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Abstract

Cyber-Physical Production Systems (CPPSs) are in the
focus of research, industry and politics: By applying
new IT and new computer science solutions, production
systems will become more adaptable, more resource ef-
ficient and more user friendly. The analysis and diagno-
sis of such systems is a major part of this trend: Plants
should detect automatically wear, faults and suboptimal
configurations. This paper reflects the current state-of-
the-art in diagnosis against the requirements of CPPSs,
identifies three main gaps and gives application scenar-
ios to outline first ideas for potential solutions to close
these gaps.

1 Introduction

The diagnosis of distributed production systems has gained
new attention due to research agendas such as Cyber-
physical Production Systems (CPPSs) (Lee 2008; Rajku-
mar et al. 2010) or its German pendant “Industrie 4.0”. In
these agendas, a major focus is on the self-diagnosis capa-
bilities for complex and distributed CPPSs. Typical goals of
such self-diagnosis approaches are the detection of anoma-
lies, suboptimal energy consumptions, error causes in large
plants or wear (Christiansen et al. 2011; Isermann 2004;
Windmann et al. 2013).

All these approaches have in common that they (par-
tially) capture the state of the environment and generate
fused environment information. More technically, an envi-
ronment model is generated based on several sources such
as sensors, engineering models and experts. In many cases,
the information captured from the environment may be im-
precise, incomplete or inconsistent (Li and Lohweg 2008;
Lohweg and Monks 2010). Furthermore, signal sources may
be not reliable (Ayyub and Klir 2006). Therefore, it is neces-
sary to apply sensor fusion concepts as a first step before any
diagnosis is computed (Monks and Lohweg 2013). Usually
the main problems in sensor fusion can be described as fol-
lows: Too much data, poor models, bad or too many features,
and improperly analysed applications (Hall and Steinberg
JAN 2001). One major misbelief is that machine diagnosis
can be handled only based on the observed data, in reality
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knowledge about the technical, physical, chemical or other
processes are indispensable for modelling diagnosis systems
(Glock et al. 2011).

The term “Diagnosis” summarizes all activities which
identify anomalous behavior and compute the root causes
of those anomalies. Often (Benjamins and Jansweijer 1994;
Reiter 1987; Grastien 2013), the task of diagnosis is split
into the four steps shown in figure 1: Based on the environ-
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Figure 1: Typical steps of a diagnosis process.

ment model computed by means of sensor fusion, anoma-
lous or conspicuous observations are identified. These obser-
vations are called symptoms—this second step is therefore
often also called “symptom detection”.

In many cases (Peischl and Wotawa 2003; Gregson, Li,
and Fu 2003; Maier, Tack, and Niggemann 2012), the pro-
cess ends here and the user is informed about the symptoms.
This is because in modern production plants, the main prob-
lem is that symptoms are overlooked due to a too high num-
ber of signals. Insofar, an anomaly detection process must
create a low amount of warnings which a user can handle
easily.

In a third step, hypotheses for the root causes are gener-
ated (Klar, Huhn, and Gruhser 2011; de Kleer et al. 2013;
Pan et al. 2012). Normally, the root cause can not be iden-
tified unambiguously—often because we lack information,
that is, not all intrinsically necessary knowledge is available
(Epistemic Uncertainty).

Therefore, in the fourth step, heuristics or additional ob-
servations are used to discriminate between the hypotheses
(Berjaga, Pallares, and Melendez 2009; Stern et al. 2013).
As a result, a root cause is disclosed to the user.

Please note that this paper neither covers the topic of ac-
quiring the observations for CPPSs (Pethig and Niggemann



2012) nor the generation of repair instructions.

Anomaly Detection

Generally speaking, as shown in figure 2, two classes of al-
gorithmic approaches exist for the detection of anomalous
situations:
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to Anomaly Detection to Anomaly Detection
System N
Observations Model
Observations /F'redicliuns
Classifier Compare
! '
Symptoms Symptoms

Figure 2: Different kinds of anomaly detection algorithms.

Phenomenological Approach: Here, the system observa-
tions are directly classified as correct or anomalous (Nieves
et al. 2011; Ferracuti et al. 2011). Traditionally, the classifi-
cation know-how is often modeled manually, e.g. in form of
rules (expert systems). For fast-changing CPPSs, the classi-
fier is trained using supervised machine learning algorithms
(Matias et al. 2013; Goernitz et al. 2013).

