
Challenges in Resource and Cost Allocation

Toby Walsh
NICTA and UNSW
Sydney, Australia

Abstract

Many models and mechanisms in resource and cost alloca-
tion have been developed that are simple and abstract. By
means of two case studies, I argue that it is now timely to
consider richer models for the fair division of resources and
for the allocation of costs. Such models should have features
like asynchronicity which reflect more of the true complex-
ity of many fair division and cost allocation problems met in
the real world. I suggest that computation can be used in such
models to increase both efficiency and fairness of the allo-
cations. As a result, we may be able to do more with fewer
resources and greater fairness.

Introduction
Resource allocation considers how to share contested re-
sources between agents. We focus here on fair division, the
special case of resource allocation where the goal is simply
to allocate resources fairly and money is not exchanged. For
instance, we might want to share viewing slots on a large
telescope, or CPUs in a cloud server within the university.
We also consider cost allocation. This looks at how to divide
costs between agents sharing some resource in a fair way.
For instance, we might want to divide the costs of running a
smart grid between its users, or the costs of a supply chain
amongst all the customers to whom we are delivering goods.

Computation is a powerful weapon in solving fair division
and cost allocation problems. It can, as we shall argue, help
us deal with larger and more complex models than are possi-
ble to reason about manually. Computation can also be used
to improve both fairness and efficiency. There are several
notions of efficiency and fairness in the fair division liter-
ature. These include envy freeness (no agent would prefer
another’s allocation), equitability (every agent assigns the
same utility to their allocation), proportionality (each of the
n agents assigns at least 1

n of their total utility to their alloca-
tion), Pareto optimality (there is no other allocation in which
one agent is better off and all the other agents are not worst
off), as well as welfare notions like utilitarian and egalitar-
ian optimality. As many of these notions can conflict (e.g.
giving all items to one agent is Pareto optimal but not equi-
table, whilst throwing away all the items is equitable but not
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Pareto optimal), an interesting direction is to use computa-
tion to explore the trade-off between the different notions.

Another reason to apply a computational lens to such
problems is that performance in practice may not be char-
acterised very well by a purely theoretical worst-case anal-
ysis. The worst-case may be met very rarely. One tool that
we have used to good effect in a related area of social choice
is identifying computational phase transitions (Walsh 2009;
2010; 2011b). Hard problems may be restricted to a small
part of the parameter space. This approach has proved very
useful in a number of domains (e.g. (Cheeseman, Kanef-
sky, and Taylor 1991; Mitchell, Selman, and Levesque 1992;
Gent and Walsh 1994; 1996b; 1996a)). Another, related
tool that has proved useful in several closely related do-
mains like scheduling (allocating time slots) is parameter-
ized complexity (e.g. (Bessière et al. 2008; Walsh 2008;
Chu et al. 2013)). The worst-case may require, say, many
agents or the number of items to be unrealistically large. If
we can bound parameters describing the problem like the
number of agents, problems may be tractable.

The research proposed here lies at an exciting interface
which is opening up between optimisation, social choice and
game theory. In the past, researchers have consciously sim-
plified models of fair division and cost allocation as a means
of making progress. By contrast, we propose here that more
complex models should be tackled head on. We have the ad-
vantage that we can now throw significant computational re-
sources at these problems. In addition, we have the advan-
tage of being able to design mechanisms for new (computa-
tional) markets. Many of these markets are emerging in the
internet and in mobile settings where we can (and in some
cases must) use computational agents to do the allocation.

Much of the motivation driving this proposed research
comes from the not-for-profit and public sector. In these do-
mains, criteria like fairness are often very important, and the
transfer of money may not be possible for legal, ethical and
other reasons. Indeed, fairness is looking increasingly likely
to be a major driver of political and economic reform over
the next few decades. It is therefore very timely to explore
how computation can be used to increase fairness and effi-
ciency. Note that there are other areas of resource allocation
like combinatorial auctions where complex and more realis-
tic models have already been under development for some
time but fairness is not necessarily the primary concern.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

4073



Models for fair division and cost allocation
Fair division has been categorised along several orthogonal
dimensions: divisible or indivisible goods, centralised or de-
centralised mechanisms, cardinal or ordinal preferences, etc
(Chevaleyre et al. 2006). As we describe shortly, such cat-
egories are not able to capture the full richness of many
practical fair division problems. As an example of the sort
of abstract model found in the literature, one of the most
studied fair division problems is “cake cutting” in which we
have a single resource that is infinitely divisible and agents
with additive utility functions (Brams and Taylor 1996). As
a second example, a simple model for fair division of indi-
visible goods that has been studied recently in the AI litera-
ture supposes we have m goods to allocate to n agents, and
agents have additive utility functions that are based on Borda
scores (Bouveret and Lang 2011; Kalinowski et al. 2013;
Kalinowski, Narodytska, and Walsh 2013). As a third exam-
ple, a simple model for cost allocation in cooperative game
theory supposes we can assign a cost to each subset of agents
(Winter 2002).

