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Abstract

In recent years, there has been renewed interest in
the NLP community in genuine language understand-
ing and dialogue. Thus the long-standing issue of how
the semantic content of language should be repre-
sented is reentering the communal discussion. This pa-
per provides a brief “opinionated survey” of broad-
coverage semantic representation (SR). It suggests mul-
tiple desiderata for such representations, and then out-
lines more than a dozen approaches to SR–some long-
standing, and some more recent, providing quick char-
acterizations, pros, cons, and some comments on imple-
mentations.

Introduction
There are signs of a resurgence of interest in genuine lan-
guage understanding within NLP and AI. These signs in-
clude various challenges that can be viewed as scaled-back
versions of the Turing Test, in particular RTE (Recogniz-
ing Textual Entailment) (Dagan, Glicksman, and Magnini
2006), COPA (Choice of Plausible Alternatives) (Roem-
mele, Bejan, and Gordon 2011), WSC (Winograd Schema
Challenge) (Levesque, Davis, and Morgenstern 2012), and
the Aristo Challenge (Clark 2015), as well as a recent ACL
workshop on Semantic Parsing (Artzi, Kwiatkowski, and
Berant 2014), and applications such as natural language
(NL) dialogue with robots (Eliasson 2007; Howard, Tellex,
and Roy 2013) and semantics-guided MT (Jones et al. 2012).
Thus the long-standing issue of how the semantic content
of language should be represented is reentering the commu-
nal discussion. The focus here will be on broad-coverage
semantic representation.

Desiderata
In a sense, for a representation to be meaningful to a com-
puter, it need only have the right computational proper-
ties, given the tasks the computer is performing. But that
is not enough. As builders of potentially very large, com-
plex systems dependent on symbolic representations, we
also have to be concerned with the naturalness of the rep-
resentations from our perspective. It should be easy to see
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intuitively whether a putative semantic interpretation of a
given sentence (in context) really does capture its semantic
content. The following desiderata seem to me like natural
ones, falling into both categories (and all of them have been
considered explicitly or tacitly by various researchers at var-
ious times).

• Language-like expressivity of the semantic representa-
tion (SR): All languages allow for the devices familiar
from first-order logic: predicates + connectives + quan-
tifiers + equality. But they allow more, including: gen-
eralized quantifiers (most men who smoke), intensional
predicates (believe, intend, resemble), predicate and sen-
tence modification (very, gracefully, nearly, possibly),
predicate and sentence reification (Birds evolved from
dinosaurs, Beauty is subjective, That exoplanets exist is
now certain), and reference to events or situations (Many
children had not been not vaccinated against measles;
this situation caused sporadic outbreaks of the disease).

High expressivity is sometimes claimed to be undesirable,
on the grounds that it is an obstacle to efficient inference.
That is a reasonable stance for designers of specialized
systems that simply don’t require high expressivity. But
it is unreasonable on two counts for a general semantic
representation (which is our focus here): One is that ef-
ficient inference methods for expressively limited subsets
of an expressively rich representation are easily embed-
ded within the richer representation (as specialized rea-
soning subsystems); the other is that the richer represen-
tation will enable inferences that are not possible at all, or
at best much more cumbersome, in a restricted represen-
tation. An analogous, equally unreasonable restriction in
programming language design would be to prohibit recur-
sion, runtime computation of iteration bounds, and back-
ward branching, as a way of assuring efficient execution.
Much power would be lost in doing so.

• Ease of transduction between surface structure and SR,
irrespective of the domain (i.e., modular, easily under-
stood, easily edited representations of the transductions);
Richard Montague’s work (Dowty 1979) revealed a beau-
tiful, direct correspondence between phrase structure and
meaning structure, one that accounts for entailments (or
their absence) even in intensional contexts. It would be
astounding if this correspondence, which is the basis of
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compositional semantics and interpretation, were a mere
cultural accident.

• Availability of referents for anaphoric expressions; pro-
nouns and definite noun phrases can refer to a wide variety
of entities that were previously introduced explicitly or
implicitly (including propositions, events, situations, ac-
tions, types of actions, kinds of entities and actions, and
more); an adequate SR should make these referents avail-
able.