Model-based Approach: In order to detect anomalies au-
tomatically, a model-based approach can be used (Struss and
Ertl 2009; Christiansen et al. 2011; Niggemann et al. 2012).
A model is used to simulate the normal behavior of a plant
or normal product features. For this, the simulation model
needs most inputs concerning the plant and the product, e.g.
plant configuration, plant status, required product features,
etc. If the system observations vary significantly from the
model predictions, the system or product is classified as
anomalous. Such models come in different flavors: Statis-
tical (Ferracuti et al. 2011) and state-based models (Wind-
mann et al. 2013) or physical first principle models (de Kleer
et al. 2013). So model-based approaches capture the nor-
mal situation while phenomenological approaches capture
the differences between normal and anomalous situations.
The main challenge for this approach is high engineering
efforts for the creation of such models.

While phenomenological approaches are often more
straight-forward and do not require a system model, they
have one major inherent drawback: They must deduce
against the direction of causality since they deduce from
observations to anomalies. For complex distributed systems
with their high number of interdependencies between com-
ponents and their complex causalities, this is a hard task be-
cause a high number of classification rules is needed to dis-
criminate between all possible combinations of symptoms.
Model-based approaches do not have this problem since sys-
tem models take all inputs and compute the outputs, i.e. they
work in the direction of the physical causality. So in general,
phenomenological approaches are chosen for local compact
devices while model-based approaches are chosen for com-
plex, distributed plants.
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Figure 3: Different kinds of hypotheses generation algo-
rithms.

So far, the majority of papers and projects for model-
based anomaly detection (and also for model-based diag-
nosis as a whole) has relied on precise and component-
granular models of the plant’s physics (Isermann, Kimmich,
and Schwarte 2004; de Kleer et al. 2013; Klar, Huhn, and
Gruhser 2011; Mertens and Epple 2009): If a drive is used,
this drive is modeled, e.g. using characteristic maps. If a
reactor is installed, the chemical and physical process is
modeled, e.g. using differential equations. Of course, the
modeling levels and modeling formalisms change, but in
most cases they are chosen according to the system type—
disregarding the aspect of model acquisition. Other ap-
proaches to a model-based anomaly detection use qualitative
modeling formalisms such as automata (Su et al. 2002) or
simplified physical models (Struss, Sachenbacher, and Dum-
mert 1997).

Hypotheses Generation
As shown in figure 3, there are in general three main ap-
proaches to hypotheses generation:

Phenomenological (heuristic) approaches use pre-defined
associations to deduce from symptoms to root causes (Azar-
ian, Siadat, and Martin 2011; Pan et al. 2012)). There are
many techniques to represent such associations, ranging
from thresholds up to machine learning algorithms. In gen-
eral, it has the same drawbacks as outlines before for the
phenomenological approach to anomaly detection.

Model-based approach: This approach uses a model of
the causalities between the building components of the pro-
duction plant (de Kleer et al. 2013; Grastien 2013; Klar,
Huhn, and Gruhser 2011). By analyzing these causalities,
candidates for the root cause are identified. Main drawbacks
of this approach are due to the exponential number of causes
and the difficulty of obtaining verified models.

Case-based approaches use a database of previous cases
and identify hypotheses by exploiting similarities between
the cases (Berjaga, Pallares, and Melendez 2009). This ap-
proach ist still seldom used in CPPSs, mainly due to a lack
of recorded cases and the unknown generalization capability
of those cases.

Hypotheses Discrimination

To discriminate between hypotheses for the root causes,
mainly heuristic approaches are used (Alippi, Ntalampiras,
and Roveri 2013), e.g. a-priori probabilities. An exception
are model-based approaches where a hypothesis is temporar-
ily inserted into the model: if the differences between ob-



servations and model predictions disappear, the hypothesis
is accepted. Otherwise, the hypothesis is removed from the
model and another hypothesis is tested (de Kleer et al. 2013;
Struss and Ertl 2009). For this, models must be able to sim-
ulate all relevant erroneous behaviors, in general a require-
ment difficult to implement in reality—and especially for
CPPSs.

Sometimes, additional observations, e.g. by the user, are
employed to differentiate between hypotheses (Azarian, Sia-
dat, and Martin 2011).

