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Abstract

In this paper, I summarize the results of a decade-plus of
research and development driven by the vision that hu-
man knowledge can be grounded in a small number of
prototypical components that can be extended through
composition and analogy. This vision has been embod-
ied in a system called AURA, which has been used to
engineer an expressive knowledge base for an intelli-
gent biology textbook. The focus of the current paper is
to abstract away from the specifics and, to instead de-
scribe the core ideas in such a manner that they can be
transferred and applied in different contexts, and to re-
late those ideas to the ongoing research by others.

Introduction
Our work is based on the hypothesis that, for a program to
answer questions, explain the answers, and engage in a dia-
log just as a human does, it must have an explicit representa-
tion of knowledge (Smith 1982). A challenging task requir-
ing such representation is capturing the knowledge found in
a textbook with the goal of answering the questions that a
student could answer after reading the book. Clearly, this
task requires deep knowledge, because it is not just limited
to answering questions, but also requires an explanation of
those answers, and a conversational dialog that is sensitive
to the knowledge of the two parties.

To create a program of the sort suggested above, we have
been driven by the vision that knowledge can be grounded
in a small number of prototypical components that can be
extended through composition and analogy. We started to
embody this vision in a functioning system called SHAKEN
where the evaluation task was to model and reason with one
page of knowledge from a biology textbook (Clark et al.
2001). This work evolved into the AURA system as part
of Project Halo (Gunning et al. 2010). During 2003-2013,
AURA was generalized to the domains of physics, chem-
istry and biology, was used to engineer a biology knowledge
base (KB), and culminated with the demonstration of an in-
telligent textbook (Chaudhri et al. 2013a).
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The project team has authored several papers describing
the effort showing contributions in different sub-areas of AI.
In offering my personal synthesis of the work through this
paper, I have two overarching goals: (1) to summarize the
central ideas that constituted the project vision providing
one reference that serves as an entry into the body of lit-
erature; and (2) to share what worked and what did not in
the project, to relate the work to current research by others,
and to articulate some problems for future research.

AURA implementation was done by using a representa-
tion system called Knowledge Machine or KM (Clark and
Porter 1999). KM offered basic support for prototypes and
composition before the project started. During Project Halo,
we made substantial refinements to the implementation of
prototypes and composition facilities and their formalization
as presented here. KM did not provide any support for ana-
logical reasoning, and we developed special purpose prob-
lem solvers to perform such reasoning during the project.

This paper includes three major sections:(1) prototypes,
(2) composition and (3) analogy. I begin each section with a
definition, then discuss a realization in the context of AURA
and finally follow with a discussion of the successes and
challenges, related work, and problems open for future re-
search. Prototypes, composition and analogy are big long-
term problems, and I do not claim that they have been solved
completely. My focus is on explaining what was accom-
plished during the project. Towards the the paper’s end, I
describe the KB construction undertaken using AURA, an
end-user application built by using the KB and the chal-
lenges faced in transitioning it into a commercial setting.

Prototypes
Prototype theory is a mode of graded categorization in cog-
nitive science, where some members of a category are more
central than others (Rosch 1983). For example, when asked
to give an example of the concept furniture, chair is more
frequently cited than, say, stool. A prototype of a class is the
most salient member of that class.

Formalizing Prototypes
We reduced the idea of capturing the most salient member
of a class to capturing universally true properties for the in-
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stances of that class. We illustrate this approach by giving an
example. Suppose we wish to represent the statement: “Ev-
ery cell has part a chromosome and a ribosome.” Given a
class Living-Entity, we can represent this knowledge in first
order logic as follows:

∀x[Cell(x)⇒
∃r,c[Living-Entity(x)∧Ribosome(r)∧

Chromosome(c)∧has-part(x,c)∧
has-part(x,r)]]

(1)

Next, consider the first order logic representation of the
statement: “Every eukaryotic cell is a cell and has part a
nucleus and a eukaryotic chromosome such that the eukary-
otic chromosome is inside the nucleus.”

