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Abstract

Most real-world games and many recreational games
are games of incomplete information. Over the last
dozen years, abstraction has emerged as a key enabler
for solving large incomplete-information games. First,
the game is abstracted to generate a smaller, abstract
game that is strategically similar to the original game.
Second, an approximate equilibrium is computed in
the abstract game. Third, the strategy from the abstract
game is mapped back to the original game.

In this paper, I will review key developments in the
field. I present reasons for abstracting games, and point
out the issue of abstraction pathology. I then review the
practical algorithms for information abstraction and ac-
tion abstraction. I then cover recent theoretical break-
throughs that beget bounds on the quality of the strategy
from the abstract game, when measured in the original
game. I then discuss how to reverse map the opponent’s
action into the abstraction if the opponent makes a move
that is not in the abstraction. Finally, I discuss other top-
ics of current and future research.

Introduction
Most real-world games (such as auctions, negotiation set-
tings, security games, cybersecurity games, and medical
games) and many recreational games are games of incom-
plete information. Over the last dozen years, abstraction
has emerged as a key enabler for solving large incomplete-
information games. For instance, it has become an essential
tool in the arsenal of the leading teams working on building
programs for playing poker.

At a high level, the process works in three stages, see Fig-
ure 1. First, the game is abstracted to generate a smaller, ab-
stract game that is strategically similar to the original game.
Second, the abstract game is solved for (near-)equilibrium.
Third, the strategy from the abstract game is mapped back
to the original game.

Reasons to abstract games
Depending on the setting, there can be different motivations
for using abstraction on games:

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nash equilibrium Nash equilibrium 

Original game 

Abstracted game 

Abstraction algorithm 

Custom algorithm 
for finding a Nash 
equilibrium 

Reverse model 

Figure 1: Framework for abstracting games.

• The original game may be too large to solve for equilib-
rium with today’s technology. This is the case, for exam-
ple, in heads-up (i.e., two-player) Texas Hold’em poker—
even though the game is a two-player zero-sum game, and
such games can be solved in polynomial time in the size
of the game tree. The original game tree would simply be
prohibitively large (Johanson 2013).

• The equilibrium solver may require a simpler game class
than what the original game is. For example, it may re-
quire a game with discrete actions and/or states. Or, an
equilibrium might not even be known to exist in the origi-
nal game class. This has been pointed out as a motivation
to abstract, for example, in computer billiards (Archibald
and Shoham 2009).

• The original game is too difficult or too large to write
down in full detail so abstraction is needed in modeling.

– This is the case typically in “empirical game the-
ory” (Wellman 2006; Wellman et al. 2005) where the
game is not given explicitly but rather access to the
game is by taking part in a simulation, for example a
trading agents simulation.

– All modeling of real-world settings as games can be
thought of as abstraction. Thus it is important to have
results that tie the abstraction coarseness to solution
quality—for example, regret of the computed strategy
when evaluated in the original game. Otherwise, we
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could not know what our game models really have to
say about reality.

What is game abstraction, really?
At its core, game abstraction amounts to assuming restric-
tions on the players’ strategy spaces. The most common
form of game abstraction is information abstraction, where
information states are bundled together. Another common
form of game abstraction is action abstraction, where some
of the actions in the real game are assumed not to be usable.
For example, if the original game has a continuum of possi-
ble actions (or a prohibitively large set of possible discrete
actions) at some information sets in the game, action ab-
straction would create a model where typically only a small
discrete set of actions is available.

Game abstraction has challenges that do not
arise when using abstraction in single-agent

settings
Abstraction in games is fundamentally different and more
challenging than abstraction in single-agent settings (such
as Markov Decision Processes). In games, unlike in single-
agent settings, abstraction can be nonmonotonic, that is,
pathological. Strategies computed in a fine-grained abstrac-
tion can be worse when evaluated in the original game than
those computed in a strictly coarser abstraction (Waugh et
al. 2009a). Essentially this can happen because we assume
our opponent plays within the restricted strategy set that the
abstraction affords him, but in reality he may use a strategy
that falls outside our abstract model.

