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Abstract

We consider the problem of identifying discrepancies
between training and test data which are responsible for
the reduced performance of a classification system. In-
tended for use when data acquisition is an iterative pro-
cess controlled by domain experts, our method exposes
insufficiencies of training data and presents them in a
user-friendly manner. The system is capable of working
with any classification system which admits diagnostics
on test data. We illustrate the usefulness of our approach
in recovering compact representations of the revealed
gaps in training data and show that predictive accuracy
of the resulting models is improved once the gaps are
filled through collection of additional training samples.

Problem formulation
Consider an incident classification task in a radiation threat
detection and adjudication system. As vehicles travel across
international borders, they may be scanned for sources of
harmful radiation, such as improperly contained medical or
industrial isotopes, or nuclear devices. A substantial num-
ber of potential threats flagged by radiation measurement
devices that may be used in such applications are actually
non-threatening artifacts due to naturally occurring radioac-
tive materials (e.g. ceramics, marble or cat litter). We have
been using machine learning methodology to dismiss alerts
that are confidently explainable by non-threatening natu-
ral causes, without increasing the risk of neglecting actual
threat (Dubrawski et al. 2012).

A robust alert adjudication system must be trained and
validated on data that includes the actual threats. However,
such data is (luckily) hard to come by. Therefore, it is prac-
tical and common to place the bulk of the available em-
pirically gathered positive incident examples into a testing
data set, and create training data using benign measurements
mixed with a carefully chosen selection of simulated threat.
Nonetheless, the volumes and complexities of the feature
space in data typically encountered in radiation measure-
ment applications makes synthesizing a robust, sufficiently
large, and (most importantly) comprehensive set of training
data difficult and prone to omissions.
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Approach
We present an engineering framework that facilitates data
quality audits by automatically detecting gaps in training
data coverage. These gaps denote differences in distributions
of select variables between training and testing samples or
point to areas of the feature space where the observed perfor-
mance of the threat adjudication system appears suboptimal.
The findings are presented in the form of human-readable,
low-dimensional projections of data, in order to ensure in-
terpretability of results and to simplify planning of correc-
tive actions. The resulting iterative data improvement proce-
dure boosts threat adjudication accuracy while reducing the
workload of data engineers and application domain experts,
when compared to using uninformed data gathering process.

The proposed process involves: (1) Building a threat clas-
sifier (any plausible type of a classification model can be
used, we employ the random forest method primarily due to
its scalability to highly-dimensional feature spaces, but also
because of the computable on-the-fly metrics that diagnose
reliability of predictions being made, which it provides), (2)
Gap Retrieval Module (GRM), and (3) Human-driven pro-
cedure of addressing the identified gaps. Of particular rel-
evance are two metrics that attempt to characterize relia-
bility of predictions made by our random forest classifier:
Dot-Product-Sum (DPS) and In-Bounds Score (IBS). DPS
measures consistency of predictions made independently by
the individual trees in the forest. IBS is perfect if for each
node of a classification tree, the query fits within the range of
the bounding box of the training data. Otherwise, it returns
the value proportional to the fraction of nodes where the
query was in-bounds. The GRM identifies where the orig-
inal threat classification model performs well and where it
performs poorly. It does this in one of two ways: (a) By find-
ing low-dimensional projections where the testing and train-
ing data distributions differ significantly, and (b) By find-
ing low-dimensional regions of data space where the orig-
inal classifier experiences considerably low accuracy. The
GRM leverages a previously published algorithm called Re-
gression for Informative Projection Retrieval (RIPR) (Fit-
erau and Dubrawski 2013). This algorithm discovers a small
set of low-dimensional projections of possibly highly mul-
tivariate data which reveal specific low-dimensional struc-
tures in data, if such structures exist. RIPR’s primary appli-
cation is to improve understandability of classification, re-
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gression, or clustering tasks by explaining their results in a
human-readable form. Here we extend the algorithm to facil-
itate improvements in training data generation, primarily by
leveraging its ability to detect low-dimensional patterns of
unexpected discrepancy between training and testing data,
as well as low-dimensional structures of low performance
areas. As a result of executing the GRM, the resulting low-
dimensional subspaces are visualized and the domain ex-
perts and data engineers gain intuition as to what data may
be missing from the training set and decide which parts of
the feature space would most benefit from additional sam-
ples. The expanded training data will reflect these changes in
the next machine learning iteration, and the process can con-
tinue until the training set is shaped into a faithful reflection
of the test set, and the performance of the threat adjudication
system is optimized.