• Accord with semantic intuitions; we have many quite
compelling intuitions about the meanings of the words we
use (else lexicography would not be possible), about alter-
native interpretations of given phrases or sentences, and
about the entailments of sentences or smaller linguistic
units. A SR should do justice to these intuitions.

• Ease of use for inference; humans appear to perform nu-
merous inferences both during and as a result of the lan-
guage understanding process, and can answer questions
inferentially about the proffered input, in concert with
background knowledge; SRs should enable similar infer-
encing.

• (Related) Ease of integration with specialized methods
for taxonomies, times, partonomies, spatial/imagistic rep-
resentations, collections, symbolic entities, math, proce-
dures, etc.; this is needed if we wish to match human pro-
ficiency in these pervasive domains.

• Formal interpretability; model theory formally specifies
what kinds of entities in a domain of discourse are al-
lowed as semantic values (denotations) of our SR vocab-
ulary, and how we can derive the semantic values of more
complex expressions from those of the basic vocabulary.
As such it provides a tool to the SR designer for ensuring
semantic coherence and consistent use of the SR; in addi-
tion, it provides a way of determining whether proposed
inference methods will yield true conclusions from true
premises, or at least yield plausible conclusions (depend-
ing on the kinds of inferences we are after).
That said, it should be noted that historically, the devel-
opment of full formal semantics for Boolean logic, first-
order logic, modal logics, and other more esoteric log-
ics has lagged (often by decades) behind their syntac-
tic development (including methods of proof), yet those
syntactic developments rarely ran astray; careful intuitive
consideration of the intended meaning of new constructs,
guided by analogy with their linguistic counterparts, gen-
erally led to sensible results. Much the same can be said
about the evolution of nonmonotonic and uncertain infer-
ence in AI. So we should be cognizant of the benefits of
model theory, without depriving ourselves of essential ex-
pressive devices for lack of a model theory that would
satisfy the editors of the Notre Dame Journal of Formal
Logic. Indeed it is entirely possible that the “right” se-
mantic representation for mechanizing human language
understanding and use necessarily retains a certain NL-
like looseness that thwarts full formalization.

• Trainability, ease of semantic rule learning; we wish to be
able to improve the performance of systems that map be-

tween language and the SR using machine learning tech-
niques, and indeed to learn the forms of the transduction
rules; the latter may be easy or hard, depending on the di-
rectness of the correspondence between language and the
SR – see the second bullet above.

Approaches
We now briefly characterize a wide variety of approaches to
SR, pointing out pros and cons and occasionally mentioning
extant implementations. Since the characterizations often
group together multiple variants of a general approach, not
everything said here applies to all members of a group, nor
are all major variants cited. But hopefully the comments do
capture enough of the distinctive “flavor” of each type of
approach to render the cited pros and cons comprehensible.