As we argue shortly, abstract models like these ignore the
richness and structure of problems actually met in practice.
For example, fair division problems are often repeated. The
problem we meet today is likely to be similar to the one
we will meet tomorrow. As a second example, fair division
problems are often online. We must start allocating items be-
fore all the data is available. As a third example, cost func-
tions are often complex, and dependent on time and other
features of the problem. Such real world features offer both
a challenge and an opportunity. For instance, by exploiting
the repeated nature of a fair division problem, we may be
able to increase fairness without decreasing efficiency. On
the other hand, the online nature of an fair division problem
makes it harder both to be efficient and fair.

Two case-studies
We discuss two case-studies (Walsh 2014) which illustrate
some of the real world features met in problems in practice.

Case study #1: FoodBank Local
FoodBank Local is a startup coming out of the University
of New South Wales that is working with Food Bank Aus-
tralia and NICTA to improve the efficiency of the charity’s
operations. FoodBank Local were finalists in the worldwide
Microsoft Imagine Cup for their novel and innovative ap-
proach to using technology for social good. The food bank
allocates and distributes donated food to charities who them-
selves then distribute the food to those in need. This involves
repeated fair division problems in which the donated food is
allocated to the different charities in a fair way according to
their different preferences. The food bank wants to be fair
in allocating food so that it does not alienate charities, and
so that every sector of the population receives at least some
food. The food bank also wants to be efficient as wasting
food puts off future donors, and as one of their primary goals
is to reduce hunger. In addition, the charities have different
preferences over the donated food. For example, some char-
ities can cook the food whilst others cannot.

This fair division problem has several dimensions rarely
considered in the literature. It is online (we cannot wait till
the end of the day before starting to allocate food), repeated
(we have a very similar though not identical fair division
problem every day), contains items that don’t have to be al-
located (but can be stored), as well as items that must be allo-
cated before their expiry date. In addition, there are unequal
entitlements (as the different charities have different sizes),
complex preferences (the different charities have non-linear
preferences over bundles of items), and both divisible and in-
divisible goods. Finally, each fair division problem induces
a vehicle routing problem to distribute the food. This means
that we really have a combined fair division and routing
problem. We need both to ensure a fair division and to min-
imize distribution costs.

To reason about such issues, we need to develop more
complex and realistic models of fair division. Based on this
case study, we propose the following challenges.

Challenge 1 (Complex fair division) To develop and anal-
yse models and mechanisms for fair division problems that
are simultaneously online, repeated, combinatorial and con-
strained, as well as for subsets of these feaures.

Challenge 2 (Mixed fair division and optimisation) To
develop and analyse models and mechanisms for combined
fair division and distribution problems.

Challenge 3 (Divisible and indivisible fair division)
To develop and analyse models and mechanisms for fair
division problems that simultaneously involve both divisible
and indivisible goods.

Once we have richer models and mechanisms for fair
division that address these challenges, we need to con-
sider how agents will actually behave when using them.
For example, consider a simple mechanism for fair divi-
sion like sequential allocation (Brams and Taylor 1996;
Bouveret and Lang 2011). In the sequential allocation mech-
anism, agents simply take turns to pick the item that they
prefer most. This can be viewed as a repeated game in which
agents may act strategically. Brams and Straffin (1979) ar-
gued that “no algorithm is known which will produce op-
timal play [in this repeated game] more efficiently than
by checking many branches of the game tree”. In fact, we
have proved that computing optimal play is PSPACE-hard
(Kalinowski et al. 2013). Is it reasonable then to suppose
agents will play optimally? In addition, behavioural game
theory has identified a number of behaviours that are ob-
served in practice like loss aversion and reciprocity. These
take us away from idealized assumptions of agents play-
ing optimally. Can we design mechanisms to take advantage
both of agents (perhaps limited) computational resoruces
and of their actual behaviours? This suggests two further
challenges.

