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Abstract

In a recent position paper in Artificial Intelligence, we argued
that the automated planning research literature has underes-
timated the importance and difficulty of deliberative acting,
which is more than just interleaving planning and execution.
We called for more research on the AI problems that emerge
when attempting to integrate acting with planning.

To provide a basis for such research, it will be important
to have a formalization of acting that can be useful in prac-
tice. This is needed in the same way that a formal account of
planning was necessary for research on planning. We describe
some first steps toward developing such a formalization, and
invite readers to carry out research along this line.

Introduction
Research on automated planning (the automatic generation
of plans of action) has led to numerous impressive research
accomplishments by an active community of researchers.
Despite the large potential of these accomplishments, their
deployment into fielded applications has unfortunately been
relatively low. In (Ghallab, Nau, and Traverso 2014), we ar-
gued that the acting part is more important and more diffi-
cult than researchers have realized, and that more research
is needed on the numerous AI problems that emerge when
attempting to integrate acting with planning.

AI planning research has focused mostly on offline plan-
ning. Substantial work has been done on execution control
(see the Related Work section); but most of it has treated
actions as atomic. This underestimates the importance and
difficulty of the deliberation needed to carry out the actions.
More specifically:

• Acting requires continual online planning and delibera-
tion. Throughout the acting process, an actor must refine
its actions into lower-level steps, monitor and react to un-
expected events, update and repair its plans. (see Fig. 1).
Plans remain partial and abstract as long as the cost of
possible mistakes is lower than the cost of modeling, in-
formation gathering, and thorough planning.

• Actors typically are heterogeneous hierarchies: orga-
nized collections of heterogeneous modules for various
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Figure 1: Acting with continual online planning.

specialized tasks. Planning for such an actor goes be-
yond existing hierarchical planning techniques; its re-
quirements and scope are significantly different. Different
modules may have different notions of what constitutes a
state or an action, and what actions are available in what
states. To integrate the modules effectively, the actor must
have ways to translate among these representations.

This focus of this paper is the long-term challenge of de-
veloping a formalization of acting that can be useful in prac-
tice. Such a formal account is needed, in the same way that
a formal account of planning was necessary for research on
planning. As steps toward developing such an account, we
propose preliminary versions of a hierarchical representa-
tion for both planning and acting, and acting and planning
algorithms using this representation. We discuss the chal-
lenges that must be overcome to extend this work.

Related Work
Our ideas build on prior research by many authors includ-
ing (Rosenschein and Kaelbling 1986), (Dean and Well-
man 1991), and (Pollack and Horty 1999). These problems
have been particularly of interest to the robotics commu-
nity, e.g., (Despouys and Ingrand 1999; Ingham, Ragno, and
Williams 2001; Kortenkamp and Simmons 2007; Effinger,
Williams, and Hofmann 2010; Beetz, Mösenlechner, and
Tenorth 2010) and the multi-agent community, e.g., (des-
Jardins et al. 1999; Pappachan and Durfee 2000; Brenner
and Nebel 2009).
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Figure 2: Tasks and actions for a service robot.

Starting with the early Planex (Fikes 1971), many sys-
tems considered planning primitives as directly executable;
they focused on their execution control and monitoring. The
lack of robustness of these systems was addressed by sev-
eral approaches for specifying operational models of actions
and for using these models to refine actions into lower level
commands. Various representation have been proposed,
such as procedures (e.g., RAP (Firby 1987), PRS (Ingrand
et al. 1996), TCA (Simmons 1992), TDL (Simmons and
Apfelbaum 1998)) transformation rules (e.g., XFRM (Beetz
and McDermott 1994)), situation calculus (e.g., GOLEX
(Hähnel, Burgard, and Lakemeyer 1998)), Petri nets and
automata (PLEXIL (Verma et al. 2005), SMACH (Bohren
et al. 2011), or (Wang et al. 1991; Barbier et al. 2006;
Ziparo et al. 2011)). In some of these system, execution
control is interleaved with planning (Löhr et al. 2012), in-
cluding within a receding horizon framework (Garcia, Prett,
and Morari 1989). Most of these systems introduce a sepa-
rate knowledge representation between planning and acting;
they have a clear separation between a planning stage and an
acting stage, even when the two are interleaved.1

To the best of our knowledge, none of these systems ad-
dresses our objectives of a uniform framework for delibera-
tion at the acting level, including planning, through a hierar-
chy of state and action spaces.

1Space limitation precludes a full discussion of the state of the
art, more can be found in the survey of (Ingrand and Ghallab 2015).

Motivating Example
To illustrate some of the key problems, consider a versatile
service robot working in an indoor environment such as a
house or a store. The task is to fetch packages as they arrive,
and bring them to the addressee. In Fig. 2, the boxes repre-
sent actions, and the red and green arrows denote refinement
of abstract actions into collections of less-abstract actions.