Structured English; with polarity (and perhaps other) an-
notations; a very simple, direct “semantic representation”!
Pros: Traditionally, reliance on ordinary language has
been considered antithetical to trustworthy reasoning; but
a surprising recent development has been the successful
implementation of Natural Logic (NLog) for obtaining
obvious lexical entailments, such as, Jimmy Dean refuses
to move without his blue jeans |= James Dean won’t
dance without pants (MacCartney and Manning 2009;
Angeli and Manning 2014). The three main principles used
in NLog are the following: (i) Certain complement-taking
lexical items (e.g., refuse, without) flip the polarity of
their complement; (ii) we can replace a lexical item by
a more general (more specific) one in a positive-polarity
(negative-polarity) one; and (iii) certain implicative verbs
(e.g., manage, refuse) entail or at least strongly suggest
the truth (or falsity) of their complement. In the example,
Jimmy Dean can be replaced by the synonym James Dean;
move can be replaced by the more specific term dance in
the negative environment formed by refuse; blue jeans can
be replaced by the more general term pants in the doubly
negative, hence positive environment created by refuse and
without; and refuse entails the negation of its complement,
i.e., from refuse to V we can infer won’t V.
A related approach to inference has come out of
RTE research, making use of (soft) entailment rela-
tions between syntactic subtrees (Dagan et al. 2008;
Berant, Dagan, and Goldberger 2011; Melamud et al. 2013).
In fact a new area of statistical NL semantics has sprung up
based on the idea that words are semantically similar if they
tend to co-occur with the same neighboring words. Thus
statistical semantics endeavors to reconstrue logical algebra
as vector algebra, where words are high-dimensional vec-
tors whose components are frequencies of collocation with
other words or groups of words, and longer constituents
are represented as vector compositions (Widdows 2004;
Clarke 2012; Clark 2013).
If nothing else, the developments in the use of NLog and
in statistical compositional semantics for computing entail-
ments suggest that (as Montague’s work also indicates) it
pays to take surface structure seriously!
Cons: Language is rife with indexicals such as I, you, here,
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now, tomorrow, this, remote, foreigner, etc., whose meaning
depends on who is addressing whom, and when and where
this is taking place, among other things. In addition, many
words such as bank, letter, have, cool, settlement, etc., are
ambiguous even as fixed parts of speech. This can easily
lead to faulty inferences, such as, Mary had a little lamb |=
Mary ate a bit of meat. Further, coreference is problematic
in such approaches; e.g., That caused an uproar probably
refers to something reported in the preceding sentence
(which could be almost anything), and the participants in
the uproar also need to be inferred from prior discourse or
general knowledge. There are (currently) also severe logical
inference gaps, such as inability to infer the second disjunct
of a binary disjunction, given the negation of the first (the
classical disjunctive syllogism).

Conceptual meaning representations (e.g., Schank &
Abelson (1977), Jackendoff (1990), Baker et al. (1998));
these are canonical representations of meanings in terms
of “conceptual primitives” such as CAUSE, GO, PTRANS
(physically transport) or MOVE, based on systematic study
of the apparent commonalities among lexical meanings;
typical sentential representations involve assigning roles
such as causal agent, theme, patient, or recipient to argu-
ments of verbs, and decomposing verb meanings to reflect
underlying primitives; for instance, Bill went into the house
might be represented as something like
((BILL PTRANS BILL) TO-LOC (INSIDE-OF HOUSE))
or perhaps
[EVENT GO ([AGENT BILL], [PATH TO ([PLACE IN
([THING HOUSE])])])],
depending on the particular choices of primitives, and
conventions in marking roles and entity types. Importantly,
some conceptual-semantics theories also posit larger-scale
conceptual structures, variously called scripts, schemas, or
frames, intended to characterize stereotyped configurations
of actions and events, such as commercial transactions
in which a seller transfers goods to a buyer in exchange
for money, or a restaurant patron goes through the usual
steps involved in restaurant dining (with participation by
restaurant personnel, and use of a table, chair, etc.)
Pros: Assuming that ordinary language can be sys-
tematically mapped to primitive-based representations,
paraphrastic variety may be reduced, simplifying inference.
As well, to the extent that inference rules are tied to a
small set of primitives, the number of rules needed for
broad-coverage inference may be greatly reduced. Most
importantly, perhaps, the larger-scale schemas can provide a
means for rapidly recognizing what is going on in a story or
other discourse, helping both with sentential interpretation
and with inference of unmentioned events and participating
entities.
Cons: The decompositional approach tends to lose subtle
aspects of meaning; for example, Schank’s representation
of walking as PTRANSing oneself by MOVEing one’s legs
could equally well apply to running, hopping, skating,
etc. As well, decomposition, coupled with schema/script
instantiation, can lead to an explosion of primitive concep-

tualizations for simple sentences such as John dined at a
restaurant, which would then greatly encumber answering a
question such as Did John dine at a restaurant?, especially
if the primitive conceptualizations from the original input
were incorporated into a full-scale memory harboring
millions of similar conceptualizations. Another issue is that
formal interpretability is typically treated as irrelevant; but
if we cannot say, for example, what in the world AGENT
or PATH TO are intended to correspond to, then we cannot
be sure that the larger semantic expressions we are con-
structing are meaningful, and that ultimately the conceptual
forms assigned to sentences are true or false in the world
whenever the NL sentences they were derived from were
true or false in the world; and if that is the case, we have
no basis for judging whether extended inferencing, beyond
immediate consequences of the primitive conceptualizations
derived from language, will lead to sensible conclusions or
nonsense.