The nonmonotonicity has cast doubt on the entire ab-
straction approach for games. There has been a significant
amount of experimental work on abstraction in games over
the last dozen years, and experience suggests that in prac-
tice in large games such as heads-up Texas Hold’em poker,
finer-grained abstractions yield programs that play better
against other programs. Furthermore, it has been shown ex-
perimentally in heads-up limit Texas Hold’em poker that
finer-grained abstractions yield programs that have lower
exploitability—that is, they play better against their worst-
case opponent (Johanson et al. 2011). Over the last two
years, theoretical breakthroughs have finally been made
that tie abstraction choices to solution quality in the origi-
nal game (Sandholm and Singh 2012; Lanctot et al. 2012;
Kroer and Sandholm 2014a; 2014b).

The state of practical game abstraction
methodology

In this section I will review the state of practical abstraction
methodology. In the following section I will review recent
theoretical breakthroughs.

Information abstraction
Initially, game abstractions were created by hand, us-
ing domain-dependent knowledge (Shi and Littman 2002;
Billings et al. 2003). The last eight years have witnessed the
advent of work in game abstraction algorithms (Gilpin and

Sandholm 2006; 2007b; Zinkevich et al. 2007). Through-
out that period, important experimental advances have been
made (Gilpin and Sandholm 2007a; Gilpin, Sandholm, and
Sørensen 2007; 2008; Waugh et al. 2009b; Schnizlein,
Bowling, and Szafron 2009; Johanson et al. 2013; Ganzfried
and Sandholm 2013; 2014).

Early work on lossless abstraction enabled the solution
of Rhode Island Hold’em, an AI challenge problem with
3.1 billion nodes in the game tree (Gilpin and Sandholm
2007b). When moving to even bigger games, lossless ab-
straction typically yields abstract games that are too large to
solve, so lossy abstraction is needed.

In brief, the main ideas for practical lossy information ab-
straction in games have included the following.

• Using integer programming to optimize the abstraction
(typically within one level of the game at a time) (Gilpin
and Sandholm 2007a).

• Potential-aware abstraction, where the information sets of
a player at a given level of the game tree are not bucketed
based on some measure such as strength of a poker hand,
but rather by the probability vector of transitions to state
buckets at the next level (Gilpin, Sandholm, and Sørensen
2007).

• Imperfect-recall abstraction, where a player is forced to
forget some detail that he knew earlier in the game so as to
be able to computationally afford a more refined partition
of more recent information (Waugh et al. 2009b).

The currently leading practical algorithm for information ab-
straction uses a combination of the latter two ideas and obvi-
ates the first (Ganzfried and Sandholm 2014). Using abstrac-
tion that divides the game disjointly across multiple blades
of a supercomputer for equilibrium-finding computation,
strong strategies have been constructed for heads-up no-
limit Texas Hold’em (with stacks 200 big blinds deep as in
the Annual Computer Poker Competition (ACPC)) (Brown,
Ganzfried, and Sandholm 2014; 2015). That original game
has 10165 nodes in the game tree (Johanson 2013).

Action abstraction
Action abstraction remained a manual endeavor for much
longer than information abstraction. The last four years have
witnessed the emergence of automated action abstraction to
complement techniques in automated information abstrac-
tion. The first techniques iteratively adjusted the action dis-
cretization (bet sizing in no-limit poker) (Hawkin, Holte, and
Szafron 2011; 2012). Recently, iterative methods have been
introduced to do this in a way that guarantees convergence
to the optimal discretization (assuming the problem is con-
vex) (Brown and Sandholm 2014).

