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Abstract
Living organisms adapt to challenges through evo-
lution and adaptation. This has proven to be a key
difficulty in developing therapies, since the organ-
isms develop resistance. I propose the wild idea
of steering evolution/adaptation strategically—using
computational game theory for (typically incomplete-
information) multistage games and opponent exploita-
tion techniques. A sequential contingency plan for steer-
ing is constructed computationally for the setting at
hand. In the biological context, the opponent (e.g., a
disease) has a systematic handicap because it evolves
myopically. This can be exploited by computing trap-
ping strategies that cause the opponent to evolve into
states where it can be handled effectively. Potential ap-
plication classes include therapeutics at the population,
individual, and molecular levels (drug design), as well
as cell repurposing and synthetic biology.1

Brief description of the main ideas
Living organisms adapt to challenges through evolution and
adaptation. These survival mechanisms have proven to be a
key difficulty in developing therapies, since the challenged
organisms develop resistance.

It would be desirable to be able to harness evolution and
adaptation for therapeutic and technological goals. For ex-
ample, through a sequence of appropriate manipulations,
could we get a heterogeneous population of cancer cells to
evolve to benign ones? Or, could we steer the evolution of
the population to a state where we can destroy it? Could we
evolve bacteria that eat toxins from the environment?

In this paper I propose the wild idea of steering evolu-
tion/adaptation strategically. I propose that this be done us-
ing computational game theory and opponent exploitation
techniques. A sequential contingency plan for steering evo-
lution is constructed computationally for the setting at hand.

For example, in the context of medical therapeutics, con-
sider a setting where there is treater (e.g., a doctor) treat-
ing a patient (e.g., an individual or a population of peo-
ple). The patient may have some disease, such as HIV, can-
cer, influenza, ebola, diabetes, schizophrenia, or obesity. The
treater’s task is to treat the patient over time. The treatments
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can include various drugs and cocktails of drugs, as well as
other activities such as surgeries, exercise prescriptions, and
so on. Treatments can also include gene interference and dis-
ruption therapies; nowadays it is even possible to turn off in-
dividual genes in a cell and to turn them back on. The treater
may also be able to conduct tests. The disease can change
over time. For example, the HIV virus mutates. The treat-
ments affect how the disease changes over time.

I propose that this be modeled as a (zero-sum) game be-
tween the treater and disease, with potentially both sequen-
tial and simultaneous moves. Then, solving the game model
for Nash equilibrium (or its refinements) provides an opti-
mal treatment plan assuming the disease plays rationally,
that is, in the worst possible way for the treater. This is a
safe approach. Another advantage is that it does not require
a probabilistic model of the disease.

However, this may be overly conservative: the disease
may not behave rationally. I propose that opponent exploita-
tion techniques be used to take advantage of the disease’s
suboptimal play. Various approaches can be used for this, as
I will discuss—ranging all the way to modeling the setting
as a single-agent domain where the only player is the treater.

Furthermore, biological opponents have a distinct charac-
teristic that we can exploit. Evolution is myopic: it does not
look ahead in the game tree. That begets dramatic opponent
exploitation opportunities. An example of this is evolving a
disease into a trap where it can be easily attacked so that
it is destroyed or becomes less powerful (e.g., less virulent,
less contagious, or less able to evolve in bad ways). More
generally, the task is to compute a strategy for the treater in
the (typically incomplete-information) game that causes the
myopic opponent to obtain low utility.

Benefits
Algorithms can often solve games better than humans can—
and in many cases optimally—so there is potential to gener-
ate better treatment plans than doctors and policy commit-
tees generate. Today’s manual planning is rather ad hoc and
unsophisticated from the perspective of the state of the art
in game-solving algorithms—for instance in the ability to
generate high-quality sequential plans. Most medical treat-
ment today is myopic: the treater tries to take an action
that improves the patient’s health immediately. This puts the
treater at the very same disadvantage that the opponent—
evolution—has! In contrast, the treatment plans proposed in
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this paper may myopically make the patient worse in prepa-
ration for later, highly effective treatments. For example, the
sequential treatment may cause a virus population in an in-
dividual to evolve into a population that can be effectively
treated with medicines. Clearly some multistage treatment
plans exist in practice already, such as radiosensitization—
where a drug is administered that makes radiation more ef-
fective against a tumor—and chemosensitization. However,
those plans are manually crafted, and they are much shorter
and simpler than the plans contemplated here.