Thematic role representations (related to preceding item).
These can be thought of as less radical departures from
surface form than conceptual representations, retaining role
notions such as agent, theme, recipient, location, etc., in
representing verbal (and sometimes other) relations de-
tected in parsed text, but not attempting decomposition into
primitives or fitting the detected relations into stereotyped
schemas.
Pros: Thematic role labeling lends itself well to ML tech-
niques, perhaps synergistically with parse disambiguation
and word sense disambiguation (Palmer, Gildea, and Xue
2010) and may prove to be of significant value in machine
translation (since intuitively roles involved in a given
sentence should be fairly invariant across languages).
Cons: However, as a meaning representation, parsed
sentences with role labels fall short in various ways, for
instance making no real attempt to adequately capture the
meaning of modification, quantification, or reification, and
thus does not support a theory of entailment and inference
in any strong sense.

FOL: predication + connectives + quantifiers + equality;
this probably needs no further explanation. (Standard com-
putational linguistics texts such as (Allen 1995) or (Jurafsky
and Martin 2009) provide introductions to FOL-based NL
interpretation.)
Pros: FOL is sufficiently expressive to capture the mean-
ing of many English sentences, especially if these are
concerned with objective, cut-and-dried physical matters
such as employee rosters, product inventories, flight or
hotel booking, purchases, and the like, rather than “human
concerns” such as beliefs, desires, or plans, or imprecise
or uncertain knowledge. FOL is well-understood, and
inference machinery for it is obtainable off-the-shelf.
Cons: However, we have already noted expressive weak-
nesses in relation to NL. There are some ways of coercing
modal talk, and even talk about propositions, into FOL, for
example by expressing modal notions such as necessity or
belief in terms of quantification over possible worlds; or by
“functionalizing” all formulas, and using a 1-place Holds
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or True predicate to assert that a functionalized formula
is true. Thus we might say Holds (loves(Romeo,Juliet))
instead of Loves(Romeo,Juliet), where loves, in contrast
with Loves, is a function that forms a propositional entity.
However, such approaches become awkward when extended
to full linguistic coverage: Modals don’t cover all forms of
intensionality, and the Holds device runs into trouble for
embedded quantifiers, as in the sentence
Kim believes that every galaxy harbors life.
The problem is that quantifiers can’t be functionalized,
because functions don’t bind variables. McCarthy (1990)
had a tentative proposal concerning this problem, but it did
not address generalized quantifiers or event reference, and
his overall scheme involved considerable complications
(concept functions, denotation functions, substitution
functions, and other devices). The overarching question
about such approaches is whether the representational
complications, which render putative interpretations of
English sentences quite hard to comprehend, are really
warranted just to be able to deploy FOL technology (which
is probably not optimized for functionalized FOL in any
case). As argued earlier, nothing will be gained in terms of
tractability. Ultimately, the tool should be adapted to the
task, rather than the other way around.

DRT (Discourse Representation Theory): nested dis-
course structures with free variables, interpreted dynami-
cally; this approach was developed by Kamp (1981) and
Heim (1982) largely to address two issues concerning
anaphoric pronouns: what principles govern binding of such
pronouns (i.e., what prior noun phrases they can and cannot
refer to); and how “donkey pronouns” could be interpreted
in an intuitively satisfactory way:
If John owns a donkey, he will ride it in the parade.
If we interpret “a donkey” as an existentially quantified term
(as we surely would if John owns a donkey stood alone)
then, if we retain narrow scope for the quantifier, we won’t
be able to bind the pronoun it to the donkey-variable, as it
lies outside the scope of the quantifier. If instead we scope
the existential quantifier over the entire sentence, we obtain
an unwanted reading, viz., there is some donkey such that if
John owns it, he will ride it. But this will be true as long as
there is some donkey that he doesn’t own!
DRT represents indefinites as free variables, but uses a
state-change semantics (where states are assignments of
values to variables) that is capable of carrying earlier
variable bindings forward to later occurrences of those
variables. The details need not concern us, because DR
structures derived from sentences can be converted to FOL.
This is the method used by Johan Bos’ Boxer system for
semantic parsing (Bos 2008).
Pros: Before conversion to FOL, DR structures allow
for systematic determination of “accessible” referents for
anaphoric pronouns. After conversion to FOL, standard
FOL inference technology can be applied.
Cons: The same expressivity issues as for FOL apply.

