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Abstract

Our paper is actually two contributions in one. First,
we argue that IBM’s Jeopardy! playing machine needs
a formal semantics. We present several arguments as
we discuss the system. We also situate the work in the
broader context of contemporary AI. Our second point
is that the work in this area might well be done as a
broad collaborative project. Hence our “Blue Sky” con-
tribution is a proposal to organize a polymath-style ef-
fort aimed at developing formal tools for the study of
state of the art question-answer systems, and other large
scale NLP efforts whose architectures and algorithms
lack a theoretical foundation.

Introduction
IBM Watson, the Jeopardy! playing machine, significantly
advanced the state of the art in natural language processing
and question answering (Ferrucci and others 2012). How-
ever, despite a comprehensive description of its algorithms
and architecture in a dozen papers in a 2012 issue of IBM
J. of Research and Development, a few dozen patent appli-
cations, and several newer papers by IBM researchers, there
seem to be no abstract, scientific explanation of Watson’s
success. Furthermore, four years later, we are aware of no
replication of Watson’s results, i.e. a question answering sys-
tem with the accuracy of a Jeopardy! champion.

Watson’s ways of achieving (partial) language under-
standing are significantly different from the ones used in
earlier projects. When trying to understand the meaning of
a sentence, Watson doesn’t adhere to the standard syntax-
semantics division of labor. In fact, by using information
retrieval techniques to generate candidate answers and find
supporting evidence, one can argue that Watson almost com-
pletely abandons the standard view of semantics, at least
when it comes to question answering.

On the other hand, Watson uses almost all the techniques
developed by computational linguists (parsing, building of
logical form, reference resolution, etc.). These techniques
are used to create a collection of scores that account for cer-
tain aspects of syntax and semantics, but only in the con-
text of the question and supporting evidence for a candidate
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answer. In addition Watson has a view of the background
knowledge as organized around collection of concepts, as
title-oriented resources, (Chu-Carroll et al. 2012), and not as
a big flat knowledge base (which still seem to be the canon-
ical view, e.g. (Russell and Norvig 2009) p.235).

We argue that AI needs a project to explain what Wat-
son does in some form of abstract semantics. We believe
a formal account should accelerate progress in natural lan-
guage understanding, question answering and possibly other
domains. Without it, the community can’t achieve deeper
understanding of what are Watson’s advantages and limita-
tions.

This paper is organized as follows: After this Introduc-
tion we discuss the need for an abstract theory of Watson.
We focus on problems derived directly from the compu-
tational architecture of Watson. The follow-on section ex-
plores the opportunities of connecting Watson to prior work
in semantics and knowledge representation. The final sec-
tion explores organization of such research in a polymath
fashion.

An abstract computational theory underlying
Watson?

Technical details on Watson are included in the overview pa-
pers (Ferrucci and others 2010), patents (e.g. (Brown et al.
2012; Fan et al. 2012)), and patent applications (available at
http://patft.uspto.gov/netahtml/PTO/index.html ) as well as
newer work arising from the project e.g. (Lally et al. 2014).
As a result of these disclosures, we know how Watson works
and some of its possible applications (e.g. (Gopinath 2013;
Lally et al. 2014)). However, we do not know why Wat-
son works. That is, given that Watson’s architecture and ap-
proach differs from prior work, to what extent are these dif-
ferences fundamental? What are the underlying mathemati-
cal and computational mechanisms?

We believe there should be a computational theory under-
lying Watson. A few examples to seed a discussion appear
below, looking at what the Watson team considers their main
innovations.

Heterogeneity of Natural language understanding:
Watson evaluates multiple aspects of available information.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

4078



Figure 1: Watson architecture. A question is answered by generating candidate answers from document titles, finding supporting
evidence, and evaluating the evidence using over 400 scorers. Source: Wikipedia

This is done by retrieving dozens of paragraphs of text with
supporting evidence, using multiple programs to score the
evidence, and synthesizing the final score (Fig.1). In other
words, Watson uses heterogeneous sources of information,
creates multiple representations, and evaluates using differ-
ent kinds of scorers.

A recent paper (Schütze 2013) argues that semantics
should be heterogeneous. It also contains the following pas-
sage about Watson: “My impression is that in these systems
interaction is implemented in an ad-hoc and manually opti-
mized way. For example, the IBM question answering sys-
tem Watson (Ferrucci et al., 2010) has many heterogeneous
modules that each contribute information useful for solving
a Jeopardy task. The final design of the components that in-
tegrate this information into the Jeopardy! answer seems to
have been the result of careful and time-intensive fine tuning.
(italics ours).

