vided by simultaneously analyzing multiple data sets. The
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objective is to find outliers that form a structure in data and
that negatively impact decision boundary placement when
training a model. We illustrate the simplest example using
two data sets and later generalize to arbitrarily large number
of sets. At each iteration of the procedure, we remove the
‘most spurious’ sample from the entire training set. To quan-
tify spuriousness, we introduce a divergence based cost:

Dglobal =
N∑
i=1

N∑
j=1

D(Xi||Xj), (3)

where D is some divergence estimator and Dglobal is global
divergence. Thus, our goal can be restated as minimizing
global divergence, We chose the Renyi estimator for pur-
poses of consistency, unless otherwise noted.

Renyi Dα(P ||Q) =
1

α− 1
log

n∑
i=1

pαi q
1−α
i (4)

Dα is strictly non-negative for α > 0 and minimized when
P = Q. Spurious samples misalign P and Q, thus samples
with a large contribution to Dα are more likely to be spuri-
ous. If only the common structure remains, then we will not
be able to improve Dα(P ||Q).

Experimental Results
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Figure 1: Spurious samples (circled in blue) removed in the
training sets (top row) to retrieve the common structure. Test
set accuracy during spurious sample removal (bottom right).

The artificial data sets in Fig. 1 illustrate how spurious
samples negatively affect the placement of a linear SVM
decision boundary for a binary classification task. We con-
sider an oracle model trained on samples from the common
distribution only (no spurious points). On the other hand,
there is the baseline model, which is the result of training a
linear SVM on all the data including all spurious samples.
The presence of spurious samples shifts this linear decision
boundary slightly, thus, the baseline divides the classes in a
way which misclassifies some samples from the default dis-
tribution, decreasing the accuracy compared to the oracle.

We trained a model after each iteration of the greedy spu-
rious sample removal to illustrate its effect. Then, we boot-
strapped to entire process to obtain an average accuracy and

a 95% confidence interval, shown in Fig 1. We found that, as
we removed more samples, the clipped model performance
approached the oracle, with tighter confidence intervals, thus
the removal of spurious samples is indeed beneficial.

Now, let us consider a nuclear threat detection system,
built for determining whether a vehicle that passes through
customs emits signatures consistent with radioactive ma-
terial. In Figure 2, we depict the most informative 2D
projection, where a non-trivial density mismatch manifests
for datasets generated with different simulation parameters.
Threats are shown in red, normal samples shown in green.

Figure 2: Nuclear threat datasets DS1 (left) and DS2 (right).

Figure 2 shows the blue circled spurious samples re-
moved. The baseline we used (M0) is trained on all data.
Our approach produces a clipped version of DS1 which we
added to DS2 to obtain the alternative model M1. We test
M0 and M1 on all other datasets. Additionally, we enhance
our approach with the use of a gating function. That is, the
model to be used in classification is determined by picking
the model (M0 or M1) with the smallest Renyi divergence
to the test set. We refer to this gated model as M2. The jus-
tification for this is that some testing datasets can have spu-
rious samples that are close enough to the ones in the orig-
inal datasets, so it makes sense to use these samples, when
beneficial. The gated version outperforms the other two as
it benefits from sample removal when the incoming datasets
do not have spurious samples, as shown in Table 1.

Table 1: Comparison of accuracy for a model using all the
data (M0), a clipped model (M1) and the gated model (M2)

Sets resembling DS1 Sets resembling DS2
Acc M0 57.3692 89.4015
Acc M1 57.3197 89.4125
Acc M2 57.3692 89.4125
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