Semantic networks: These are graphical representations of

predicate-argument structure or operator-operand structure,
avoiding duplication of identical terms and other subexpres-
sions. Every distinct term or subexpression corresponds to
a distinct node, and there are labeled pointers from each
such node to the nodes corresponding to its parts. (See the
articles in Sowa, 1991.) For example, in the representation
of Nemesis and Liriope both believe that Narcissus loves
himself, the node for the love-proposition would have both
a subject pointer and an object pointer to the node for
Narcissus, and the two believe-propositions would both
have object pointers to the love-proposition. There are
various versions of semantic networks, many of which
slightly exceed FOL in expressivity.
Pros: The main advantage of semantic networks is that
graphical representations that don’t duplicate subexpres-
sions may suggest both ways of indexing knowledge (e.g.,
making propositions about an entity accessible from the
node representing it) and ways of making inferences one
might not otherwise think of (such as “marker-passing”
schemes that exploit the transitivity of “isa” relations and
other entailment-like relations).
Cons: As more and more propositions are added to a se-
mantic network diagram, it tends to become an unreadable
tangle of crossing and swerving lines. Of course, that is
no impediment in terms of internal representations in a
computer, and in fact many nominally non-network repre-
sentations adopt a “structure-sharing” strategy that names
all subexpressions and never duplicates the same structure.
So the real limitations of semantic networks just lie in
whatever expressive limitations they may have, or (less
often) in lacking any semblance of a model theory. Thus
they might lack disjunction, or generalized quantification,
etc.; or they might consist of triples such as (Man own Dog)
or (Dog (best friend-of) Man), where it is up to the reader to
decide whether these are intended as claims about particular
individuals or generic claims.

Description logics (DLs), such as OWL-DL: These
generally consist of a terminological language + assertion
language, where both are really aimed at supporting knowl-
edge engineering in restricted domains, rather than NL
interpretation (e.g., Cimiano et al. (2014)). As a semantic
representation for linguistic content, the OWL-DL assertion
language is entirely inadequate, allowing little more than
ground predications; and even the terminological language
is weak, if broad coverage is sought.

Hobbs’ LF (Hobbs 2006): This is a “flat” representation
in which all words are treated as predicates, typically con-
taining ordinary individuals as well as “eventuality” argu-
ments (events or propositions) they are considered to refer
to. Pros: Hobbs allows everything into the domain of indi-
viduals that can be referred to by a noun phrase; that gives
it breadth of coverage and provides referents for referring
expressions. In principle it also allows application of FOL
inference machinery. Cons: The reduction of all functional
types–including quantifiers, connectives, and modifiers–to
predicates, the approach to reification, and the amalgama-
tion of events and propositions, seem deeply problematic:
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• Conflation of propositions with events; this is illicit, wit-
ness, The neighbors were woken up by John(’s) firing a
gun last night, vs. #The neighbors were woken up by the
proposition that John fired a gun last night.

• Quantification is represented using “typical elements” of
sets that are not members of those sets but have all the
properties shared by the set elements, and no others; this
can be shown to lead to contradiction, for instance by con-
sidering the set S = {0,1}, whose members share the prop-
erty of being in S; thus the typical element is also in S,
yet by definition, is not in S;
Also this approach to quantification doesn’t allow state-
ments of type All members x of set S are R-related to all
other members y of set S, as this will relate the typical
element to itself.

• Failure to distinguish sentential and predicate modifiers;
e.g., in Skeptically, John scrutinized the proof of Fermat’s
last theorem, vs. Undoubtedly, John scrutinized the proof
of Fermat’s last theorem.