As we see it, Watson’s formal semantics have yet to be
formulated. And proposing a semantics would help answer
questions already asked by others.

Role of search in question answering As an initial step
in Watson, primary search generates a few hundred candi-
date answers consisting of the title fields of matching doc-
uments (see Fig. 1). This works well for Jeopardy!-style
questions, where many answers are entities with entries in
Wikipedia or other encyclopedic sources. However we don’t
know how applicable this strategy is for question types other
than those in Jeopardy! Can any text collection be organized
(by a computational procedure) in such a way that candidate
answers may be generated by search? Under what conditions
can we say that a piece of text is about a given topic? Can
Watson’s title-oriented data organization be created dynam-

ically? What if answers need to be synthesized from pieces
of information coming from different documents?

Document search with titles serving as answers can be
contrasted with steps in QA before Watson: Question clas-
sification (who, what, when, how big,. . . ); passage search to
find passages with matching terms or relations; interpreta-
tion (typically using shallow or partial compositional seman-
tics); matching relations (’unification’) to extract an answer;
and estimating the likelihood of the answer being correct.
(See e.g. (Moldovan et al. 2003b))

Semantics of the deferred type evaluation Another Wat-
son innovation is deferred type evaluation (Fan et al. 2012)
(US Patent 8332394, 2012). Again, we ask whether it is fun-
damental or a piece of lucky heuristics? An anecdotal argu-
ment for its fundamental value can cobbled from a set of
examples in the patent. The examples show the creativity
of language precludes enumeration of all types of answers.
Consider the question “which 19th century US presidents
were assassinated?” To answer it, one can easily find a list of
US Presidents (and use it as an ontology/set of types), but we
are unlikely to find a list of 19th century (American) presi-
dents. (For that matter, we are unlikely to find a list of pres-
idents killed in a theater.) Therefore Watson’s strategy is to
answer a query by waiting until an “answer type” (i.e., a de-
scriptor) is determined and a candidate answer is provided.
The answer type is not required to belong to a predetermined
ontology, but is viewed as lexical/grammatical item. Then, a
search is conducted to look for evidence that the candidate
answer has the required answer type. The match of candi-
date answer with the answer type is determined by a set of
scorers using e.g. a parser, a semantic interpreter or a sim-
ple pattern matcher). We ask whether this procedure can be
formalized and evaluated theoretically.
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Semantics of scoring Thirdly, Watson uses multiple scor-
ers to estimate degrees of match between a question and a
candidate answer along a few hundred dimensions. Many
of the scorers are evaluating quantities familiar from com-
putational semantics (e.g. matching of predicate-argument
structures). But some are not. Does this strategy of employ-
ing multiple scorers lead to a dialogue-like view of mean-
ing? Such an alternative would generate candidate interpre-
tations, then find supporting evidence, and finally evaluate
the candidates. Meaning would reside in this process. But
what further implications does such a semantics have? And
returning to Watson, is this use of multiple scorers really
a deep contribution, or is an engineering feat but nothing
more?

Questions
We now go into more detail about the other broad kinds of
questions which we hope to address.

Which kind of formal semantics? The Watson team did
not pay much attention to formal natural language seman-
tics. However, they incorporated most of the known com-
putational tools. The question is why this combination of
tools worked better than e.g. (Moldovan et al. 2003b), who
showed that paying more attention to formal semantics can
significantly improve QA results, that is “the overall per-
formance of QA systems is directly related to the depth of
NLP resources”, and “the prover boosts the performance of
the QA system on TREC questions by 30%” (Moldovan et
al. 2003a). Similar claims about improvements provided by
logical tools are found in (MacCartney and Manning 2009)
At this point is not clear that Watson style of NLP can even
be cast in a formal semantics.

How can large systems like Watson integrate statisti-
cal and symbolic methods? Along with many other re-
searchers, we believe that both statistical methods and struc-
tural ones have their own place in computational and for-
mal linguistics. The question of integrating these two ap-
proaches is of interest to many in the field. We know on the
architectural level how Watson carries out this integration
(from patents and the journal collection). However what are
its foundational aspects? For example, what would be a natu-
ral formalism to describe it? How would it be related to other
proposals in the field such as the BLOG language (Milch et
al. 2007) combining probability with logic?