2 Diagnosis for Cyber-physical Production
Systems: Challenges

Above, a short overview of diagnosis has been given. In the
following, we will outline specific features of CPPSs and we
will then derive three main theses concerning future chal-
lenges in the field of diagnosis for CPPSs. Sections 3-6 will
then underline the theses by case studies.

But first, to derive CPPS-specific challenges for diagno-
sis, CPPSs must be characterized. A CPPS is a holistic con-
ception of modern, often distributed, production systems: It
treats mechanical, computational and external aspects (e.g.
users, markets) as a inextricable system whose complex-
ity can only be handled if the CPPS comes with a set of
intrinsic cognitive capabilities such as self-diagnosis, self-
configuration, self-optimization and intelligent user interac-
tion.

Such a CPPS is characterized by a set of features which
differentiate it from classical production plants:

Hybrid Systems: CPPSs are hybrid systems which com-
prise discrete signals, time- and value-continuous signals
and structured data. Often, discrete signals such as opening
a valve or turning off a robot trigger mode changes (Buede
2009), i.e. they abruptly change the system behavior. Con-
tinuous signals comprise e.g. energy consumptions and other
resource requirements. Structured data comprises product
and raw material information, Enterprise Resource Manage-
ment (ERP) data and plant configurations.

Timed Systems: CPPSs are distributed systems which
show complex causalities and therefore a complex timing
behavior. L.e. unlike local devices, sophisticated behavior
changes over time render such systems complex and diffi-
cult to handle. E.g. a wear in a drive or the blockage of a
pipe in some part of the system will slow down some trans-
portation mechanisms and may cause behavior changes in
several other parts of the system—but only gradually and
after a period of time.

Distributed Systems: CPPSs are distributed systems
of systems: They encompass sensors/actuators, controller,
business software, mechanical components and of course
the users. And plants are often modularized into separate
subsystems which use heterogeneous automation systems.
Furthermore, production and logistic processes comprise lo-
cations all over the world which use different technologies
and employ people with different educational background.
Only by assigning tasks, now solved manually by experts, to
cognitive systems in the CPPSs, these systems will remain
manageable.
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What follows from these CPPS features for the task of di-
agnosis? In the following, three theses will outline the main
differences between the state-of-the-art and a future diagno-
sis for CPPSs.

Thesis 1: Anomaly detection will use generic physical
models which will be learned

As explained in section 1, phenomenological approaches to
anomaly detection are not suitable for system-level diagno-
sis tasks: Since they deduce from observations to anoma-
lies and root causes, they have to contain rules to differenti-
ate between all combinations of signals—and especially be-
tween all observation values over time. L.e. with a growing
number of observations and a growing relevant time inter-
vall the number of necessary rules—which must be modeled
or learned— grows also exponentially. This restricts the ap-
plication of of phenomenological approaches to small local
devices such as single drives, reactors, etc.

This leaves model-based anomaly detection. So far, as
outlined in section 1, such approaches have relied on phys-
ical models, with a different level of details, of the sys-
tem behavior and of its components, models which must be
created during the engineering process manually—often us-
ing object-oriented approaches to ease the modelling task.
But the last 20 years have clearly shown that such mod-
els hardly ever exist and prevent the usage of model-based
algorithms. So CPPSs will use more generic modeling
formalisms which can be learned automatically based on
observations—Ilearning here refers to the complete learn-
ing of models (Niggemann et al. 2012) and not to the pa-
rameterization of manually created models (Isermann 2004;
Zhang 2012). The reader may note that these generic mod-
elling formalisms are still physical models, since they work
in the direction of causality—unlike phenomenological so-
lutions. But instead of using model formalisms which re-
quire high engineering efforts (e.g. a conveyer belt modeled
using differential equations), in the future learnable generic
formalisms will be used which require no manual efforts
(e.g. timed automata for all components). An example, using
timed automata, can be found in sections 3 and 5.