Because the proposed planning is automated, it is dramati-
cally faster and requires fewer human resources. This means
that custom plans can be generated for more specific popu-
lation segments—even individuals.

The speed also enables the user of the system to con-
duct what-if analyses (sensitivity analysis) to test how the
system-generated plan would change under different as-
sumptions about the game, for example, structure of the
game, probabilities of the player called nature that is used
in game modeling to represent stochasticity (which can also
be used to represent noise in test results), etc.

This has the potential to also guide future medical re-
search. The most valuable knowledge to generate is knowl-
edge that enhances the value of the treatment plans the most.

Applications
There are vast potential applications for these ideas. In this
section I will briefly describe some application classes.

Battling disease within an individual patient
As an example of the use of this idea at the individual level,
consider the treatment of a specific HIV patient. At each
point in the game, the actions the treater can take may in-
clude treatments (such as which drug or drug cocktail to use)
and tests. The actions the adversary (HIV) can take may in-
clude evolving the pool of the HIV viruses within the patient,
making the patient worse or better in any number of ways,
etc. There is data about the HIV virus as to what locations
are the most typical mutation sites and what the most typical
mutations at each site are. There is also data on treatment
outcomes for different segments of the patient population.

In the game model, utilities can be associated with out-
comes (leaves), intermediate states, and/or transitions. They
can be based on the patient’s health and projected health
(including side effects), how virulent a state the disease is
in, how contagious a state the disease is in, how easily at-
tackable the disease is in its current state (e.g., by a drug
or cocktail), the cost of treatment and other costs to the pa-
tient/treater/insurance so far, projected future costs, etc.

The output is a strategy, that is, a contingent plan. It can be
generated up front before treatment begins, or the planning
can be interleaved with execution.

Battling disease at the molecular level: Drug design
As an example of the use of this idea at the molecular level,
consider the design of drugs and drug cocktails for the treat-
ment of an HIV patient. (Drug development to a specific in-
dividual may not be affordable, so this might be done for use
on the entire HIV patient population or a segment thereof.

However, the drugs can be used on an individualized basis
as described in the previous section.)

The actions of HIV at any point in the game include the
most likely mutations in the most likely mutating locations
(binding sites) of HIV-1 Protease. (The normal operation of
HIV-1 Protease is necessary for the propagation of HIV. The
methodology can be used not only for protease, but also for
the other typical targets in the HIV virus—reverse transcrip-
tase and integrase—as well as other potential targets.)

The treater’s available actions at any point in the game in-
clude which drug cocktail (what amounts of each drug) to
use. Or, the actions can be to choose a cocktail of some ex-
isting drugs and some de novo drugs designed specifically
by the present idea. In other words, the actions can include
selection from a huge, or even infinite, space of potential
drugs that have not even been conceived/manufactured be-
fore. It is not atypical for game models to be solvable even if
the action space is infinite (Sandholm 2010). The actions of
the treater can also include tests on the patient and the virus
population in the patient.

A model can be used to predict how well each of
the potential drugs in the potential cocktails would bind
to each mutation at each site. Such models already exist
(e.g., (Kamichetty 2011; Langmead and Kamichetty 2011;
2012)) and will improve over time. The utility of the disease
player can then be the sum over binding sites of the predicted
binding energy at the site. The output is again a strategy.