Challenge 4 (Behavioural analysis of mechanisms) To
analyse mechanisms for fair division problems based on
how people actually behave including computational limits
in their responses.
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Challenge 5 (Behaviourally optimised mechanisms) To
develop mechanisms for fair division problems that exploit
how people actually behave to improve efficiency and
fairness.

Up till now, behavioural game theory has been largely a
descriptive theory, attempting to model how humans behave
in competitive situations by means of experimental obser-
vation (e.g. (Kahneman and Tversky 1979; Camerer 1997;
2003)). Our thesis is that we can use computation to turn be-
havioural game theory around into a normative theory that
predicts how to build new mechanisms that work well in
practice and exploits people’s actual behaviours. Ultimately,
we believe this will lay the foundations of a new field,
which we call “mechanism engineering” where we iden-
tify the principles behind building mechanisms that work
well in practice, taking into account how people actually
behave. Mechanism design (Hurwicz and Reiter 2008) pro-
vides many of the theoretical foundations of how to build
mechanisms with good properties. However, it does not con-
sider the engineering principles of building mechanisms
that work well in practice in large, complex, messy real
world games. How, for example, can we build mechanisms
that are robust? How do we build mechanisms that will scale
well? And how should we test new mechanisms before re-
leasing them in the wild?

Case study #2: cost allocation

We have come across similar rich features in a partner’s real
world cost allocation problem. Consider delivering goods
from a depot to locations on a road network. At each lo-
cation there is a customer, e.g. a vending machine or shop,
that has requested some goods, e.g. milk, bread, or soda.
One challenge in such a setting is deciding the cost to serve
each location. More precisely, we must divide the costs of
transportation to each location in a fair and efficient manner.
The results of such a “cost to serve” analysis can be used in
several ways. We could, of course, simply charge locations
their portion of the transportation costs. More realistically,
we can use the cost allocation when (re-)negotiating con-
tracts with customers. We may also use the cost allocation
to deciding when to change distribution channels or distri-
bution frequency to a given location.

A naive method to allocate costs is simply to use the
marginal cost of each customer. Unfortunately marginal
costs tend to under-estimate the actual cost. Consider just
two customers a long distance from the depot. Each has a
small marginal cost to visit since we are already visiting the
other. However, their actual cost to the business is half the
total cost. Fortunately, more principled methods to allocate
costs exist like the Shapley value, and these cope with such
problems. The Shapley value equals the average marginal
cost of a customer in every possible subset of customers.
It has nice axiomatic properties like efficiency (it allocates
the whole cost), anonymity (it treats all customers alike) and
monotonicity (when the overall costs go up, no individual
costs go down). Indeed, it is the only cost allocation mech-
anism that satisfies these three properties. However, we run

into several complications when applying it to the our distri-
bution problem.

One complication is that the Shapley value is computa-
tionally challenging to compute in general (Chalkiadakis,
Elkind, and Wooldridge 2011). It involves summing an ex-
ponential number of terms (one for each possible subset of
customers), and in our case each term requires solving to
optimality a NP-hard routing problem. One response to the
computational intractability of computing the Shapley value,
is to look to approximate it. However, we have proved (Aziz
et al. 2014) that even finding an approximation to the Shap-
ley value of a customer is intractable in general.

Theorem 1 Unless P=NP, there is no polynomial time α-
approximation to the Shapley value of a customer in a TSP
game for any constant factor α > 1.

We have therefore considered heuristic methods based on
Monte Carlo sampling (Mann and Shapley 1960; Castro,
Gomez, and Tejada 2009), and on approximating the cost of
the optimal route. We have also considered simple proxies
to the Shapley value like the depot distance (that is, allo-
cating costs proportional to the distance between customer
and depot), the shortcut distance (that is, allocating costs
proportional to the reduction in distance if we simply skip
the customer), as well as more complex proxies based on
good heuristics like the Christofides and Held-Karp heuris-
tics. Our experiments demonstrate that such proxies, espe-
cially the more complex ones can work well in practice.