What are the appropriate foundations for automated de-
duction when reasoning for common sense? One av-
enue of investigation could be to adapt “automated deduc-
tion” from the more mathematical setting of interactive the-
orem provers such as Coq and HOL to the more AI-oriented
setting of automatic question-answering. In fields like KR,
databases (where the necessary assumptions for proofs need
to be found) are too huge, but shallow. Similarly, ‘proofs’
only need a few inference steps, but finding the correct ax-
ioms/theories is the difficult part. Hence, for such fields, the
appropriate notion of ‘complexity’ will be different from the
one from traditional theoretical computer science. Complex-
ity for question answering systems should somehow mea-

sure the size and kind of its collection of data and not sim-
ply the worst-case, or average-case, case complexity of in-
ference.

We believe that a thorough adaptation of Automated The-
orem Proving to KR scenarios would be interesting. In fact
this adaptation has already been started in the form of the
“track/division” called ‘Large Theory Base’ (LTB) of the
CASC (CADE ATP System Competition). However this
competition is restricted to theorem proving systems using
the TPTP (Thousands of Problems for Theorem Provers)
language. Thus this adaptation has been, so far, less ambi-
tious, and frankly less “blue sky” than what we want to do.
Given that our intent is more experimentation, less competi-
tion, we would like to try different provers with different sets
of KR languages, aiming for compatibility of formalisms
and hidden synergies between modules.

Recognizing that logical inference is necessary to build
NL representations, as well as necessary to reason about in-
formation encoded in representations aleady in the system,
and that the reasoning with representations already created
can be much simpler, we would like to investigate trade-
offs between these two sets of logical inferences. The tradi-
tional mechanisms of over-simplification of parts of process-
ing can be useful here. One should be able to reason easily
with representations, if we concentrate the difficult issues of
creating representations in some kind of blackbox that we
can instantiate with different formalisms, be they descrip-
tion logics, first-order logics or higher-order logics (Nigam
and de Paiva 2014). Perhaps instead we want to stay as close
as possible to Natural Language, using one of the several
versions of Natural Logic (cf., e.g.(Moss 2015)) recently at
our disposal. Recent work on recognizing textual entailment
(RTE) (Dagan et al. 2010; Sammons 2015) ought to be help-
ful as a way of testing formalisms and their inferential capa-
bilities.

What does Big Data do for Watson? And what it does
not do? We would like to know to what extent Watson’s
success is based on the large amount of training data: 200K
available questions with answers, and about 50K of them
used for training and testing. To what extent it is dependent
on the highly parallel aspect of its scoring system? Paral-
lelism was essential given the amount of background textual
knowledge Watson relied on. But was less important when
the background knowledge was much smaller. How do these
factors interact with each other, with available background
knowledge, and with deeper semantic processing? What are
the underlying mechanisms of these interactions?

Prior Work in the Area
There seem to be no scholarly work on semantics of Watson.
Our repeated searches on Google Scholar yield zero results
addressing the problem. IBM Watson is mentioned in very
few relevant contexts. For example, there are only 27 en-
tries for “watson ibm jeopardy ‘formal semantics’. For other
searches the result is lower (Sept 26 2014, excluding cita-
tions). However, none of the papers presented a formal view
of the complete Watson system. On the other hand, there are
some papers to build on, including (Noy and McGuinness
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2013; Iyyer et al. 2014).

Polymath Projects

We propose to organize a polymath project, an online mas-
sively cooperative blog (see (Wikipedia 2014; Gowers et
al. 2014)). The name comes from mathematics, where Tim
Gowers has led nine projects, including some where actual
theorems have been proved. As the New Scientist notes in
their editorial “Mathematics becomes more sociable” of 05
May 2011, “The first analysis of the Polymath project con-
cludes that online collaborations set up in the right way can
solve problems with unprecedented speed and efficiency.”
Of course, what we propose here is not the solution of con-
crete mathematical problems but rather the initiation of a
research area. That is, the results would be a set of new con-
cepts and ideas (all informal), and also formal definitions,
test results, problems; in addition, we feel that the much of
the work in this area will involve simulation and the borrow-
ing of ideas and programs from other areas of AI, Cognitive
Science, Computational Linguistics, and beyond.