Battling disease in a patient population
As an example of the use of this idea at the population level,
consider battling the spread of an influenza epidemic. The
actions of the influenza at any point in the game include
spread of the various influenza strands—possibly including
mutations—to different parts of the population. The actions
of the treater at any point in the game include which drug
or cocktail to use in each part of the population. (This is be-
yond the current way of treating influenza in the US where
one cocktail is generated per year for the entire flu season,
and the choice is merely whether to vaccinate a person or
not.) The actions can also include quarantining, etc. In prin-
ciple, the actions could also include the selection from an
unrestricted space of drug design, if in the future drug man-
ufacturing can be fast enough. The actions of the treater can
also include conducting tests on patients from various parts
of the population and testing aspects of the virus within such
patients. The treater’s utility in the game can be, for exam-
ple, based on the number of deaths and other costs such as
hospitalizations. The output is again a strategy.

The three levels of battle can also be combined in pairs,
or one can combine all three. For instance, when battling a
virus at the population level, one can include the molecular-
level game. This can be especially helpful if the virus is new
so there is little experience how it behaves in the population.

Cell repurposing and synthetic biology
The ideas also have applications beyond battling diseases.
For example, one could apply them to repurposing cells.
Could one evolve, say, a blood cell into a liver cell? Could
one perhaps even grow a missing organ or limb?
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The ideas apply beyond medical treatment as well, for ex-
ample in synthetic biology. For instance, could one evolve
bacteria into ones that eat toxins—such as oil spills–without
introducing foreign genetic material?

Tackling questions in natural science
Beyond applications, the approach also enables one to for-
malize and potentially answer fundamental questions in nat-
ural science. For example, can a certain kind of cell be trans-
formed into a certain other kind of cell using evolutionary
pressures using a given set of manipulations? How much
more power do multi-stage treatment plans offer? Does there
exist a strategy (that uses only a given set of available ma-
nipulations and tests) that will destroy a given diverse (e.g.,
cancer) cell population in a way that leaves no persistors?
What is inherently impossible to achieve via evolution?

Operationalizing the ideas
Game representations
Figure 1 illustrates the most common representation of
incomplete-information games, the extensive form. Each
node is labeled with the name of the player whose turn it is
to move. Stochasticity is represented by including a special
player called nature who moves based on fixed probabilities
rather than playing strategically. Note that the nature player
is not the disease. Incomplete information is represented by
information sets; the player whose turn it is to move at the in-
formation set does not know which node of the information
set is the actual game state at that point. Simultaneous moves
can be represented by drawing them as sequential but hiding
the earlier mover’s move from the later mover by bundling
the resulting nodes in an information set.

Information set 
0.2 

0.3 
0.5 

Nature 

Nature 

0.5 0.5 

Player 2 

Nature 

Player 1 Player 1 Player 1 

Player 2 
Information set 

Player 1 

0.4 0.6 

Player 2 

Figure 1: Small example of an extensive-form game.

An alternate representation In many biological applica-
tions, the opponent is a population rather than an individual.
For example, a cancer typically consists of heterogeneous
cancer cells and HIV can exist in multiple strands within a
patient. This can cause the state of the opponent to be com-
plex (high dimensional), leading to tractability issues.

The way I described the modeling so far, one would in this
case model the state of the entire opponent population in a
node of the game tree. The opponent (i.e., population) gets
to make one move at a time, as in traditional game theory.

An alternate, potentially more tractable, representation
would be to allow the individuals in the opponent popula-
tion to proceed down different paths of a tree or graph in
parallel, e.g., HIV could evolve into different strands (start-
ing from one or more strands), each strand potentially having
its own path (or each relatively small set of strands having its
own path) in order to reduce the state dimensionality in each
node. The population state would thus be represented not by
one node but by a collection of nodes, potentially with pop-
ulation frequencies associated with the nodes. The notion of
trap would then involve multiple traps in the graph: different
strands could be trapped differently.2

Data used to generate the game model The data for what
moves the disease can make at different points in the game
can be generated from scientific papers or databases of re-
sults, disease evolution models and simulations, tests on hu-
mans or animals (e.g., modern SMART trials that test not just
treatments but entire contingent plans for treatment (Short-
reed et al. 2011)), past experience about the disease on a
particular patient or segment of patients, experience gath-
ered about the disease while using the system, active learn-
ing (Settles 2010; 2012), and so on.