∀x[Eukaryotic-Cell(x)⇒
∃n,c[Cell(x)∧Nucleus(n)∧

Eukaryotic-Chromosome(c)∧has-part(x,c)∧
has-part(x,n)∧ is-inside(c,n)]]

(2)

In rule 1 (rule 2), we capture prototypical instance of a cell
(eukaryotic cell). Exceptions may exist (for example, situa-
tions where chromosomes have been removed from a cell) in
which these rules are not true. The focus in the project was
capturing what could be considered universally true for the
salient instances of a class (i.e., universally true or prototyp-
ical properties of that class using rules such as 1 and 2.)

Both of the above rules have a form in which the an-
tecedent is universally quantified and the consequent is exis-
tentially quantified. Such rules have been referred to as exis-
tential rules in the literature (Baget et al. 2011). Each proto-
type in AURA is captured by using such existential rules. A
more detailed formalization of the representation in AURA
is available elsewhere (Chaudhri et al. 2013b).

Successes and Challenges
A major success in using prototypes as formalized in the pre-
vious section was that they also provided a basis for an intu-
itive user interface for knowledge acquisition from domain
experts (Chaudhri et al. 2007). This graphical interface had
extensions that dealt with more expressive forms of knowl-
edge such as constraints, sufficient properties, mathematical
equations and tables (Chaudhri et al. 2004).

A major challenge in using prototypes in AURA was that
their formal properties were not well understood. The proto-
types were organized in a class hierarchy, they could inherit
values across a class hierarchy, participate in multiple inher-
itance, and participate in circular references to each other. To
understand the relationship of prototypes to the current state
of KR research, let us compare them with description log-
ics. For example, rule 2 can be captured by using DL syntax
(Baader, Horrocks, and Sattler 2008) as follows:

Eukaryotic-Cell ≡Cellu
(∃has-part.Nucleus)u

(∃has-part.(Eukaryotic-Chromosomeu
(∃is-inside.Nucleus)))

(3)

The above description fails to represent that the eukary-
otic chromosome is inside the same nucleus that is a part

of the eukaryotic cell. This problem cannot be solved by in-
troducing qualified number constraints on the has-part rela-
tion for Chromosome, Eukaryotic-Chromsome and Nucleus,
because they are too strict. Expressing such knowledge re-
quires violating the desirable tree model property (in gen-
eral, the tree model property is a good indicator of decidabil-
ity (Vardi 1996)). Reasoning with prototypes is an undecid-
able problem. In AURA, we dealt with this issue by setting
a bound on the depth of inference performed, thus, trading
completeness for efficiency. The solution is only partially ef-
fective as numerous questions took as much as 30 minutes
to answer, and many questions failed to answer even when
the requisite knowledge was present in the KB.

Future Research
The prototypes in AURA do not support the notion of graded
membership as originally introduced (Rosch 1983). This
limits AURA from capturing exceptions to the prototypical
case that are so frequent in biology. Leveraging the notion
of graded membership is a possible strategy to combine a
prototype-based representation with the corpus-based statis-
tical methods that can suggest how frequently a particular
instance of a concept occurs. Many forms of knowledge in
textbooks do not naturally fit into the structure of an exis-
tential rule (for example, computational procedures, algo-
rithms, mathematical equations, etc.).

Several efforts are underway to address efficient reason-
ing with the existential rules needed for representing pro-
totypes (Magka, Krötzsch, and Horrocks 2013; Eiter and
Šimkus 2010; Calı̀, Gottlob, and Lukasiewicz 2009; Al-
viano, Faber, and Leone 2010). All of these efforts achieve
decidable reasoning by imposing restrictions on the syntac-
tic structure of the KB. For example, one such notion is
called R-acylicity (Magka, Krötzsch, and Horrocks 2013).
We say that a rule r2 positively relies on another rule r1 if
a situation exists (represented by a set of facts) where r1 is
applicable, r2 is not applicable, and applying r1 allows r2 to
derive something new. Consider the following two rules:

A(x)⇒∃y[B(y),r(x,y)] (4)
B(x)⇒C(x) (5)

Consider a set of facts {A(a)} such that rule 4 is applica-
ble to those facts (i.e., A(a) holds) and rule 5 is not applica-
ble to those facts as no B atom is present. Applying 4 gives
us some b such that r(a,b),B(b) holds, which allows 5 to
derive something new namely C(b). Rule 5 relies on 4 to de-
rive a conclusion. A KB is R-acyclic if no cycles of positive
reliances exist that involve rules with existential quantifiers
in the head. Many examples of textbook knowledge violate
R-acyclicity as seen in the example below.

