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Abstract 
This paper summarizes an ongoing multi-year project 
aiming to uncover knowledge and techniques for devising 
intelligent environments for user-adaptive visualizations. 
We ran three studies designed to investigate the impact of 
user and task characteristics on user performance and 
satisfaction in different visualization contexts. Eye-tracking 
data collected in each study was analyzed to uncover 
possible interactions between user/task characteristics and 
gaze behavior during visualization processing. Finally, we 
investigated user models that can assess user characteristics 
relevant for adaptation from eye tracking data. 

Introduction  
Research in Information Visualization (InfoVis) has 
traditionally followed a one-size-fits-all approach that does 
not account for user differences. In recent years, however, 
researchers have started showing that user-adaptive 
interaction, i.e., interaction adapted by an intelligent 
interface to suit each user’s specific needs and abilities, has 
the potential to improve users’ experience during 
visualization processing (e.g., Gotz and Wen 2009, Ahn 
and Brusilowsky 2013). Still, despite these initial results, 
the effects of both user differences and different forms of 
adaptation remain largely unexplored. This paper 
summarizes the results of ATUAV (Advanced Tools for 
User-Adaptive Visualizations), an ongoing multi-year 
project aiming to uncover further knowledge and 
techniques for devising user-adaptive visualizations. 
 Three main questions should be addressed in any 
research involving intelligent interfaces that deliver user-
adaptive interaction: What user differences should be 
considered for adaptation? How to adequately adapt to 
these differences? When to adapt, in order to maximize 
adaptation effectiveness and reduce intrusiveness? To 
address these questions, we conducted three studies 
designed to achieve the following objectives: 
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x Objective 1: investigate whether a variety of user and 
task characteristics impact user performance and 
satisfaction in different visualization contexts. 
Essentially, we wanted to identify which characteristics 
have enough impact on user visualization experience to 
justify adapting to these characteristics (what to adapt 
to). 

x Objective 2: Provide eye-tracking data to be analyzed to 
understand if/how users and tasks characteristics affect 
user attention patterns to specific elements of a 
visualization to identify possible targets for adaptation 
(how to adapt). 

x Objective 3: Investigate if eye-tracking data can inform 
user models to predict, in real-time, characteristics 
relevant for adaptation (how and when to adapt). 

Related Work 
Our work on user-adaptive visualizations draws from 
research in three related areas: analyzing influences of user 
traits on visualization effectiveness, user modeling, and the 
use of eye-tracking to build user and task models. 
 The influence of user traits on the effectiveness of 
information visualizations has been studied for both 
cognitive abilities and personality-based traits. The 
cognitive abilities of perceptual speed, visual working 
memory, and verbal working memory were found to 
influence both performance with and preferences for 
visualizations (Conati and Maclaren 2008, Velez et al. 
2005, Toker et al. 2012), while capacity of attention was 
found to modulate the effectiveness of visualizations 
(Haroz and Whitney 2012). The locus of control 
personality trait was found to influence performance on 
visualization tasks (Ziemkiewicz et al. 2011, Green and 
Fisher 2010). 
 Studies linking user traits to visualization effectiveness 
motivate the need to estimate those traits during 
visualization use. Several researchers have approached this 
task by tracking user interface actions. For instance, 
Grawemeyer (2006) and Mouine and Lapalme (2012) 
recorded user selections among alternative visualizations to 
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recommend visualizations in subsequent tasks. Gotz and 
Wen (2009) track suboptimal user interaction patterns to 
recommend alternative visualizations for the current task. 
Ahn and Brusilovsky (2013) track a history of user search 
terms to customize the display of exploratory search 
results. Nazemi et al. (2013) track users’ interaction data 
(mouse/keyboard) to customize the visualization of 
bibliographic entries. 

 Gaze data has been shown to be a valuable source of 
information for user modeling in various domains. For 
instance, Eivazi and Bednarik (2011) used gaze data to 
predict user strategies when solving a puzzle game. Kardan 
and Conati (2013) and Bondareva et al. (2013) use gaze to 
predict student learning with educational software, while 
Jaques et al. (2014) and D’Mello et al. (2013)  leverage it 
for affect prediction. Liu et al. (2009) predict skill level 
differences between users in collaborative tasks, while 

 
Figure 3. Sample ValueChart from the VC study, shown in horizontal layout. 