We imagine we would moderate and seed the discussion,
and contribute to solving the problems, but the problem(s)
will be addressed by the whole community. The majority of
insights could be provided by the community of researchers
interested in the topic.

Experimenting in Watson Polymath

We imagine the Watson Polymath project to have at least
two dimensions: The first would be discussion of new ideas,
and maintenance of competing theories, e.g. in the form of a
wiki. Second, because we are dealing with the topic of lan-
guage understanding under a broad conception, there must
be an experimental component. We already presented some
starting points for the former, so let’s discuss the resources
for experimentation.

As mentioned above, IBM has been publishing a lot about
Watson, but the basic idea behind Watson is that you should
be able to plug-and-play modules, and perform experimen-
tal evaluations. Thus we imagine systematically evaluating
selected combinations of open source NLP resources such
as parsers and entity extractors. Lately, IBM has begun to
allow access to Watson APIs (Sudarsan 2014) for selected
groups (e.g. entrepreneurs, faculty and students) (Sudarsan
2014). In addition, it has been shown in classes at Columbia
University (Gliozzo et al. 2013), and at Rensselear Polytech-
nic (RPI) (Hendler 2013; Hendler and Ells 2014), that se-
lected portions of the Watson pipeline can be reconstructed.
More recently, in Spring of 2014, almost complete sim-
ulation of the Watson architecture and several textual re-
sources were created in the class on “Semantic technolo-
gies in IBM Watson” at UNC Charlotte (Zadrozny and Gal-
lagher 2015). This class developed and/or used knowledge
sources in TREC format (versions of Wikipedia, Wiktionary,
Wikiquotes, etc.), Eclipse workspaces allowing experiments
with various search engines and plug in NLP components.
links to experiment evaluation software, and documentation.

Additional Possible Targets for New Theories
As mentioned above we believe there are opportunities for
interesting research on ideas and techniques inspired by
Watson. In particular, we mentioned a “heterogeneous” se-
mantics of NL and related to it semantics of scoring; topi-
cality of knowledge (i.e. title- or topic-oriented organization
of knowledge), and deferred type evaluation. There are obvi-
ous connections between these problems and the domains of
natural language processing and knowledge representation.

But there additional areas that can be targeted for formal-
ization, or even formulation of semi-formal hypotheses of
what is going on. (We imagine there would be also experi-
mental work in these targeted areas). Thus, for example, we
would like to know more about the trade-off between adding
semantics to candidate answers search vs. deeper semantics
of supporting passage retrieval vs. deeper semantics of scor-
ing. This has intuitive connections to the work on “faceted
search” (Tunkelang 2009) and “semantic search” (Hendler
2010), since many scorers could be in principle used to cre-
ate facets. And yet would probably be different, because the
Watson team showed there isn’t one ontology (or set of top-
ics) covering all types of Jeopardy! questions ,

The Watson team used almost all known NLP techniques.
We can ask whether there are any types of natural lan-
guage understanding (NLU) components are NOT useful for
Watson-like tasks or architectures? Or, in other words, what
are the trade-offs between different classes of components.
For example can adding additional types of faceted search
decrease the need for scorers (keeping the accuracy con-
stant).

We are not aware of a theory of multi-stage scoring used
in Watson(Agarwal et al. 2012), nor of the mathematics of
composing Machine Learning (ML) systems, with very large
numbers of scorers of different types (e.g. a group scor-
ing quality of sources, and another group providing vari-
ants of predicate argument structures). How different can or
should the ML systems be? How does one decide on the op-
timal number of scorers? This might be connected to work
on structure learning and ensemble learning (e.g. (Cortes,
Kuznetsov, and Mohri 2014; Mendes-Moreira et al. 2012)),
but we are not aware of an explicit theory.

Conclusions
We argued there is need for an abstract explanation of the
Watson success. In addition, we propose to work on this
problem in a polymath-style project, that is, as an open col-
laborative project. An argument can be made for this ap-
proach both based on the success of the original Polymath
projects, and from general trends towards open science and
open research (e.g. (Nielsen 2012)). Given Watson’s impor-
tance and publicity, there’s a good chance that such a project
would be successful; we expect both quality scientific papers
and new algorithms. With the partial opening of the Watson
APIs by IBM, we can even hope to influence the develop-
ment of applications in not so distant future.
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