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Abstract

Machine learning and game theory are two important
directions of Al. The former usually assumes data is in-
dependent of the models to be learned; the latter usually
assumes agents are fully rational. In many modern Inter-
net applications, like sponsored search and crowdsourc-
ing, the two basic assumptions are violated and new
challenges are posed to both machine learning and game
theory. To better model and study such applications,
we need to go beyond conventional machine learning
and game theory (mechanism design), and adopt a new
approach called mechanism learning with mechanism
induced data. Specifically, we propose to learn a be-
havior model from data to describe how “real” agents
play the complicated game, instead of making the full-
rationality assumption. Then we propose to optimize
the mechanism by using the learned behavior models
to predict the future behaviors of agents in response to
the new mechanism. Because the above process couples
mechanism learning and behavior learning in a loop,
new algorithms and theories are needed to perform the
task and guarantee the asymptotical performance. As
shown in this paper, there are many interesting research
topics along this direction, many of which are still open
problems, waiting for researchers in our community to
deeply investigate.

1 Introduction

Machine learning and game theory are two important
branches of Al Both directions have been well developed in
the past decades. Machine learning mainly focuses on learn-
ing models from data, based on the assumption that data
are generated independent of the model, and game theory
mainly focuses on equilibrium analysis and mechanism de-
sign, usually based on the assumption that strategic agents
have fully rational behaviors.

In this Internet era, new applications like sponsored
search, crowdsourcing, and app store create brand new mon-
etization channels for companies, and also change the daily
life of every individual. In these applications, a huge num-
ber of human agents (e.g., advertisers in sponsored search,
workers in crowdsourcing, and app developers in app store)
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interact with each other governed by a complicated (and pos-
sible evolving) mechanism. On one hand, because of human
nature, these agents behave strategically to be better off, and
thus generate huge data that are dependent of the mecha-
nism. On the other hand, their behaviors are far from fully
rational due to their constrained capability and limited in-
formation access. As a result, neither conventional machine
learning nor game theory can model these applications very
well and provide us the right tool to effectively optimize
their mechanisms. We simply need to develop new frame-
works and theory for this purpose. This is exactly the moti-
vation of our paper.

1.1 Motivating Applications

As mentioned above, many Internet applications including
sponsored search, crowdsourcing, and app store can be re-
garded as dynamic systems that involve multi-party interac-
tions. Users arrive at the system with their particular needs;
agents (who compete or collaborate with each other) pro-
vide products or services that could potentially satisfy users’
needs; and the platform employs a complicated mechanism
(e.g., an auction) to match agents with users and extract rev-
enue from this procedure. Afterwards, the platform may pro-
vide agents with certain signals as their performance indica-
tor (which we usually call Key Performance Indicators, or
KPIs for short). In order to be better off during this economic
process, self-interested agents may strategically adjust their
behaviors (e.g., strategically reveal the information about
their services or products) in response to the mechanism (or
more accurately to the signals they receive from the platform
since the mechanism is usually invisible to them). Specifi-
cally, in a sponsored search, platform, users, and agents cor-
respond to the search engine, search users, and advertisers
respectively; in crowdsourcing, platform, users, and agents
correspond to crowdsourcing platform (e.g., Amazon Me-
chanical Turk), employers, and workers respectively; and
in app stores, platform, users and agents correspond to app
store, app users, and app developers respectively.

Driven by the crowd of strategic agents and the power of
the Internet, the abovementioned applications exhibit their
large scale, fast pace, and high dynamics. In such situations,
while agents are actively adjusting their behaviors to be bet-
ter off, they could never perform in a perfectly rational man-
ner due to limited information access and constrained ca-



pability. For example, in sponsored search (Qin, Chen, and
Liu 2014), the advertisers receive KPI for their ads, and ad-
just their bids accordingly. The KPIs, and therefore the re-
sponse to the KPI, depend on both the bids of other advertis-
ers and the auction mechanism (Athey and Nekipelov 2010;
Pin and Key. 2011). However, since the KPIs only reveal
partial information of the system (i.e., the advertisers can-
not know others’ exact bids and the parameter in the mech-
anism, and can hardly learn them in an effective way give
the large number of competitors in the auction, the com-
plex broad match between queries and keywords, and the
fast-paced auction process driven by billions of queries per
day), it is almost impossible for advertisers’ to make their
behavior changes a best response (Duong and Lahaie 2011;
Rong, Qin, and An 2014). As a result, the assumptions used
in both conventional machine learning and game theory be-
come rather fragile and cannot be used to explain real be-
haviors of the agents in these applications of our interest.