Where there are dashed green lines, the action refinement
could be done quite easily by a conventional planning algo-
rithm. The action to be refined (e.g., “take o7 to room23”)
can be taken as the goal of the planning problem. To synthe-
size the sequence of actions (“take o7”, “go to room23”, “de-
posit o7”), most planning algorithms use descriptive action
models (e.g., classical precondition-and-effects models) that
describe what the action do, without describing how those
actions will be carried out. But this does not mean that the
robot would do that part of its deliberation offline, because
the robot may not know until runtime what object should be
taken where. For example, the addressee may want some ob-
jects to be left in his/her office and others to be delivered to
him/her personally—and in the latter case, the robot needs
to find out whether the addressee is currently in the office or
somewhere else.

Where there are solid red lines, action refinement can
more easily be performed using an operational model,
which is basically a program telling how to perform action
under certain circumstances. For example, near the bottom
of the figure, opening the door depends on whether the door
slides or turns, whether it opens to the right or to the left,
whether it opens toward or away from the robot, what type
of handle it has, etc. The robot will not learn this information
until it goes to the door and looks at it; and it may not learn
some other relevant information (e.g., whether the door is
locked, whether it is jammed, whether it has a broken hinge)
until it tries to open the door.

In a closed world where all of the possible effects of each
action are known in advance, may be possible (at least in
principle) for the robot to construct an offline plan for open-
ing a door, using conventional techniques for planning in
nondeterministic environments. But such an approach is dif-
ficult if the environment is dynamically changing and isn’t
pre-engineered to conform to the robot’s needs; and it may
not work at all if the action models or the models of exoge-
nous events are incomplete.

The solid blue lines represent communications among in-
teracting concurrent actions. For example, once the robot
has turned the doorknob, it needs to simultaneously main-
tain the doorknob’s turned position and pull backward to
open the door, with continual monitoring to modify the
actions in real time, to ensure that they are carried out
correctly and have the desired effects. Descriptive action
models are insufficient for this: the robot needs to syn-
thesize the process and the interaction protocol. In some
cases, this could be done by the automated synthesis of
control automata which takes into account uncertainty and
the interleaving of the execution of different processes at
run-time (see, e.g., (Bertoli, Pistore, and Traverso 2010;
Bucchiarone et al. 2013)). In other cases (e.g., the top-level
decomposition in the figure), it would be more practical for
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method m-opendoor(r, d, l, o)
task: opendoor(r, d)
pre: loc(r)= l ∧ adjacent(l, d) ∧ handle(d, o)

body: while ¬reachable(r, o) do
move-closer(r, o)
start-monitor-status(r, d)
if door-status(d)=closed then

unlatch(r, d)
throw-wide(r, d)
end-monitor-status(r, d)

Figure 3: A refinement method for the “open door” task in
Fig. 2. The “pre” line gives the method’s preconditions, and
the body is a simple program to generate a task refinement.

a human to write a program in advance.

Unifying Descriptive and Operational Models
From the previous section, we discussed two kinds of ac-
tion models: descriptive models like those used by in offline
planning systems, and operational models like those used in
reactive systems such as PRS (Ingrand et al. 1996)). If a sin-
gle knowledge representation could be used for both, this
would make it easier to specify and maintain consistency
between the actor’s reasoning and the planner’s reasoning,
thus making it more likely that planners will accurately pre-
dict the effects of actions and plans.

As a first step in this direction, we propose a refinement
method representation. The refinement methods would be
similar both to PRS procedures (Ingrand et al. 1996) and to
SHOP’s task-decomposition methods (Nau et al. 1999). As
a suggestion of what such a representation might look like,
let us say that a refinement method is a triple

m = (role, precond, body)

that specifies a way to accomplish a role (which may be a
task, event, or goal) by executing a simple program given in
the method’s body. For example, Fig. 3 gives a method for
the opendoor task in Fig. 2. The steps in the body include
control structures (“while” and “if”), commands to the exe-
cution platform, and tasks to be further refined.

If defined correctly, such a representation would ease the
consistency problems mentioned above, because the same
refinement methods could be used in both acting and plan-
ning algorithms. The next two sections outline what such
algorithms might look like.

Research challenges. Developing such a representation—
as well as the planning and acting algorithms to use it—will
present several research challenges. For example:

• Heterogenous hierarchy. A hierarchically organized ac-
tor may use different state spaces and action spaces in
different parts of its hierarchy. For example, in Fig. 2,
room23 is an abstract entity that, at a lower level of the
hierarchy, may correspond to a large set of possible con-
figuration coordinates for the robot. A principled way

is needed to compute mappings between lower-level in-
formation such as these configuration coordinates, and
higher-level abstract entities such as room23. Research is
needed on what kinds of mathematical and computational
properties these mappings should satisfy, and how to in-
corporate these mappings into acting and planning algo-
rithms.