Action abstraction algorithms have also been developed
based on discrete optimization: selecting a small set of pro-
totypical actions to allow from the original discrete set of
actions (Sandholm and Singh 2012). Both an integer pro-
gramming algorithm and a greedy algorithm was developed.
However, those algorithms are only for stochastic games and
are not scalable computationally.
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Recent theoretical breakthroughs
Since 2011, there have been significant theoretical break-
throughs in game abstraction. In brief, despite abstraction
pathologies these results tie the “fineness” of abstraction to
bounds on how good the strategy derived from the abstract
game is in the original game.1

Basilico and Gatti (2011) give bounds for the special
game class of Patrolling Security Games. Sandholm and
Singh (2012) provide the first general framework for lossy
game abstraction with bounds, but it is only for stochas-
tic games. A key complication keeping the analysis from
directly extending to extensive-form games is information
sets. In stochastic games, once the opponent strategies are
fixed, the best response analysis can be approached on a
node-by-node basis. With information sets this is more com-
plex, as strategies have to be evaluated not only according to
how they perform at a given node, but also how they perform
according to the distribution of nodes in the information set.

Kroer and Sandholm (2014a) introduce a mathematical
framework that can be used to give bounds on solution qual-
ity for any perfect-recall extensive-form game. The frame-
work uses a new notion for mapping abstract strategies to
the original game, and it leverages a new equilibrium refine-
ment for analysis. Using this framework, they develop the
first general lossy extensive-form game abstraction method
with bounds. Experiments show that it finds a lossless ab-
straction when one is available and lossy abstractions when
smaller abstractions are desired. Prior abstraction algorithms
typically operate level by level in the game tree. This paper
proves that that can be too myopic and can therefore fail to
find even obvious lossless abstractions. Recently, Kroer and
Sandholm (2014b) extend the results to imperfect-recall ab-
straction. They also present clustering-based abstraction ap-
proaches, which have promise to be more scalable than the
integer programming algorithms in their earlier paper.

Lanctot et al. (2012) also provided early theoretical
bounds on lossy game abstraction. They show that running
the counterfactual regret minimization (CFR) algorithm on
their class of (potentially imperfect-recall) abstractions leads
to bounded regret in the full game. Their work focuses on
abstraction via information coarsening, thus allowing nei-
ther action abstraction nor reduction of the size of the game
tree in terms of nodes. It does allow for the game tree size to
be reduced by bundling information sets in certain ways.

Reverse mapping
Strategies computed in an abstraction assume the opponent
adheres to the action abstraction. An actual opponent may
choose actions outside the abstraction. Thus an action map-
ping (aka reverse mapping aka reverse model aka action
translation) algorithm is used to map his action (e.g., bet size
in poker) to one of the actions in the model (Gilpin, Sand-
holm, and Sørensen 2008; Rubin and Watson 2012; Schni-

1Johanson et al. (2011) provide computational methods for
evaluating the quality of a given abstraction in certain kinds of
game, such as heads-up limit Texas Hold’em poker, via computing
a best response in the full game after an approximate equilibrium
in the abstract game has been computed.

zlein, Bowling, and Szafron 2009; Ganzfried and Sandholm
2012). Action mapping is a significant weakness in the cur-
rent paradigm. For example, it tends to render even the best
programs for heads-up no-limit Texas Hold’em highly ex-
ploitable by clever bet sizing. Below I will refer to bet sizing
in poker for concreteness, but the approach applies to essen-
tially any game where action sizing is an issue: bid sizing in
auctions, offer sizing in negotiations, allocating quantities of
attack/defense resources in security, etc.

Suppose our opponent makes a bet of size x ∈ [A,B],
where A denotes the largest betting size in our abstraction
less than or equal to x, and B denotes the smallest betting
size in our abstraction greater than or equal to x (assume
0 ≤ A < B). The action mapping problem is to determine
whether we should map x to A or to B (perhaps probabilis-
tically). Thus, our goal is to find a function fA,B(x), which
denotes the probability that we map x to A (so, 1− fA,B(x)
denotes the probability that we map x to B); this is the ac-
tion mapping function.