1.2 Our Proposal

To tackle aforementioned challenge, we propose a new re-
search direction called mechanism learning with mechanism
induced data (MLMID). The key of this proposal is as fol-
lows:

(1) Instead of assuming the agent behaviors to be fully ra-
tional, we propose to learn a more real model from data
to describe their behaviors. We call such models data-
driven behavior models. For instance, we can employ
a Markov model, which depends on much weaker as-
sumptions, i.e., agents behaviors only depend on their
previous actions and accessible information in a finite
period of history.

(2) Instead of assuming the behavior data to be independent
of the mechanism, we regard the data as being induced
by the mechanism, and propose to use a bilevel frame-
work to learn the optimal mechanism. That is, we first
use the behavior model learned from historical data to
predict agents’ future behaviors in response to a given
mechanism, and then learn the optimal mechanism on
its basis.

(3) We analyze the theoretical properties of the above learn-
ing process by considering the loop formed by behav-
ior learning and mechanism learning. In particular, we
may need to defined a nested capacity measure that con-
sider both the behavior model space and the mechanism
space. We also need to characterize the generalization
error with respect to both the number of training in-
stances for behavior learning, and the number of loops
for optimizing the mechanism based on the predicted
behaviors.

Regarding the above proposal, there are a number of inter-
esting open questions to explore. For example, how to col-
lect appropriate training data and test data? How to define
meaningful empirical loss and expected loss? How to effec-
tively learn a data-driven behavior model? How to learn the
mechanism given that it is coupled with a data-driven behav-
ior model? How to define appropriate surrogate loss function
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for efficient optimization? How to ensure the generalization
ability of the learned mechanism learned? Which solution
(e.g., equilibrium) concept shall we use while conducting
game theoretical analysis for the learned mechanism?

We truly believe that by answering the above questions,
we can gain deep understanding of the modern Internet ap-
plications, and obtain many new and interesting research
topics. We show the big picture of MLMID in Figure 1, and
will make detailed discussions in the remaining parts of this

paper.

2 Related Work

As can be seen from the above descriptions, our proposal
leverages both machine learning and game theory, and let
them interact with each other. We have noticed that in many
previous works, machine learning also meets game theory.
However, some of these works still assume the i.i.d. data
generation and/or full-rationality; some do not leverage data
at all, and some others are not concerned with mechanism
design. Therefore, they cannot model the MLMID problem
of our interest as well as our proposal. In this regard, we
consider our proposal as a good complement to the exist-
ing literature of machine learning plus game theory, which
establishes a stronger connection to real applications.

Here we briefly discuss the relationship between our pro-
posal and some related works.

Learning in games (Fudenberg 1998; Mossel and Roch
2007; Mannor, Shamma, and Arslan 2007; Yao, Chen, and
Liu 2012) studies how an agent optimizes his/her behaviors
through learning under the assumption that the mechanism
of a game is fixed and does not depend on agents’ behaviors.
This is clearly different from our problem, since we want to
learn the mechanism based on agents’ behavior data.

Mechanism design via machine learning (Diitting et al.
2012; Balcan et al. 2005) reduces the optimization problem
for mechanism design to existing machine learning tech-
niques, e.g., support vector machines. It differs from our
problem in two aspects: (1) It assumes the full rationality of
agents’ behaviors and targets at designing incentive compat-
ible mechanisms. (2) It does not leverage data for learning.

Machine learning for mechanism design also targets
at mechanism design by learning with data. However, it
is different from our problem in the following aspect:
(1) Some works (Babaioff, Sharma, and Slivkins 2009;
Babaioff, Kleinberg, and Slivkins 2010; Cole and Rough-
garden 2014)assume the full rationality of agents’ behaviors
and targets at designing incentive compatible mechanisms.
(2) Some works (Xu, Qin, and Liu 2013; He et al. 2013b;
Hummel and McAfee 2014; Cole and Roughgarden 2014;
Yang et al. 2014) assume the data to be i.i.d., while in our
problem data is induced by the mechanism.

Game theory for machine learning, including strate-
gyproof classification (Meir, Procaccia, and Rosenschein
2012) and incentive compatible regression (Dekel, Fischer,
and Procaccia 2008), focuses on how to make machine
learning algorithms incentive compatible. In our problem,
we do not consider incentive compatibility since agents are
not fully rational.