The extra player, nature, can introduce stochasticity in the
patient’s state and in test results (probability of each read-
ing conditional on the true state). The moves that nature can
make, and the probability distribution over those moves, can
be generated using the approaches described in the previous
paragraph, potentially supplemented with data on the prob-
abilistic errors that given tests have.

Computing game-theoretic equilibrium strategies
Game-theoretic solution concepts define how rational play-
ers should play a game. There are many solution concepts
that can be used here. The most famous is Nash equilibrium,
and several refinements thereof have been developed.

There are numerous algorithms for findings solutions to
games according to a given solution concept. The scalabil-
ity of algorithms for incomplete-information games has in-
creased by orders of magnitude over the last ten years—
largely driven by work on poker (for a review, see Sand-
holm (2010)). The leading approach involves running an ab-
straction algorithm to construct a smaller, strategically sim-
ilar game, then computing an (approximate) equilibrium of
the abstract game, and then mapping the computed strategies
to the original game. For a recent review of abstraction in
games, see Sandholm (2015). For algorithms for complete-
information games, see, e.g., Russell and Norvig (2010).

A desirable aspect of this game-theoretic approach is that
it does not need much prior knowledge about the opponent
(e.g., detailed statistical medical knowledge of the disease).
It amounts to assuming that the opponent behaves in the
worst possible way for us. This is safe in the two-player
zero-sum case: if the opponent actually does not behave in
this way, that can only help us.

2In principle, the setting could also be modeled as a game with
one treater and multiple diseases (e.g., each strand considered a
separate disease), and the game would not have to be zero sum.
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Opponent modeling and exploitation
Assuming a worst-case opponent can be overly conservative
in settings where we know (or believe) that the opponent
will not behave rationally. Here, opponent modeling and op-
ponent exploitation can be highly beneficial.

In essence, an opponent model predicts what the opponent
would do—perhaps probabilistically—in various informa-
tion sets. In our context, opponent models can be generated
from scientific papers or databases of results, disease evolu-
tion models (e.g., (Frey et al. 2010)) and simulations, tests
on humans or animals (e.g., SMART trials that test entire
contingent plans for treatment (Shortreed et al. 2011)), past
experience about the adversary, experience gathered about
the adversary while using the system, active learning (Set-
tles 2010; 2012), and so on. For example, to generate the
opponent model of HIV, one could use data on which antivi-
rals tend to cause specific mutations in reverse transcriptase,
protease or integrase (e.g., in the form of a probability table),
and data on efficacy of other antivirals against such mutants.

Then, there are many approaches to opponent exploita-
tion (e.g., (Sandholm 2010; McCracken and Bowling 2004;
Billings et al. 2004; Bard and Bowling 2007; Southey et al.
2005; Hoehn et al. 2005; Sturtevant, Zinkevich, and Bowling
2006)), and additional ones are being developed each year.

As one example, one can start by playing game theoreti-
cally and then adjust play toward exploiting the opponent in
points of the game that have been frequently visited so there
is good statistical information about the opponent’s play at
those points (Ganzfried and Sandholm 2011).

As a second example, one can compute an ε-safe best re-
sponse (or approximation thereof), i.e., a strategy that ex-
ploits our model of the opponent maximally subject to the
constraint that even against a worst-case opponent it will do
at most ε worse than a game-theoretic strategy (Johanson,
Zinkevich, and Bowling 2007; Johanson and Bowling 2009).

As a third example, one can compute a set of strategies
and then use learning (in a simulation or in the real world) to
determine which one of the strategies performs best against
the actual opponent. No-regret learning algorithms are one
natural way of conducting this learning (Bard et al. 2013).