As well, as a SR, Hobbs’ LF does not do well on the crite-
rion of intuitive understandability, as a result of neglecting
all type distinctions and deriving “flat” rather than nested
LFs.

Abstract Meaning Representation (AMR) (Banarescu
et al. 2013): This has some similarity to Hobbs, blended
with ideas from conceptual and frame representations; for
example, the destruction of the room by the boy receives the
same SR as the boy destroyed the room:
(d / destroy-1 :arg0 (b / boy) :arg1 (r / room)).
Similarly to fear and to be afraid of are reduced to the same
fear-01 semantic frame. The free variables are perhaps
implicit wide-scope existentials, though this is left open.
Notably, there is no reliance on a syntactic parse; the idea
is that such LFs should be learned from an SR-annotated
corpus of otherwise unanalyzed sentences.
Pros: To the extent that the reduction of deverbal nouns
and adjectives to their verbal basis can actually be learned,
a kind of automated normalization might be achieved; an
initial result is reported in (Braune, Bauer, and Knight
2014); application to semantics-based MT has also been
initiated (Jones et al. 2012).
Cons: As semantics, this is very rough; eg., The girl
adjusted the machine and The girl made adjustments to
the machine are assigned the same representation. So how
would The girl made several major adjustments and many
minor adjustments to the machine be represented? The
AMR authors concede that quantification is not adequately
handled, and hypothetical or imagined events are not distin-
guished; in other words, intensionality is ignored for now;
there is no formal semantics, and so it is left to informal
intuition exactly what is meant by plugging entities into
slots such as :time, :domain, :mod, or :manner. It seems
unlikely that this SR will lend itself to effective inferencing,
if it is feasible at all.

Intensional logic (Montagovian, or Montague-inspired)
(Dowty 1979); Montague treats language as an indexical

intensional logic, with a strictly compositional semantics,
i.e., the semantic denotation of any phrase is obtained by
function composition of the denotations of its immediate
(top-level) constituents; there are infinitely many types; NP
meanings are uniformly construed as 2nd-order monadic
predicates, applicable to 1st-order monadic predicates;
Pros: Montague develops a beautifully uniform corre-
spondence between syntactic types and semantic types;
intuitions about entailments of intensional locutions are
accurately captured;
Cons: The base semantics is counterintuitive, e.g., names as
referring to properties of properties; Montague introduced
separate names for the entities themselves. The handling
of quantifier scope ambiguity is awkward, based on gen-
erating alternative parses that front different NPs; this
approach doesn’t extend to coordinator scope ambiguity
(as in Every boy loves Peggy or Sue). Inference is feasible
but not particularly elegant, involving much adding and
dropping of intension (∧) and extension (∨) operators1 and
λ-manipulation.

Montague-like compositional approaches, mi-
nus intensionality (typically retaining use
of λ-calculus) (McAllester and Givan 1992;
Artzi and Zettlemoyer 2013; Kwiatkowski et al. 2013;
Howard, Tellex, and Roy 2013); Pros: Elegant compo-
sitional semantics, as long as we do not venture into
intensional locutions; ease of integration with feature-based,
trainable disambiguation, learnability of the transduction.
Cons: expressive limitations, no events or times, etc.

Situation semantics (SS) (Barwise and Perry 1983); SS
semantics was intended as a “realistic” semantics that
represents the information contents of situations in terms of
concrete relations – tuples of properties/relations and their
participants, with positive or negative polarity; possible
worlds (central to Montague semantics) are avoided in favor
of situation types that are themselves part of the ontology.
Pros: Events or situations can be described by arbitrarily
complex sentences; the semantics broadens the notion
of context to allow (in effect) for the mental state of a
perceiver in perception statements. Cooper (2005) imports
some key ideas from SS into a DRT-like framework (with
feature-structured “records” instead of DRSs), and shows
examples of compositional LF computation for a few
sentences, including “donkey sentences”.
Cons: The metaphysics is very abstruse and complex
(seemingly as the result of avoiding possibilia), the status
of attitudes and other forms of intensionality remains
somewhat unsettled, and the relationship of SS to the
semantic representation of linguistic content has not been
very extensively worked out. It is unclear how inference
is to be performed in an SS-based SR, given the dynamic,
context-dependent semantics in SS.