Machine
Learning

t

Datais i.i.d.
Generated

Internet

Applications

Full
Rationality

2

Game Theory

Mechanism Learning with Mechanism Induced Data

Data Driven
Behavior Model

| Static Behavior Models

L Dynamic Behavior Models

Mechanism [ Offline Learning
el L Online Learning

Theoretical Generallzatlor? Analysis
Analysis Regret Analysis

~ Equilibrium and Efficiency Analysis

Figure 1: Mechanism Learning with Mechanism Induced Data

3 Mechanism Learning

The focus of mechanism learning is to adopt new machine
learning techniques to optimize the mechanism of the plat-
form, based on the learned data-driven behavior models of
the agents. In this section, we make detailed elaborations on
major research topics in this new direction.

3.1 Data Driven Behavior Models

In this subsection, we discuss the data-driven behavior mod-
els and how to effectively learn their parameters.

Static behavior models. In this kind of models, the behav-
iors of an agent can be described by a static parametric func-
tion whose mathematical form is fixed and does not change
over time. The mathematical form might be just a regres-
sion function, or a parameterized version of some existing
behavior models studied in the literature (Duong and Lahaie
2011). The input to the behavior function include all kinds
of information that the agent can access. The output of the
behavior function is the behavior change. Please note that
adopting static behavior models does not mean that the be-
haviors are static, because the input to this “static” function
may be dynamic. Given the data generated by the agents in
a certain application, we can learn the parameters of the be-
havior function and further use them to predict the future be-
haviors of the agents. Actually, there have been some mean-
ingful attempts on learning static behavior models in the re-
cent literature. For example, in (Tian et al. 2014) and (He et
al. 2013a), it is assumed that the model is Markovian, and
its transition probability is a truncated Gaussian function,
then the parameters of the model are learned by means of
maximum likelihood estimation. In (Tian et al. 2014), gen-
eralization analysis is conducted for the model and condi-
tions are given that can guarantee the generalization ability
of the model. In (Xu et al. 2013), the best response model
is parameterized by introducing the willingness, capability,
and constraints of the agents, and then the parameters of the
model is learned also by means of maximum likelihood es-
timation.

Dynamic behavior models. In this kind of models, there
might not exist a static function that describe how agents
change their behaviors. Instead, the assumption is that
agents will perform online learning when interacting with
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the platform, users, and other agents. Therefore, the behavior
models of the agents will be dynamic and evolve over time.
For this line of research, the related attempts are very lim-
ited. Because of this, there is actually quite a large space to
explore. For example, since there are both stochastic factors
(e.g., users and other uncertain factors in the ecosystem) and
adversarial factors (e.g., both the behaviors of other agents
and the mechanism of the platform may change strategi-
cally), conventional online learning algorithms (e.g., multi-
armed bandits) might not suffice. New methodologies and
theoretical frameworks might be needed.

3.2 Mechanism Learning based on Learned
Behavior Model

To perform the task of mechanism learning, one could col-
lect historical data including the agent behavior data and
the user data in advance, and then optimize the mecha-
nism on these data. In (Zhu et al. 2009; Cui et al. 2011;
Mohri and Medina 2013), the authors assume agents’ be-
haviors or the behavior distribution will not change when
the mechanism changes, and apply machine learning tech-
niques to learn the optimal algorithm. However, as men-
tioned before, the i.i.d. assumption does not hold in practice,
and when we update the mechanism during the learning pro-
cess, the agent behavior data we collected in advance will
become obsolete.

To tackle the problem, we propose to use the collected
agent behavior data just for the training of the data-driven
behavior model, and then use this model to generate new be-
havior data for the agents during the process of mechanism
learning. One existing attempt along this direction is (He et
al. 2013a). They propose a new framework that involves a
bi-level empirical risk minimization (ERM): It first learns a
Markov behavior model to characterize how agents change
their behaviors, and then optimizes the mechanism by sim-
ulating agents’ behavior changes in response to the mech-
anism based on the learned Markov model. Although this
framework has demonstrated promising empirical results, its
optimization is somehow inefficient due to the complex pro-
cess of simulating new behavior data and the non-smooth
objective function. It remains an open question how to find
appropriate surrogate objective function and design efficient
optimization algorithms for this bilevel ERM framework.



Furthermore, there is one assumption behind the afore-
mentioned approach, i.e., the collected behavior data is com-
prehensive enough and the behavior model learned from it
can be valid for any new mechanism. However, sometimes
this assumption might not hold (especially considering that
agents may perform online learning and their behaviors can
be very dynamic and complicated). In this situation, it would
be better to adopt the online version of mechanism learning.
Specially, we collect our desired behavior data of the agents
in a progressive and adaptive manner within a real applica-
tion, and probe the mechanisms by minimizing the regret
on the collected data. With this online setting, we have the
power to change the mechanism of the system and impact
the data generalization process. To our knowledge, there is
no formal attempt along this direction yet, and there are
many related questions to be answered, e.g., how to collect
behavior data and probe different mechanisms? And how to
combine static/dynamic behavior models with online mech-
anism learning?