As a fourth example, if one trusts the opponent model
enough, one can abandon game-theoretic safety completely
and compute a best-response strategy (or an approximation
thereof) to the opponent model. This can be computation-
ally complex in large games and with lots of randomness in
the game. To find solutions for this setting, techniques from
stochastic optimization can be leveraged, such as trajectory-
based optimization (e.g., based on sample trajectories of
possible futures) and policy gradient techniques.3

At the other extreme, one could assume no prior knowl-
edge of the opponent and yet require that one’s opponent ex-
ploitation performs at least as well in expectation as a game-
theoretic equilibrium strategy. Perhaps surprisingly, it turns

3An interesting approach to MPDs under certain forms of risk
aversion involves converting the problem into a zero-sum game and
solving it (Chen and Bowling 2012). The domain on which that
algorithm was tested was a simplified diabetes management setting.
That work is very different than what is proposed here.

out that it is indeed possible to exploit an opponent more
than any game-theoretic equilibrium strategy can, while
still having this safety property (Ganzfried and Sandholm
2014). Intuitively, if we can measure—or at least bound
from below—how much value the opponent has gifted to us
through suboptimal moves, we can use that value to bankroll
our risky exploitation while guaranteeing safety overall.

Biological opponents have a distinct characteristic that we
can further exploit. Evolution is myopic: it does not look
ahead in the game tree. That begets dramatic opponent ex-
ploitation opportunities. An example of this is a trap. More
generally, the task is to compute a strategy for ourselves that
yields low utility to the opponent.4

Related work, briefly
There is an interesting piece of work proposing a game-
theoretic approach to drug cocktail selection at the molec-
ular level (Kamichetty 2011; Langmead and Kamichetty
2011; 2012). Their approach differs significantly from ours.
First, the players’ choices for the game are actions, not con-
tingent plans. The equilibrium lives in the space of stable
endpoints of a simulation rather than in the space of strat-
egy profiles where the strategies are contingent plans. That
makes the game single shot, has implications on the solving
methodology, and restricts the power and generality. In con-
trast, the present paper considers multi-stage games, where
traps and opponent exploitation are particularly powerful—
and one can capture information-gathering actions (such as
tests) and game-theoretic screening devices in the model.
Second, their players are not a disease and a treater. In their
HIV analysis there is one player for each likely mutation
site, and each of those players has the likely mutations as its
possible actions; there is also one player whose action space
is the proportions of drugs from a set of three FDA-approved
drugs to administer. In their other analysis (on PDZ), there
are 21 players corresponding to variable positions (16 pro-
tein players and 5 drug players); each protein player has five
actions corresponding to the wild-type and the four other
most likely amino acid positions at this position. In these
two ways that work is similar to Pérez-Breva et al. (2006).

There has been significant work on evolutionary game
theory (e.g., (Maynard Smith 1982; Axelrod 1984; Weibull
1995)). That research has typically studied competition
among species rather than treatment. Also, the solutions—
typically so-called evolutionarily stable strategies in a sim-
ple repeated game model—have usually been derived by
hand rather than requiring sophisticated algorithms. Two
interesting recent papers exist on game theory for cancer
treatment—using two given drugs each (Basanta, Gatenby,
and Anderson 2012; Orlando, Gatenby, and Brown 2012).
The models were simple enough to solve analytically, and
the strategies were only evaluated in simulation.

There has been significant work on understanding dis-
ease evolution (e.g., (Ewald 1994)). In contrast, this paper is
about steering evolution and methods for computing sequen-
tial (treatment) strategies. Also, the prior work has typically

4This can be generalized to opponents with limited lookahead
deeper than one. I do not (yet) see biological applications for that.
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not taken a game-theoretic or optimization approach.

What needs to be done to realize this vision?
Significant work lies ahead to realize this sweeping vision.
The game model needs to be instantiated on a real disease
to test the ideas. New game representations may be needed
to make the modeling and planning tractable. One may also
need to develop tractable game solving and/or opponent ex-
ploitation algorithms if it turns out that existing ones do not
scale. This may involve custom game abstraction techniques
and possibly custom equilibrium-finding algorithms.

One also needs to test the efficacy of the plans in the wet
lab. Fortunately, there exist tens of inexpensive cancer cell
lines for doing so. Similar tests can also be conducted on
viruses, on cell evolution for synthetic biology, etc.
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