Thesis 2: Anomaly detection will use hybrid models
which also capture the system’s timing

Analyzing section 1, it becomes obvious that most model-
based anomaly detection solutions either work with discrete
models (e.g. propositional logics, automata) or with a static
view onto the system. This does not match with the dynamic,
time-based and hybrid nature of CPPS. So hybrid models,
which also capture the dynamic behavior of time, will be
used. Details are given in section 4

Thesis 3: Instead of root cause identification, the focus
will be on a component-level anomaly detection and on
predictive maintenance

Identifying root causes requires models of the causality be-
tween system components. So far, these models can not be
learned and must be created manually. As outlined before,
such manual modeling tasks form bottlenecks in the process.
Furthermore, since phenomenological approach suffer from
the problems shown above, this leaves case-based root cause
analysis. But section 1 shows that such approaches are still
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Figure 4: Comparison between the state-of-the-art in diag-
nosis and the diagnosis of CPPSs.

the exception—mainly because cases are hard to find and
because cases can often not be generalized to new situations.

But in most cases, the root cause analysis is not the main
problem in CPPSs. Instead, anomalies must be localized as
precise as possible. E.g. if an anomalous energy consump-
tion of a production line can be traced back to one or two
specific drives, the root cause is easily identified. In CPPSs,
users are able to identify root causes easily if symptoms are
computed on such a component-level. To a large extend, the
challenge for users lies in the automatic early detection of
such anomalies, currently users are not able to do this due to
the over-whelming number of signals. Details can be found
in section 6.

These differences can also be seen in figure 4: The left
hand side shows the state of the art in diagnosis, the right
hand the diagnosis approach for CPPS. ) After sections 3-6

have shown details on these theses, section 7 will derive a
corresponding research agenda.

3 Analyzing discrete Systems and their
Timing Behavior by Means of Model
Learning

In contrast to the timing behavior of continuous systems,
the modeling and learning of discrete timing behavior is a
less mature field—especially if we want to learn such mod-
els. Significant work mainly has been done in using the for-
malisms of Timed Automata and Timed Petri Nets. Choos-
ing an appropriate timing modeling formalism some key is-
sues have to be considered, such as (i) discrete or dense time
domain, (ii) explicit or implicit modeling of time, (iii) one
clock or many clocks and (iv) concurrency and composition.

Due to the intuitive interpretation, Timed Automata are
well-suited to model the timing behavior of CPPS. The tim-
ing information can be represented using time ranges or
preferably using probability density distribution functions
(PDF) over time.
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Figure 5: Learned Timed Automata for a manufacturing
plant.

Another key issue is the ability for automatic learnability.
Several algorithms have been introduced to learn a Timed
Automaton based on observations of the normal behavior
only. RTI+ (Verwer 2010) and BUTLA (Niggemann et al.
2012) learn in an offline manner, i.e. first the data is acquired
and stored and then the automaton is learned. However, us-
ing the algorithms in the context of CPPS, observations can-
not be stored and therefore, an online learning algorithm is
desirable. OTALA (Maier 2014) is an extension of BUTLA
and learns a Timed Automaton in an online manner.

The corresponding anomaly detection (e.g. algorithm
ANODA (Vodencarevi¢ et al. 2011)) works according to fig-
ure 2: Any difference of the observed behavior to the pre-
dictions of the learned model hints at an anomaly. Here, the
sequential behavior of the observed events as well as the tim-
ing behavior have to be checked.

Figure 5 shows learned automata for a demonstration
manufacturing plant: The models correspond to modules of
the plants, transitions are triggered by a control signals and
are annotated with a learned timing interval.

In another project using a plant from process industry,
the anomaly detection with the learned Timed Automata has
been evaluated on data of a real production plant and com-
pared with the results of the models learned by neural net-
works and decision tree learning.

The results are given in the confusion matrix (according
to (Tan, Steinbach, and Kumar 2005)) in table 1.

Table 1: Results for the experiment on production plants.

true true
" . Accuracy
positive | negative
Timed Automata | 100% 97% 98.,5%
Neural Networks | 40.2% 42.2% 41.2%
Decision Trees 90.5% 83.3% 86.9%

Using learned Timed Automata, the anomaly detection
algorithms were able to detect all anomalies. The number
of false positives is also a good value, only some outliers
(mainly timing deviations) have not been learned. In total, a



high accuracy of 98.5% is achieved. In contrast the neural
networks and decision trees achieved an accuracy of only
41% and 87% respectively.

Relation to Theses 1 & 2 (section 2): Here, models of plants
from both manufacturing and process industry are learned
automatically (Thesis 1). For this, a Timed Automaton is
used which is a generic formalism to model timing and
which is also still learnable (Thesis 2).