There are many other complications in this cost alloca-
tion problem. These reflect the fact that the problem is much
richer than imagined in such a simple abstract model based
on the cost of each possible subset of customers. This rich-
ness raises several other issues besides computational com-
plexity which are rarely considered in the literature. Several
of these issues are similar to those encountered in the food
bank fair division problem. For instance, the cost allocation
problem is repeated (every day, we deliver to a similar set
of customers), and constrained (since we must deliver to all
supermarkets of one chain or none, we must constrain the
subsets of customers to consider only those with all or none
of the supermarkets in the chain). However, there are also
several new issues to consider including the heterogeneity of
customers (the Shapley value supposes customers are iden-
tical, which is not the case in our problem as different cus-
tomers order different amounts of product), the complexity
of the cost function (the Shapley value ignores the fact that
costs are time dependent due to traffic), and the robustness
of solutions (a small change to the customer base can have a
large knock-on effect on the cost to serve).

Based on this case study, we propose the following chal-
lenges in cost allocation.

Challenge 6 (Complex cost allocation) To adapt cost allo-
cation mechanisms like the Shapley value to deal with mul-
tiple real world features like heterogenous customers, con-
strained coalitions and complex cost functions.

Challenge 7 (Approximate cost allocation methods) To
develop and analyse approximations for cost allocation
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mechanisms like the Shapley value in complex vehicle
routing games and other real life settings.

Challenge 8 (Sensitivity analysis in cost allocation)
To develop and analyse tools for performing sensitivity
analysis for cost allocation methods like the Shapley value
in both simple games, as well as in more complex vehicle
routing games and other real life settings.

Related work
Richer models for fair division and cost allocation have been
considered previously. For example, we have proposed an
online version of the cake cutting problem in which agents
arrive over time (Walsh 2011a). However, this model in-
cludes none of the other features that we have described here
like repeated or constrained allocations. As a second exam-
ple, Guo, Conitzer, and Reeves (2009) looked at repeated
fair division problems with a single indivisible good. As a
third example, Bouveret and Lang (2008) studied the fair
division problems of indivisible goods when agents do not
have completely ordered preferences over the goods, but in-
stead have dichotomous and other succinctly specified types
of preferences. Again, this model includes none of the other
features that we have described here like repeated or con-
strained allocations. As a fourth example, Kash, Procaccia,
and Shah (2013) set up a dynamic version of fair division,
proposed some desirable axiomatic properties for such dy-
namic resource allocation, and designed two mechanisms
that satisfy these properties. not. As a fifth example, Balan,
Richards, and Luke (2011) studied a fairness in repeated
game. However, a central assumption here was a centralized
decision make who looked to maximize the leximin utility of
the agents. As a sixth example, Engevall, Göthe-Lundgren,
and Värbrand (2004) looked at cost allocation in a vehicle
routing game with a heterogeneous fleet of vehicles. How-
ever, this study other features of the actual real world prob-
lem like the repeated nature of the delivery problems and the
full complexity of the cost function.

We believe that putting together multiple real world fea-
tures simultaneously presents a significant research chal-
lenge, and that computational power will help in many cases
get good allocations. We do, however, note that there are
several areas of resource allocation where more realistic
models with multiple real world features have started to
be analysed and fielded in practice including combinatorial
auctions, kidney exchange, and course and school alloca-
tion problems (e.g. (Cramton, Shoham, and Steinberg 2006;
Dickerson, Procaccia, and Sandholm 2012; Budish and Can-
tillon 2012)).

Conclusions
We have proposed some challenges in fair division and cost
allocation focused on developing richer, more realistic com-
putational models, and designing mechanisms for such mod-
els that work well both in theory and in practice. Many of
the new applications of such models will be in distributed
and asynchronous environments enabled by the internet and
mobile technology. It is here that computational thinking

and computational implementation is necessary, and is set
to transform how we allocate costs and resources fairly and
efficiently. Ultimately we need to design mechanisms that
work well in practice for these richer models, even in the
face of fundamental theoretical limitations that are likely to
be discovered.

The motivation for these challenges comes out of two re-
cent projects at NICTA involving fair division and cost al-
location. Each is an allocation problem with several new
dimensions, rarely considered in the literature. For exam-
ple, our fair division problem is online, repeated, and con-
strained, whilst our cost allocation problem is also repeated
and constrained, and additionally involves a complex cost
function. These two case studies identify a number of fea-
tures missing in many existing models. A number of re-
search questions follow immediately from these case stud-
ies. For example, can we define new mechanisms for such
complex models with good axiomatic properties? How do
such mechanisms work in practice? Are there impossibility
results that limit the properties that can be achieved with any
mechanism in such complex models?
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