Experimental Results
To find data gaps directly, our algorithm simply looks for
mismatches between the training and testing data distribu-
tions in all 2 or 3 dimensional projections of data, to en-
able visually interpretable output. In this scenario, the al-
gorithm returns the most prominent gap, even if it is lo-
cated in a projection that yields relatively little information
to support model predictions. Our results show that GRM is
able to identify potentially irregularly shaped areas of mis-
match between the training and test sets. The set up of our
experiments involves the selection of two random samples:
one of an arbitrary number of data points in the training
set composed of semi-synthetic data and another similarly
sized sample of data from the testing set. By taking these
uniformly random samples, any mismatch we find is repre-
sentative of the entire dataset with high probability, as the
process does not change the training and testing data distri-
butions. The leftmost graph in Figure 1 shows an overlay
mismatch where the test set seems to simply be a shifted
version of the training set. After conferring with the data
engineers who built the data, we determined that the cause
of the overlap is actually a single scalar parameter that was
changed between two successive artificial data builds. Visu-
alization provided by our framework allows data engineers
to easily gather succinct information about the variations of
the underlying structure of data.

Next, we tied in a cost function that determines which
gaps are more meaningful in terms of the impact they
may have on the threat classification performance. We can
achieve this by incorporating diagnostic measures resulting
from the original classifier performance evaluation, as ob-
served on the test samples. The middle graph in Figure 1
shows a projection retrieved using a nonparametric loss esti-
mator. We see that our random forest makes the most confi-
dent predictions (high DPS) for blue points which occupy a
densely packed T-shaped space in the projection. Red points,
which correspond to predictions which were not fully con-
sistent among the trees in the forest (low DPS), indicate test
data which may benefit from additional nearby training sam-
ples. They are far more spread out within the projection, and
often reside near the edges of the gray point cloud which
represents all of the training data.

Figure 1: Example projections retrieved using direct (left),
and diagnostic nonparametric (middle) and parametric (bot-
tom) approaches.

Humans are good at understanding how to fill in gaps
in low dimensional projections that retain some sort of a
regular structure (i.e. a box or triangle), which is why we
also devised a parametric loss estimator. It enables extrac-
tion of projections that contain regularly-shaped gaps which
may cause considerable loss of threat classification perfor-
mance. In the rightmost graph in Figure 1, we use linear
Support Vector Machine model to separate high- and low-
performance areas. Our goal here is to find projections of
data where misclassified queries occupy one side of the clas-
sification boundary, while correctly classified queries oc-
cupy the other side. This is a useful type of a gap to look
at because it identifies sets of features that jointly emphasize
a controversy on how test data should be classified.

To show our framework increases model accuracy, we
train random forest models using different subsets of train-
ing data. We start by taking our original data set and remov-
ing samples which fall within a certain region of a 2D pro-
jection, thus creating an artificial hole in the data. The ran-
dom forest trained from this data set achieves 75.0% classifi-
cation accuracy. We then run RIPR which identifies this gap
and we add excluded samples back to the training set, which
fills the gap that RIPR identified. Now training a new ran-
dom forest, we achieve 75.7% accuracy. This shows we are
able to improve model performance by filling in gaps that
the GRM identifies. Additionally, we trained a model with a
random subset of the original training set and obtain 75.2%
accuracy. This shows us that filling in gaps in the training
set is more efficient at improving model accuracy than just
adding more samples which may or may not help fill the gap.
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