We recently developed the first axiomatic approach to
action mapping (Ganzfried and Sandholm 2013). It seems
clear that an action mapping should satisfy the following ba-
sic properties.

1. If the opponent takes an action that is in our abstraction, it
is natural to map his action x to the corresponding action
with probability 1; hence we require that f(A) = 1 and
f(B) = 0.

2. As the opponent’s action x moves away from A towards
B, it is natural to require that the probability of his action
being mapped to A decreases.

3. Scale invariance: scaling A, B, and x by some multiplica-
tive factor k > 0 does not affect the action mapping.

4. Action robustness: f changes smoothly in x (rather than
having abrupt changes that can beget exploitability).

5. Boundary robustness: f changes smoothly with A and B.
We proved that no prior action mapping seriously pro-

posed in the literature (Gilpin, Sandholm, and Sørensen
2008; Rubin and Watson 2012; Schnizlein, Bowling,
and Szafron 2009)—deterministic or randomized—satisfies
these five desiderata (Ganzfried and Sandholm 2013; 2012).
We then introduced one that does:2,3

fA,B(x) =
(B − x)(1 +A)

(B −A)(1 + x)

We also motivated this mapping directly using analysis
on small games. More recently, we conducted exploitabil-
ity experiments (nemesis computations) on the clairvoy-
ance game (Chen and Ankenman 2006), Kuhn poker (Kuhn

2For simplicity of presentation, here we assume the pot size is
1, and that all values have been normalized accordingly.

3A strawman action mapping, that simply maps to the arithmeti-
cally closest action with probability proportional to the distance,
also satisfies the axioms. However, we showed that it is highly ex-
ploitable, and no strong ACPC agents use it. For example, faced
with a bet half way between the size of the pot and an all-in bet, it
would map to each with equal probability, while such a bet should
clearly be mapped to the all-in action with overwhelming probabil-
ity.
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1950), and Leduc Hold’em (Waugh et al. 2009a); it exhibited
less exploitability than prior action mappings (Ganzfried
and Sandholm 2013). Against programs submitted by oth-
ers to the 2012 ACPC no-limit Texas Hold’em category, it
performed well compared to the other action mappings—
in particular, dramatically better than the prior state-of-the-
art mapping, when applied to our program. So, the reduced
exploitability does not come at a significant cost in perfor-
mance against strong opponents that do not attempt sophis-
ticated exploitation. Most leading ACPC teams have since
adopted this mapping (e.g., (Jackson 2013)).

Selected additional topics
There are many additional promising current and future re-
search directions in the area of game abstraction—beyond
the topics reviewed above.

For instance, early approaches divided the game into se-
quential phases, which were then solved separately—with
various techniques involved in coordinating the solutions in
the phases (Billings et al. 2003; Gilpin and Sandholm 2006;
2007a). A related, newer approach is to solve the endgame
that is reached anew in a finer-grained abstraction than the
abstraction that was used to solve the entire game (Ganzfried
and Sandholm 2014).

Another idea is to iterate between abstraction and equi-
librium finding (Sandholm 2010). This has the potential that
the tentative equilibrium will help guide the abstraction in
which a new equilibrium is computed, and so on. The iter-
ative action abstraction—specifically, action sizing (bet siz-
ing when applied to poker)—technique mentioned above is
an instance of this (Brown and Sandholm 2014). However,
I believe this idea has significant further potential as well,
both in information and action abstraction.

Another interesting phenomenon is that the equilibrium-
finding algorithm used to solve the abstract game can over-
fit the strategy to the abstraction (Johanson et al. 2011).
This can be mitigated by restricting the strategy space after
the fact by post-processing the strategy to be less random-
ized (Ganzfried, Sandholm, and Waugh 2012). Future re-
search involves understanding this phenomenon better and
developing perhaps better strategy restrictions—to be used
potentially during and after equilibrium finding.
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