3.3 Theoretic Analysis for Mechanism Learning

The theoretical study of mechanism learning involves two
perspectives and three subtopics. From the perspective of
machine learning, we can conduct (1) generalization anal-
ysis for offline mechanism learning and (2) regret analy-
sis for online mechanism learning; from the perspective of
game theory, we can conduct (3) equilibrium and efficiency
analysis for such a dynamic system in which the mechanism
is optimized based on the agents’ behavior models and the
agents’ behavior models are learned from non-i.i.d. data.
Generalization analysis for offline mechanism learning
is highly non-trivial because of the loop between behav-
ior data and mechanism. Very recently, the first generaliza-
tion analysis regarding MLMID is conducted in (Li et al.
2015), which decomposes the overall generalization error
into the behavior learning error and the mechanism learn-
ing error. The former relates to the process of learning a
Markov behavior model from data, and the latter relates to
the process of learning the optimal mechanism based on the
learned behavior model. For the behavior learning error, a
non-asymptotic error bound is obtained by considering the
gap between transition frequency and transition probabil-
ity of a Markov chain. For the mechanism learning error,
a new concept called nested covering number of the mecha-
nism space is used to obtain an uniform convergence bound.
Specifically, the mechanism space is first partitioned into
subspaces (i.e., a cover) according to the similarity between
the stationary distributions of the data induced by mecha-
nisms. In each subspace, the data distribution is similar and
therefore one can substitute the data sample associated with
each mechanism by a common sample without affecting the
expected risk by much. Second, for each mechanism sub-
space, a uniform convergence bound is derived based on its
covering number (Anthony and Bartlett 2009) by using the
generalization analysis techniques developed for mixing se-
quences. While the above analysis takes a meaningful step
forward, it is still very preliminary and a lot of works need
to be further done. For example, according to the analysis,
the generalization guarantee heavily relies on an algorithmic
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trick introduced by (He et al. 2013a), called §-sample shar-
ing. This makes the analysis rather narrow, and may not be
able to explain other types of algorithms for MLMID.

Regret analysis for online mechanism learning is very
different from the analysis for most existing online learn-
ing tasks. Comparing with classical online learning task
with stochastic environment (Shalev-Shwartz 2011), online
mechanism learning involves much more complex agents
behaviors; comparing with adversarial online learning which
does not utilize any information about agents behaviors
(Cesa-Bianchi and Lugosi 2006), the data-driven behavior
model in our proposal should help us obtain results with
more insights. Thus, regret analysis for online mechanism
learning is interesting and promising, and may be very criti-
cal for the algorithm design for online mechanism learning.
To our knowledge, this is still unexplored space.

Equilibrium and efficiency analysis is a difficult task for a
dynamic system in which the mechanism is learned from
mechanism induced data, the data is not i.i.d., and the
agents’ behaviors are not fully rational. It is known that
when the learned behavior model takes certain forms such as
the quantal response model, although without the full ratio-
nality assumption, we can still get some meaningful results
regarding the equilibrium of some specific game with fixed
mechanisms such as sponsored search auctions (Rong, Qin,
and An 2014). However, for other kinds of behavior models
learned from data, e.g., the one based on the truncated Gaus-
sian function (He et al. 2013a), and the mechanisms learned
based on the behavior models, we do not have any clear un-
derstanding of their corresponding equilibria. Many ques-
tions remain open and need to answer. For example, which
solution concept shall we use to analyze the equilibrium of
a dynamic system in which the mechanism and agents’ be-
havior models are dependent and both evolving over time?
Shall we define some new equilibrium concepts without the
full rationality assumption on agents’ behaviors? If there
are multiple equilibria, how does the mechanism perform in
terms of social welfare in the best-case and the worst-case
equilibria? And how about the average case?

4 Conclusion

Motivated by the interaction between agents and the mecha-
nism in many Internet applications, we describe a new re-
search direction, called mechanism learning with mecha-
nism induced data, in which we need to learn agents’ behav-
iors based on historical data induced from the mechanism
and then optimize/learn the mechanism based on the learned
behavior model. Machine learning and game theory method-
ologies meet each other in this new direction, and both need
to be refined.

In our opinion, the new direction has both big research po-
tential to enlarge the scope of Al and practical impact to help
us better understand modern Internet applications. We hope
that this paper will draw more attention from the community
and attract more researchers to get into this direction.
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