Peripheral-Protein(x)⇒
∃b[Membrane-Sur f ace(b), is-attached-to(x,b)] (6)

Membrane-Sur f ace(x)⇒
∃m[Membrane(m),has-region(m,x)] (7)

Membrane(x)⇒
∃p[Peripheral-Protein(p),has-part(x, p)] (8)
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Here rule 6 positively relies on rule 8, rule 8 relies on
rule 7, and rule 7 relies on rule 6, and thus, violates R-
acyclicity. We need further research on efficient reasoning
with such KBs. There is also a need to define update seman-
tics when the KB contains prototypes that refer to each other
in circular ways.

Composition
The principle of compositionality says that the meaning of
a complex expression is determined by the meanings of its
constituent expressions and the rules used to combine them.
The simplest form of composition is through properties (for
example, “tall person”, “red car”, etc.). Next, one can con-
struct complex expressions by associating values to relations
(for example, “animal respiration” is a respiration that is per-
formed by an animal). Finally, one can compose new expres-
sions through inheritance. For example, “eukaryotic aerobic
respiration” is a respiration that specializes both “aerobic
respiration” and “eukaryotic respiration”.

Formalizing Composition
AURA supports a novel solution for composition for inher-
itance reasoning in an under-specified KB (Chaudhri and
Tran 2012). A KB is under-specified, if it omits some car-
dinality constraints and equality statements. In the example
considered earlier, Eukaryotic-Cell inherits a Chromosome
from its super class Cell which is then specialized to
Eukaryotic-Chromosome. Rules 1 and 2 do not explicitly
state the relationship between the inherited Chromosome
and the Eukaryotic-Chromosome. We can address that by
rewriting them as follows:

∀x[Cell(x)⇒
[Living-Entity(x)∧Ribosome( f1(x))∧

Chromosome( f2(x))∧has-part(x, f1(x))∧
has-part(x, f2(x))]

(9)

∀x[Eukaryotic-Cell(x)⇔
Cell(x)∧Nucleus( f3(x))∧
Eukaryotic-Chromosome( f4(x))∧
has-part(x, f3(x))∧has-part(x, f4(x))∧
is-inside( f3(x), f4(x))]

(10)

∀x[Eukaryotic-Cell(x)⇒
f2(x) = f4(x)∧ f1(x) = f3(x)]

(11)

Rules 9-11 enable capturing the inheritance relation-
ships across a class hierarchy. These rules would be under-
specified if rule 11 were to be omitted from the KB.
Two motivations exist in AURA for allowing such under-
specification: (1) knowledge authoring is much easier if the
encoder does not need to specify the equality statements; and
(2) un-anticipated multiple inheritance may exist, and spec-
ifying all such equality statements ahead of time is infeasi-
ble. For example, a class such as eukaryotic aerobic respira-
tion may not pre-exist in the KB, and may need to be com-
puted only at run time. If the knowledge was to be acquired
from natural language text, under-specification is rampant,

and leaving the representation under-specified, and inferring
the equalities at run time is preferable.

AURA supports heuristic inference to compute such
equalities at run time. This inference is performed when an
instance of a class inherits values from one or more super
classes, or during knowledge authoring when the user as-
serts two instances to be equal. To perform inheritance from
multiple super classes, AURA first creates an instance of
that class and each of its super classes and composes (i.e.,
equates) them. The intuition behind heuristic composition
is as follows: if a slot has only one value of each type, for
each of the two objects being composed, then equate them;
if the slot has two values one of which is more specific than
the other, then the two values are equated; if a slot has more
than one value of each type, but they can be distinguished
based on certain properties, equate them appropriately. In
the example above, because both Cell and Eukaryotic-Cell
have only one value of type Ribosome, we can conclude
f1(x) = f3(x). Because Eukaryotic-Chromosome is more
specific than Chromosome, we can conclude f2(x) = f4(x).
The heuristic inference leverages any inferences that follow
deductively, and does not make any inferences that are disal-
lowed. For example, two values for a functional slot will be
considered equal and two instances of disjoint classes will
never be considered equal.