 

 
Figure 2. Sample bar chart used in the Intervention study. 

 
 

Figure 1. Sample radar and bar graph used in the Bar/Radar study. 
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Tang et al. (2012) detect domain expertise. In HCI, Iqbal et 
al. (2005) track pupil sizes to detect cognitive workload 
during task execution. Jang et al. (2014) use gaze and pupil 
sizes to identify human implicit visual search intention. 
Finally, Plumlee and Ware (2006) use eye movements to 
investigate differences in user accuracy between alternative 
visualization interfaces. 

User Studies 
Our first study (Toker et al. 2012) looked at the three 
objectives above in the context of using two InfoVis 
techniques: bar graphs and radar graphs (Bar/Radar study 
from now on – see Figure 1). The second study (Carenini 
et al. 2014) extended the first study by evaluating four 
different visual prompts (see Figure 4) designed to help 
users process bar graphs, with the long term goal of 
understanding which, if any, of these visual prompts could 
be suitable as adaptive interventions under specific 
circumstances (Intervention study from now on – see 
Figure 2). While the first two studies involved 
visualizations that could only be processed visually, the 
third study (Conati et al. 2014) extended our investigation 
to interactive visualizations, i.e., visualizations that provide 
users with a variety of functionalities to explore the 
visualized data interactively. We refer to this study as VC 
study, because it targeted an interactive visualization called 
ValueChart (see Figure 3), which is designed to support 
users in decision making tasks involving preferential 
choice (i.e., the process of selecting the best option out of a 
possibly large set of alternatives based on multiple 
attributes).  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
 In all three studies we collected information on a variety 
of user characteristics that could affect a user’s 
visualization experience. These include visualization 
expertise, as well as three cognitive measures: perceptual 
speed (PS), visual working memory (visWM) and verbal 

working memory (verbWM). The Intervention and VC 
study also included locus of control, a personality trait that 
other studies have shown to impact visualization 
effectiveness (Ziemkiewicz et al. 2011). The VC study also 
includes measures of task expertise, i.e., expertise in 
making preferential choices in general and by using 
visualization aids. 
 All three studies considered different task types and 
varied task complexity, to investigate if and how these task 
characteristics influence the impact of user differences on 
visualization experience. The Bar/Radar study  (Toker et 
al. 2012) included 5 different task types, chosen from a set 
of low-level analysis tasks identified as largely capturing 
people’s activities while employing information 
visualization (e.g., retrieve the value of a specific 
datapoint, find the datapoint with an extreme value in the 
dataset) (Amar et al. 2005). The study also varied task 
complexity by visualizing two datasets of different size 
(i.e., consisting of either two or three data series 
respectively). The Intervention study (Carenini et al. 2014)  
and VC study (Conati et al. 2014) also varied task type and 
complexity, but in order to limit the number of 
experimental conditions, complexity was varied by 
selecting task types that were, respectively, among the 
simplest and the most complex in Amar et al. (2005)  
rather than including multiple datasets of different 
complexity. In addition to low-level visualization tasks 
derived from Amar et al. (2005), the VC study also 
included a high-level task of using ValueChart to explore 
at will a set of alternatives (e.g., movies to watch), and 
select the preferred item.  
 Dependent measures were collected in terms of both 
performance (e.g., logged task completion time), as well as 
subjective measures of user satisfaction. In addition, in 
each study users’ gaze was tracked via a Tobii T120 eye-
tracker. 
 We analyzed the data collected in the studies in three 
different ways. To investigate the impact of user and task 
characteristics on visualization experience (Objective 1), 
we ran linear mixed-effects model (Mixed Model) analyses 
with user and task characteristics as factors/covariates, and 
performance and satisfaction measures as dependent 
variables (Toker et al. 2012, Carenini et al. 2014, Conati et 
al. 2014). To investigate the impact of user/task 
characteristics on gaze behavior (Objective 2), we ran 
similar mixed models where the dependent variables were 
a variety of summative statistics on gaze measures, e.g., 
rate of gaze fixations, average fixation length, percentage 
of gaze transitions between salient areas of the 
visualization known as Areas of Interest, or AOI (Toker et 
al. 2013, Toker et al. 2014). Finally, to investigate whether 
gaze data can help build user models that predict relevant 
user/task characteristics during visualization processing 
(Objective 3), we conducted machine learning experiments 