• Time. Research is needed on how to generalize refine-
ment methods over temporally qualified assertions, ac-
tions and tasks—and how to develop temporal planning
and acting algorithms for such methods. Temporal Plan
Networks of the RMPL system (Williams and Abramson
2001) offer an approach which extends temporal networks
with symbolic constraints and decision nodes. Delibera-
tion in such a system is finding a path in the explicit net-
work that meets the local constraints, taking into account
choices (Conrad, Shah, and Williams 2009) and possible
error recovery (Effinger, Williams, and Hofmann 2010).
More work for the synthesis of these networks from de-
scriptive and operational specifications is needed.

Acting with Refinement Methods
The Refinement Acting Engine (RAE) in Fig. 4 is our first
attempt at a formalism for acting, using refinement meth-
ods as operational models of actions. RAE is inspired by and
formalizes the PRS system (Ingrand et al. 1996). It takes as
input a stream of tasks to perform (which may come from a
planner, a user, or RAE itself as updates of its own reason-
ing state). It delivers commands to the execution platform as
required by the context given by a set of facts reflecting the
perceived state of the world.

For each task τ in the input stream, RAE selects a relevant
method m and creates a LIFO stack to keep track of how the
refinement is progressing. Ifm fails, RAE will try a currently
applicable alternative method that it has not already tried.
This differs from backtracking, because since RAE may have
executed actions while refining m.

Progressing in a stack σ means advancing sequentially by
one step in the body of the topmost method. If this step is
a command, RAE sends it to the execution platform; if the
step is a task, RAE selects a relevant method and put it at the
top of σ; if the step is to exit from m, RAE removes m from
σ (and removes the stack completely if this makes σ empty).

While RAE is advancing on a stack, other tasks may ap-
pear in its input stream and require attention. Thus RAE will
need to interleave the processing of all stacks.

In summary, the idea is for RAE to maintain a separate
stack for each external task or event it reads in its input
stream, and progress the stacks concurrently.

Research challenges. RAE is a simple refinement formal-
ism for acting; additional work is needed to complete the
formalism. In addition to the challenges mentioned in the
previous section, here are some additional ones:
• The use of concurrent actions and concurrent tasks in RAE

presents potential conflict issues (e.g., resource sharing).
Currently, the only way to resolve such issues in RAE is to
incorporate ad hoc fixes in the definitions of the methods.
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RAE(M)
loop

for each new task τ in the input stream do
candidates← {applicable methods for τ}
if candidates = ∅ then output(“τ failed”)
else do

nondeterministically choose m ∈ candidates
in the agenda (list of current activities), create

an execution stack for τ with method m
for each stack σ ∈ agenda do

Progress(σ)
if σ = ∅ then remove σ from agenda

Figure 4: Simplified version of RAE

Rather than requiring the designer to do this, formal tools
are needed that will be analogous to the ones for program
verification.

• Research is needed on how to acquire operational mod-
els of actions and methods. Some promising approaches
include combining high level specifications with learning
techniques (reinforcement and/or learning from demon-
stration), and partial programming techniques (Andre and
Russell 2002; Simpkins et al. 2008).

Planning with Refinement Methods
For our initial version of a refinement-method planning algo-
rithm, the basic idea is to simulate the effects of RAE’s pos-
sible choices, to see which ones are likely to be best. Such a
refinement-simulation planner will have several similarities
to the SHOP algorithm (Nau et al. 1999), but also some sig-
nificant differences. The biggest one is that in SHOP’s meth-
ods, the method’s body was a list of tasks and actions. In a
refinement method, the method’s body is a program that gen-
erates tasks and actions. The planner will need to simulate
this program’s execution. Each time a task is generated, the
planner will need to refine that task; and each time a primi-
tive command is generated, the planner will need to predict
(perhaps with a precondition-and-effect model, perhaps in
some other way) what the command will do.

Research challenges. All of the challenges discussed ear-
lier also arise in planning. Here are some additional ones.
• Planning over programs. In our proposed formalism,

the body of a method is a simple program, and our
proposed refinement-simulation planner just simulates
the execution of the program. There are many cases
where such an approach will be inadequate, and where
it will be necessary to reason about the programs them-
selves as a planning activity. Reasoning about programs
is very hard computationally, and will be infeasible un-
less some restrictions are placed on the programs. In
some cases, this could be done by restricting the pro-
grams to be control automata, as in (Bertoli, Pistore, and
Traverso 2010; Bucchiarone et al. 2013). Generalizing
this approach, and incorporating similar reasoning into a

method-decomposition framework, will be significant re-
search challenges.