Successes and Challenges
Composition is effective as long as each slot has only one
value of a particular type, or if multiple values of the same
type exist, they can be distinguished. Such reasoning breaks
down whenever slot values exist that are indeed different
but cannot be distinguished. We illustrate this with an ex-
ample. We have three classes: Amino-Acid, Polar-Molecule
and Polar-Amino-Acid. The Polar-Amino-Acid is a subclass
of both Amino-Acid and Polar-Molecule, thus, introducing
multiple inheritance. Next, we will introduce snippets of
prototype rules for these concepts.

∀x[instance-o f (x,Polar-Molecule)⇒
∃a1,a2, p[

instance-o f (p,Polar-Covalent-Bond)∧
instance-o f (a1,Atom)∧
instance-o f (a2,Atom)∧
possesses(x, p)∧
has-part(x,a1)∧has-part(x,a2)
is-between(p,a1,a2)]]

(12)

∀x[instance-o f (x,Amino-Acid)⇒
∃h,n,c,o,b1,b2.[

instance-o f (b1,Single-Bond)∧
instance-o f (b2,Double-Bond)∧
instance-o f (h,Hydrogen)∧
instance-o f (n,Nitrogen)∧
instance-o f (c,Carbon)∧
instance-o f (o,Oxygen)∧
possesses(x,b1)∧ possesses(x,b2)∧
has-part(x,h)∧has-part(x,n)
has-part(x,o)∧has-part(x,c)
is-between(b1,h,n)∧ is-between(b2,c,o)]]

(13)
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Rule 12 states that a Polar-Molecule has two atoms
as its parts and possesses a Polar-Covalent-Bond that
is between those two atoms. Rule 13 states that an
Amino-Acid has parts Hydrogen, Oxygen, Nitrogen and
Carbon, and that it possesses a Single-Bond between the
Hydrogen and the Nitrogen, and a Double-Bond between
a Carbon and Oxygen. Because a Polar-Amino-Acid is a
subclass of both Polar-Molecule and Amino-Acid, it will
inherit two atoms from Polar-Molecule and four atoms
(a Carbon, a Hydrogen, a Oxygen and a Nitrogen) from
Amino-Acid. Further, it will inherit a Polar-Covalent-Bond
from Polar-Molecule and a Single-Bond and a Double-Bond
from the Amino-Acid. Because Polar-Covalent-Bond,
Single-Bond, and Double-Bond are all sibling classes in
the class hierarchy, they could not all be referring to the
same bond, and therefore, they will be inherited as sepa-
rate individuals. But, because Carbon, Hydrogen, Oxygen
and Nitrogen are all subclasses of Atom, the two atoms in-
herited from the Polar-Molecule could possibly be referring
to two of the four atoms being inherited from Amino-Acid.
In the current system, two of the atoms inherited from
Polar-Molecule would get equated with two of the atoms
from Polar-Amino-Acid giving an incorrect behavior. The
domain experts observed this behavior, as they were unable
to override the automatic conclusions derived by the system.
In many other examples, such ambiguous multiple inheri-
tance leads to violations of the integrity constraints in the
system which are reported as errors by the inference engine.
One can add additional rules for such inferences to work
correctly. For example, in this case one could add a default
rule that prevents atoms from participating in two different
bonds, but that will conflict with the Chemistry knowledge.
Getting such default rules to work well across a variety of
situations is extremely difficult in practice.

Future Research
Better techniques need to be developed to deal with cases
of ambiguous multiple-inheritance. One possible approach
is to provide greater control to users so that they can provide
guidance on how to resolve the ambiguities. Another possi-
ble direction is combining the heuristics with the statistics
derived from the textbook to determine whether two enti-
ties should be equated. The view of the composition used
in AURA was purely logical. The recent developments that
can learn conventional aspects of natural language meaning
from corpora and databases create tremendous opportunity
to seek synergies between the two approaches (Liang and
Potts 2015). For example, one specific challenge that could
be attempted by using such a combined technique is under-
standing the noun phrases and verb phrases. The textbook
content could provide the data needed to learn the different
combinations of words that can occur together, which could
then be used to learn the rules of composition.