1For those acquainted with Montague Grammar: This compli-
cation can be avoided by making possible worlds the last, rather
than the first, argument of interpretation functions; this is the strat-
egy in episodic logic (also considered here).

4136



Episodic logic (EL): This is a Montague-inspired,
language-like SR (and general knowledge representation)
(Schubert and Hwang 2000; Schubert 2000; Hwang and
Schubert 1994; Schubert 2014); it is first-order, intensional,
and strictly compositional, apart from initially unscoped
quantifiers, logical connectives and tense; this is reflected
in very simple LF formation rules.
Pros: EL accounts very simply for quantifier and connec-
tive ambiguity. Instead of using arbitrarily high-order types,
EL uses type-shifting operators that “lower” predicates and
sentences to individuals; in this way it handles all forms
of intensionality, as well as generalized quantifiers, etc. It
treats events/situation (episodes) realistically, and they can
therefore be characterized in arbitrarily many, specific or ab-
stract ways. Integration with specialists is straightforward.
Two well-developed inference engines exist, the latest being
EPILOG 2 (Morbini and Schubert 2009; 2011); the former
publication shows EPILOG 2 to be competitive in the FOL
theorem-proving domain, despite its handling of a much en-
riched representaton. Inference in EPILOG is fundamentally
similar to NLog (but more general, see Schubert (2014b)),
which is made possible by the close correspondence be-
tween EL’s expressive devices and those of NL.
Cons: Inference remains brittle, and probabilistic inference
is not implemented in a theoretically and practically satis-
factory way.

Conclusions
In this brief survey of broad-coverage SRs, it has not been
possible to evaluate each of the representational styles with
respect to each desideratum – this would have required some
120 capsule commentaries. However, we can make the fol-
lowing general observations (where phrases referring to the
initial desiderata are italicized).
NL-like expressivity is attained in few SRs that support infer-
ences (beyond similarity judgements or type subsumption).
Structured English, Montague-inspired approaches, EL, and
Hobbs’ LF come closest, though the first of these must ul-
timately address indexicality issues and inference limita-
tions. Adequate referent availability, including reference to
events, facts, etc., seems to be limited to a few “ontolog-
ically promiscuous” representation. Formal interpretability
is an issue for structured English, conceptual SRs, thematic
role representations (if taken beyond simple predications),
some types of semantic networks, and AMR. Weakness in
this area also tends to correlate with lack of inference mech-
anisms (though not entirly in the case of structured English
or certain conceptual representations). Judging whether pu-
tative semantic representations of phrases and sentences ac-
cord with intuitions about their meaning and entailments
is difficult or uncertain for many SRs; structured English
and representations whose surface form is close to NL (e.g.,
Montagovian, or EL) fare best in this respect.
Ease of mapping from NL to the SR is also simplest and
most transparent for NL-like SRs – often semantic rules
are just a matter of applying the semantic functor corre-
sponding to the head of a phrase to the semantic interpreta-
tions of the complement. Trainability so far is easiest for the

least ambitious SRs, in terms of the semantic aspects of lan-
guage being captured, or the domain addressed. Simple the-
matic role SRs, strictly limited non-intensional Montague-
like SRs, and AMRs fare best so far. However, machine
learning of the mapping from NL to SR is hardest, requiring
myriad training examples, when the structural gap between
the NL source and SR target is greatest. Given that even
structured English readily lends itself to inference, it seems
very worthwhile to attempt learning of semantic parsers for
comprehensive, NL-like, but more formal SRs.

In short, broad, language-like, inference-enabling SRs
in the spirit of Montague are feasible, while avoiding
Montague’s unbounded type theory and ubiquitous inten-
sion/extension operators. Such a representation, exemplified
by EL, also reflects Hobbs’ advocacy of ontological promis-
cuity, without trying to avoid natural type distinctions, such
as the distinction between quantifiers and predicates – which
surely is needed in a general world knowledge base support-
ing language understanding in any case.
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