4 Energy Analysis

Analyzing energy data in industrial system has some special
challenges: The energy consumption must be analyzed with
respect to the current system’s status, e.g. whether a valve is
open or whether a robot is turned on. The system’s status is
usually defined by the history of discrete control signals. L.e.
the ressource consumption of plants must be modeled using
hybrid model formalisms.

In (Kroll et al. 2014), an energy anomaly detection sys-
tem is described which analyzes two demonstration plants
and one industry plant. For this, the algorithms for learn-
ing Timed Automata are extended to learn hybrid timed au-
tomata. L.e. in addition to the analysis of events and discrete
signals, also continuous data such as energy consumptions
was used for anomaly detection. In figure 6, a pump is mod-
eled by means of hybrid timed automata using the flow rate
and switching signals. The three states S0 to S2 are sepa-
rating the continuous function into three linear pieces which
could be learned automated by the described algorithms.

1500

1000

Waterflow (i)

500

— Data
— Prediction R 0.9918

Figure 6: A learned hybrid automaton modeling a pump.

The results show, that a model accuracy of over 80% is
possible, with signal variances of 2,5%. The results shown
in table 2 give an overview on each tested platform.

Table 2: Result overview
| Model accuracy
~ 100%, var > 2,5%
~ 80%
~ 90%

Platform

Demonstration Plant
Intralogistic Test Platform
Chemical Test Platform

Figure 7 shows a typical learned energy consumption.

Relation to Theses 1 & 2 (section 2): Again, as already out-
lined in section 3, generic behavior models are learned based
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Figure 7: A measured (black line) and a learned power con-
sumption (red line).

on system observations. But as outlined in thesis 2, here hy-
brid models, typical for CPPSs, are first learned and then
used for the system analysis task.

5 Model-Based Anomaly Detection

A possible use case for model-based anomaly detection is
wind energy, where minimization of maintenance and over-
all downtimes improves energy yield of wind power stations
(WPS). By learning the behavior of a WPS from historical
data, an anomaly detection system is able to notify an oper-
ator in case of problems or failures. A joint research project
with a term of 1.5 years aims at such an anomaly detection
system where the used models are learned using unsuper-
vised learning algorithms.

Historical data from a WPS forms the database for this
project. It contains data of a normal WPS operation over a
couple of months. A principal component analysis (PCA)
was then used to learn a model of the system’s behavior.
As input for the PCA system descriptive continuous signals
were used. Wind speed and temperature were also taken in
account from the database. The PCA returns a dimensional
reduced description of the WPS normal state of work.

For evaluation purposes, new data is presented and trans-
formed into the learned PCA-space. In a next step, the dis-
tance of this transformed new data to the normal space is
calculated. Using mexican hat density functions, a member-
ship probability for new data is computed. Figure 8 shows a
learned model: The green nodes denote correct system situ-
ations while red notes correspond to anomalous situations.

/

i

Figure 8: Learned model and anomalies.



Table 3: Evaluation results of wind power station data.

total  evaluation | predicted predicted normal
data 40257 anomaly work state
real anomaly 1165 (true positiv) | 286 (false positiv)

real normal work
state

38794 (true nega-
tiv)

12 (false negativ)

To measure the performance, a database of 44568 sam-
ples was used. 43117 data points describe the normal state
of work, where the other 1451 are errors. The training data
contains 10% of the OK-data, the remaining 90% are used
as evaluation data. Table 3 shows the confusion matrix (see
(Tan, Steinbach, and Kumar 2005)) as a result of the eval-
uation. For this use case, the Fl-score is used to analyze
the system’s performance. A sensitivity of 80.29%, speci-
ficity of 99.96%, precision of 98.98%, balanced accuracy of
90.13% and a Fl-score of 88.66% were achieved by using
the above described method. So with a promising accuracy
of 90.13% and a F1-score of 88.66% this method can mon-
itor a continuous system like a wind power station in order
to explicitely plan maintenance to reduce downtimes.

Relation to Theses 1 & 3 (section 2): Due to the high va-
riety of WPS, any solution requiring manual modeling ef-
forts is unrealistic. Instead, here a model is learned auto-
matically, e.g. this approach is suitable to adaptable CPPSs.
And, as outlined in thesis 3, the experts are satisfied with an
anomaly detection since they can normally easily identify
the root cause once the symptoms are known.