Analogy
Analogical reasoning and similarity reasoning both rely
on an alignment of relational structure. But, they differ
such that in analogy, only relational predicates are shared;

whereas in literal similarity, both relational predicates and
object attributes are shared (Gentner and Markman 1997).
As an example: a comparison between an atom and a solar
system is considered an analogy, but a comparison between
a red door with a red key and a blue door with a blue key is
considered a similarity. It has also been argued that the com-
parison process involves a sophisticated process of structural
alignment and mapping over rich complex representations
(Falkenhainer, Forbus, and Gentner 1989).

Formalizing Analogical Reasoning
In AURA, two question formats support analogical reason-
ing: (1) What is the similarity/difference between concept A
and concept B?; and (2) A concept A is to concept B as the
concept C is to what? Example instantiations of these ques-
tions are: (1) What are the differences between an aldehyde
and an alcohol?; and (2) A chloroplast is to photosynthesis
as mitochondrion is to what? Both of these questions require
different computations which we explain next.

The approach to answering a similarities and differences
question in AURA follows the conventional model of ana-
logical reasoning (Nicholson and Forbus 2002): case con-
struction, candidate inference computation and summariza-
tion. A case for a concept contains its taxonomic informa-
tion, slot values, and constraints. A novel aspect of case con-
struction in AURA is including only that information in a
case that is local to a class (i.e., cannot be derived if the rules
for that class were to be dropped from the KB). The candi-
date inference computation is formalized as a set-theoretic
computation over two case descriptions: the difference con-
tains a slot value triple if (1) it contains a non-Skolem value
that appears in one case but not in another; (2) if it contains
a slot value that cannot be paired with any slot value for the
same slot across the two cases. Two values can be paired (2a)
if they have exactly the same types in both case descriptions,
or if the types of the value in one subsume the types of the
value in the other; (2b) if the values have further slot values,
then the comparison must be recursively performed. The dif-
ference contains a constraint value if (1) the same constraint
does not appear in both descriptions, and (2) the constraint
in one cannot be derived from some constraints in the other.
After the difference is computed, the results are grouped and
organized into a table. The grouping is done based on the slot
hierarchy in the KB and user preferences. The alignment is
done based on syntactic (e.g., nucleus will be aligned with
nucleolus), and semantic (e.g., sibling concepts in a taxon-
omy will be aligned) criteria. A more detailed description of
our approach is available elsewhere (Chaudhri et al. 2014).
As an example, when asked to compare an aldehyde and al-
cohol, the system returns an answer saying: “An aldehyde
has a carbonyl group as a subunit while an alcohol has a hy-
droxyl group as a subunit. Alcohol has hydrogen and oxygen
as subunits and possesses covalent bonds.”

Let us now consider the question format: “Concept A is
to concept B as concept C is to what?” Reasoning to answer
questions of this form involves first computing a path con-
necting A and B, and then searching the whole KB for the
same path between C and some D (Chaudhri, Dinesh, and
Heller 2013). Because arbitrary search can be computation-
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ally expensive, we prioritize the search process by using the
following heuristics: (1) Look for a taxonomic path between
A and B, and if found, look for a similar taxonomic path be-
tween C and some D; (2) look for a path between A and B
in the concept definition of A, and then look for the same
path in the concept definition for C; (3) look for a path be-
tween A and B in any single concept definition in the KB,
and then look for the same path between C and some entity
D in any concept definition in the KB; (4) search the whole
KB for a path between A and B and then look for the same
path between C and some D. Such reasoning returns mul-
tiple answers, and the system sorts and ranks them. More
advanced forms of similarity reasoning could relax the re-
quirement that the paths between A and B must be identical
to the path between C and D. As an example, when asked
the question: A chloroplast is to photosynthesis as mitochon-
drion is to what, the system returns two answers: “Cellular
Respiration and Chemiosmosis”, and indicates that they are
both functions of mitochondrion just like photosynthesis is
a function of a chloroplast.

Successes and Challenges
AURA implements both forms of the analogical reasoning
presented in the previous section. The user feedback on such
questions was extremely positive. Let us next consider some
challenges that we encountered.