• Depth-first versus layered planning. Rather than a
refinement-planning algorithm that works in a depth-first
manner, like SHOP, a different approach is to use a
layered algorithm like the one in (Marthi, Russell, and
Wolfe 2008). That would have some appealing theoretical
properties, but the “angelic nondeterminism” technique
used in their work requires a way to produce informa-
tion (bounds on sets of states, and costs of reaching those
states) that seems difficult to achieve in practice. Research
is needed on how to overcome this problem.

Blended Acting and Planning
The primary reason for doing planning during acting is to
help the actor make informed choices. A preliminary solu-
tion to this would be to interleave planning and acting, e.g.,
by having RAE use a planning algorithm to choose which
method to use for a task.

Research challenge: For a more thorough blend of plan-
ning and acting, the situation is somewhat different; there
will be a need to integrate planning into the RAE algorithm
itself. What such a blend will look like, we’re not sure. This
is still purely a “blue sky” idea.

Furthermore, it is worth noting that several of the research
challenges that we discussed earlier are more general than
just planning or just acting, and apply to the entire topic of
blended planning and acting. These include, for example, the
temporal aspects, learning, and verification.

Conclusion
In (Ghallab, Nau, and Traverso 2014) we described the need
for research on the design and development of actors, as op-
posed to planners, executors or other enablers that an actor
may use to perform its activities. In the current paper we
have focused on a key challenge: the discrepancy between
the descriptive action models needed for planning, and the
operational action models needed for acting.

To address this challenge, we advocate developing a uni-
fied hierarchical representation for tasks and actions, that
can be used both for planning and for acting (this view
will be more extensively developed in our forthcoming book
(Ghallab, Nau, and Traverso 2015)). We have outlined what
such a representation might be like, and how one might build
algorithms that use it for concurrent acting and planning. We
have pointed out many places where research is needed to
make such an approach successful.

We hope this paper will encourage readers to carry out
research on these topics. We are optimistic that such research
will provide a solid foundation for development of highly
capable actors for a variety of applications.
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Pantofaru, C.; Wise, M.; Mösenlechner, L.; Meeussen, W.;
and Holzer, S. 2011. Towards autonomous robotic butlers:
Lessons learned with the pr2. In ICRA, 5568–5575.
Brenner, M., and Nebel, B. 2009. Continual planning
and acting in dynamic multiagent environments. JAAMAS
19(3):297–331.
Bucchiarone, A.; Marconi, A.; Pistore, M.; Traverso, P.;
Bertoli, P.; and Kazhamiakin, R. 2013. Domain objects for
continuous context-aware adaptation of service-based sys-
tems. In ICWS, 571–578.
Conrad, P.; Shah, J.; and Williams, B. C. 2009. Flexible
execution of plans with choice. In ICAPS.
Dean, T. L., and Wellman, M. 1991. Planning and Control.
Morgan Kaufmann.
desJardins, M.; Durfee, E. H.; Ortiz, C. L.; and Wolverton,
M. 1999. A survey of research in distributed, continual
planning. AI Mag. 20(4):13–22.
Despouys, O., and Ingrand, F. 1999. Propice-Plan: Toward a
unified framework for planning and execution. In European
Workshop on Planning.
Effinger, R.; Williams, B.; and Hofmann, A. 2010. Dynamic
execution of temporally and spatially flexible reactive pro-
grams. In AAAI Workshop on Bridging the Gap between
Task and Motion Planning, 1–8.
Fikes, R. E. 1971. Monitored Execution of Robot Plans
Produced by STRIPS. In IFIP Congress.
Firby, R. J. 1987. An investigation into reactive planning in
complex domains. In AAAI Conference. Seattle, WA.
Garcia, C. E.; Prett, D. M.; and Morari, M. 1989. Model
predictive control: theory and practice–a survey. Automatica
25(3):335–348.
Ghallab, M.; Nau, D.; and Traverso, P. 2014. The actor’s
view of automated planning and acting: A position paper.
Artif. Intell. 208:1–17.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2015. Automated
Planning and Acting. Cambridge University Press. To ap-
pear.

Hähnel, D.; Burgard, W.; and Lakemeyer, G. 1998.
GOLEX—bridging the gap between logic (GOLOG) and a
real robot. In KI, 165–176.
Ingham, M. D.; Ragno, R. J.; and Williams, B. C. 2001.
A reactive model-based programming language for robotic
space explorers. In i-SAIRAS.
Ingrand, F., and Ghallab, M. 2015. Deliberation for Au-
tonomous Robots: A Survey. Artif. Intell. (To appear).
Ingrand, F.; Chatilla, R.; Alami, R.; and Robert, F. 1996.
PRS: A high level supervision and control language for au-
tonomous mobile robots. In ICRA, 43–49.
Kortenkamp, D., and Simmons, R. 2007. Robotics systems
architectures and programming. In Khatib, and Siciliano.,
eds., Handbook of Robotics. Springer.
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