6 Computing Component-based Anomalies

The algorithm MoSDA (Niggemann et al. 2014) exploits a
situation typical for CPPSs: Anomalies often refer to anoma-
lous observations on the system-level, e.g., an anomalous
energy consumption of the production system as a whole.
MoSDA leverages on the fact that these observations cre-
ate an over-determined system and MoSDA can therefore
break down—heuristically—the system-related anomalies
to component-related anomalies. The reader may note that
continuous signals in plants are often only measured on the
system-level only because sensors for power consumption,
water consumption, output, fluidic pressure can not be in-
stalled for each component. Starting from such component-
related anomalies, heuristics can be easily developed that
compute a set of possible root causes.

MoSDA has been applied, among others, to a high stor-
age system. The system comprises real world components
such as drives, conveyer belts and automation devices. Typi-
cally, wear and faults occur mainly in the drives, causing too
high energy consumptions, too long transport durations and
finally plant downtimes. To prevent this, any wear in a drive
must be detected as early as possible.

The overall power consumption, observed for the whole
plant, of the high storage system is split by MoSDA into the
individual power consumptions of the 7 drives. The results
of the MoSDA algorithm are shown in figure 9: The first row
of figure 9 shows the 7 accelerations, the second row the 7
velocities and the last row shows the measured overall power
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Figure 9: The results of the MoSDA algorithm.

consumption Pg and the 7 separated power consumptions
as computed by the MoSDA algorithm. In the research high
storage system (unlike in real plants), the separated power
consumptions can be compared to the real power consump-
tions: 10 cycles have been measured, the average prediction
error was between 1.7% and 7.4%. Le. the separate power
consumptions can be learned effectively. Therefore, in this
example, deviations of more than 7.4% from the normal be-
havior of the single drives can be used to detect wear and
faults.

Relation to Theses 3 (section 2): MoSDA does not imple-
ment a root cause analysis—root cause analysis being the
holy grail of traditional diagnosis. Instead, symptoms and
anomalies are computed for individual components. The
reader may note the difference to the state of the art: Cur-
rently, sensors such as energy sensors capture not the be-
havior of individual components but of whole subsystems—
mainly due to costly and elaborate installation and mainte-
nance processes for sensors. And since sensors correspond
to subsystems, symptoms are computed on the subsystem
level.

So breaking down the symptoms to the level of individual
components is a significant improvement: In modern pro-
duction plants, users are overwhelmed by the sheer number
of signals. If anomaly detection systems can focus the users
attention onto unusual behaviors, and if they can pinpoint the
anomalous components, the main problems are solved. E.g.
if among 1000 drives—no unusual number—4 are marked as
anomalous, most havoc is avoided.

7 Conclusion and Research Agenda

Based on the structure for CPPS diagnosis developed in sec-
tion 1, section 2 phrases three main theses: /. We need learn-
able generic formalisms for behavior models. 2. We need
model formalisms which capture both hybrid and timing as-
pects. 3. Instead of focusing on root cause analysis, we
should work on component-level anomaly detection algo-
rithms. Sections 3-6 then outlined the theses using several
application scenarios.

From the three theses follows directly a corresponding re-
search agenda:



First of all, data-driven approaches to modeling must
move into the research focus, replacing manual engineering
approaches. Le. the fields of machine learning and diagnosis
must work more closely together. As outlined in this paper,
this requires different formalisms which may capture less
system aspects than complex manually engineered models
but are learnable, i.e. we sacrifice precision for learnability.

Second, research should focus on formalisms which sup-
port hybrid aspects and which model a systems’ timing ex-
plicitly. Hybrid aspects, today often neglected, must move
into the focus for CPPSs. Furthermore, time must be mod-
eled explicitly in order to support a better analysis of a
plant’s timing behavior—timing being crucial for distributed
systems such as CPPSs.

Last, diagnosis solutions must take the cognitive capa-
bilities of human experts into consideration: How do ex-
perts identify anomalies and root causes and where do they
need assistance? For CPPSs, the traditional challenge of root
cause analysis must be complemented by an identification of
symptoms on the level of single components.

In general, diagnosis challenges for CPPSs must be de-
fined more from an application point of view, i.e. the chal-
lenges lie in an efficient support of the human expert in the
plant.
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