When information about two concepts is put next to each
other as in the answer of a comparison question, it can cre-
ate surprises. An empty entry in a comparison table is an
instance of this problem. In some cases, an empty entry may
be seen because the textbook does not mention a fact. For
example, when we compare a ribosome and a chromosome,
the system responds by saying that the function of a ribo-
some is protein synthesis, but the corresponding function for
a chromosome is left empty. The textbook does not explicitly
offer that information, and therefore, it is not present in the
KB. Such textbook deficiency is rarely caught and is easily
forgiven by human readers, but when it is noticed through
comparison, the user feedback is extremely harsh. This ob-
servation implies that comparison questions can serve as a
powerful tool during knowledge engineering to test and de-
bug the KB as well as to improve the textbook.

For the question “Concept A is to concept B as concept C
is to what?”, a major challenge was how to best present the
answer. The current system shows the answer graphically
which created much confusion among the users. A better
presentation would be to show such answers in English text
which requires further research on natural language genera-
tion methods (Banik, Gardent, and Kow 2013).

Future Research
We begin by situating our work in the broader context of
analogical thinking (Keane, Ledgeway, and Duff 1994) by
acknowledging that we only focus on the representation and
mapping steps, and to a limited degree on induction. Our
mapping step differs from a general model of analogical
mapping in that only those concepts that have a common re-
lation are matched. For example, a Nucleus will be matched
to Nucleoid only if both are in a has-part relationship to the

two cells being compared. In general analogical reasoning,
the two concepts could be matched even if they are in differ-
ent relationships to the concepts being compared.

There has been related work to formalize the compari-
son reasoning (Baral and Liang 2012). Because their work
was not accompanied by any functional implementation that
could be rated by end-users, it missed out central challenge
of identifying the most salient similarities and differences.
Our work addressed those challenges through innovations in
case construction, summarization and ranking.

Answering analogical reasoning questions by using a
purely textual approach (Liu, Wagner, and Birnbaum 2007)
is possible. The main advantage of a purely textual approach
is it does not require any KB curation. But, a significant dis-
advantage of a textual approach is the text may not contain
sentences that explicitly compare the two concepts. A fruit-
ful direction for future research is exploring algorithms that
can exploit a combination of the two approaches.

More broadly, I believe that the analgoical reasoning in
the form of the comparison and relationship reasoning ques-
tions considered here is an unconquered frontiers for AI re-
search. For example, one can ask more specific forms of
comparisons such as: What are the structural differences be-
tween A and B? Human-authored answers that compare A
and B may exist, but we do not expect all specific forms of
comparisons (e.g., structural, functional, regulatory, evolu-
tionary, etc.) to be have been anticipated in advanced and
pre-authored by humans.

Knowledge Base Construction
To support knowledge base construction, AURA incorpo-
rated a library of pre-built representations called the Compo-
nent Library or CLIB which the domain experts could use to
create domain-specific knowledge (Barker, Porter, and Clark
2001). CLIB was substantially extended during the project
to represent knowledge about biology core themes such as
structure and function (Chaudhri, Dinesh, and Heller 2013),
process regulation and energy transfer (Chaudhri, Dinesh,
and Heymans 2014).

We used AURA to create a KB called KB Bio 101 that
encodes a significant fraction of a biology textbook (Reece
et al. 2011). KB Bio 101 contains more than 6000 classes,
and more than 100,000 rules. To create KB Bio 101, a
team that largely consisted of biologists and some knowl-
edge engineers, relied on a knowledge factory process and a
set of guidelines that specified a systematic process to en-
code textbook sentences (Chaudhri, Dinesh, and Inclezan
2014). The team was based in India at an organization called
Evalueserve, and thus, was at an arms length from the re-
search team that created AURA. The AURA team trained
two knowledge engineers from Evalueserve, who were in
turn, responsible for training the biologists based in India.
At its peak, the knowledge encoding team consisted of eight
biologists and two knowledge engineers. The biologists had
no prior training in knowledge representation. They were se-
lected through an aptitude test designed to test their concep-
tual abilities, and were put through a 20 hour AURA train-
ing. KB Bio 101 is the first attempt to put this level of ex-
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pressiveness in the hands of biologists, and also the first ef-
fort to use an off-shore knowledge entry team.

To evaluate the KB, we assembled a test suite of 1961
questions spread over the first eleven chapters of the text-
book. These questions contained instantiations of several
different question formats including questions that used ana-
logical reasoning (Chaudhri et al. 2014; Chaudhri, Dinesh,
and Heller 2013). Biologist scored 85% of the answer out-
puts as correct.

Application to an Intelligent Textbook
To put the technology developed here in the hands of end-
users, we incorporated KB Bio 101 and AURA’s question
answering capability into a prototype of an intelligent text-
book called Inquire (Chaudhri et al. 2013a). As the students
read the textbook using Inquire, they can ask questions by
typing free-form natural language queries or by selecting
passages of text. The system then attempts to answer the
question and also generates suggested questions related to
the query or selection. The questions supported by the sys-
tem were chosen to be educationally useful (for example:
What is the structure of X?; What are the similarities and
differences between X and Y?; How does X relate to Y? A is
to B as C is to what?).

We evaluated Inquire with community college students.
There were three conditions: (1) paper textbook (N=23),
(2) a traditional electronic textbook (N=25), and (3) full-
featured Inquire (N=24). The students in each group en-
gaged in active reading and problem solving on the topic
of membrane structure and function. The problem-solving
task was comparable to what students might do during an
assigned homework. During the evaluation exercise, the stu-
dents worked on problem solving in an open book format,
and at the end of the exercise, answered quiz questions in a
closed-book format. We compared the problem solving and
quiz scores across the three groups. The quiz scores of stu-
dents using Inquire were higher than the scores of the stu-
dents using either the paper textbook (p value=0.05) or elec-
tronic textbook by approximately 10% (p value=0.002). The
observed trend is consistent with our hypothesis that Inquire
enhances student learning.

Although the results presented here are encouraging, they
are only preliminary. Whether these results will generalize if
the students were to study from Inquire over an extended pe-
riod of time is unknown. We also observed that the students
in the Inquire group did not get any Ds or Fs suggesting
that it may be especially helpful for lower performing stu-
dents. This result, however, was not statistically significant,
and more extensive experimentation is needed to confirm it.

Transition Challenges
A major challenge we have faced in translating this suc-
cess into a commercial enterprise is the cost of creating
KB Bio 101 was still too high. Some of the reasons for
this high cost are as follows. The theoretical problems in
reasoning with prototypes are not well-understood, making
reasoning performance too slow and unpredictable. Also, the
current implementation of the composition operation in KM

makes destructive updates to the KB (i.e., as the system de-
rives new information, it overwrites user-authored knowl-
edge.). This problem was not an issue while the KB was
small, but as we tried to scale up the knowledge entry, it led
to too much wasted effort. The current implementation of
composition also provides no user control making correct-
ing erroneous conclusions derived by the system difficult.
Our current system does an adequate job of capturing ex-
plicitly stated knowledge, but relatively little is known about
how to capture knowledge about salience in analogical rea-
soning. To fully and deeply capture the knowledge found
in a textbook, continued work on expanding the compo-
nent library to provide domain independent representations
is needed. Finally, recognizing that the problems articulated
here are long-term research problems in AI, and that inter-
mediate impactful outcomes are needed, a clear need exists
for product-focused R&D that can package the already avail-
able capability into a minimum viable product.

Summary
In this paper, I presented an approach for realizing intelli-
gence that is based on the notion that knowledge should be
grounded in a small number of prototypical components that
could be reasoned with by using composition and analogy.
This approach has been embodied in a system called AURA.
Using prototypes was central in AURA to focus the knowl-
edge acquisition to universal truths, and to provide a basis
for designing a user interface for domain experts. Prototypes
in AURA can be formalized as graph-structured existential
rules, which is a topic for ongoing research in both descrip-
tion logics and logic programming. AURA realized the prin-
ciple of compositionality by inheritance reasoning in under-
specified knowledge bases. Compositionality is of great in-
terest for the current research on natural language under-
standing, and the lessons learned from its implementation in
AURA can provide new inspirations for combining logical
methods with corpus-based methods. AURA used two in-
novative implementations for analogical reasoning and gen-
erated answers of sophistication that surpass any available
question answering system. AURA was used for large scale
knowledge engineering the results of which were incorpo-
rated into an intelligent textbook for students. Although this
prototype may not be ready for commercial use, it provides a
platform for innovations in online learning that promise not
just to transform education, but also to provide a concrete
focus for further research in achieving intelligence through
prototypes, composition and analogy.
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