Figure 4. Visual prompts evaluated in the Intervention study, 
aimed at facilitating visualizaton processing using various 

highlighting techniques. 
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that leveraged different feature sets based on gaze data to 
predict user performance and cognitive/personality traits, 
as well as task type and difficulty (Steichen et al. 2013, 
Steichen et al. 2014, Gingerich and Conati 2015). We have 
completed all types of analysis for both the Bar/Radar 
study (Toker et al. 2012, Toker et al. 2013, Steichen et al. 
2014) and the Intervention study (Carenini et al. 2014, 
Toker et al. 2014, Gingerich and Conati 2015), whereas for 
the VC study we have so far performed only the analysis 
related to Objective 1 (Conati et al. 2014). 
 In the next section we summarize a selection of results 
from the analyses. All results reported are statistically 
significant at the .05 level (adjusted for multiple 
comparisons), unless otherwise qualified. 

Overview of Results 

Impact of user characteristics on performance 
Bar/Radar study (Toker et al. 2012). For simple tasks 
(i.e., tasks performed with the simpler dataset) we found, 
not surprisingly, that higher PS corresponded to faster 
completion time with both visualizations. However, we 
also found an interaction effect between PS and 
visualization type, there was larger difference in time 
performance between bar and radar graphs for users with 
low PS than for users with high PS. This result is important 
because it confirms the finding in (Conati and Maclaren 
2008) that PS is a cognitive measure that can impact the 
compared effectiveness of two different visualizations, at 
least when one of them is a radar graph.  
 For more complex tasks, the main effect of PS becomes 
marginally significant, but still has a medium-large effect 
size. Individual differences also impacted user subjective 
preferences. Users with high visWM gave higher 
preference ratings to radar graphs than users with low 
visWM, and users with low verbWM found bar graphs 
easier to use than users with high verbWM. 

Intervention study (Carenini et al. 2014). While there 
was no impact of cognitive abilities or locus of control on 
task performance with simple tasks (i.e., tasks asking users 
to retrieve a specific value from a bar chart), for more 
complex tasks (requiring users to compute aggregate 
measures over a subset of the data) all three cognitive 
abilities (PS, visWM, and verbWM) had an impact1: users 
with higher values of these abilities performed 
significantly better in terms of a performance measure 
combining accuracy and completion time. These results 
indicate that task complexity can significantly impact user 
performance depending on cognitive abilities, and suggests 
that users with lower cognitive abilities would benefit from 

                                                
1 No effect was found for locus of control. 

adaptive interventions when tasks get harder. It should be 
noted that while the result for PS aligns with results in 
previous work (Toker et al. 2012), for visWM and 
verbWM the Intervention study is the first to connect these 
two cognitive traits to objective task performance (as 
opposed to subjective user preferences) with a 
visualization, possibly because previous studies relied on 
tasks that were not complex enough to detect these effects. 
In terms of possible influences of individual differences on 
the effectiveness of the different visual prompts 
(interventions) tested in the study, none were found for 
task performance: all interventions had a similar positive 
impact on users’ performance, and were better than 
receiving no intervention (except for the “Reference Lines” 
intervention with complex tasks). Individual differences 
however, affected users’ subjective measures of 
intervention usefulness. Specifically, differences in visWM 
affected the usefulness ratings for “Bolding” and 
“Reference Lines” interventions. This finding confirms the 
influence of visWM on subjective ratings found in (Toker 
et al. 2012). 

VC study (Conati el al. 2014). We investigated the effect 
of user characteristics on performance for low and high 
level tasks, mediated by two visualization layouts (vertical 
and horizontal2). These layouts can be considered as a 
possible form of personalization since previous studies 
with ValueChart suggest that they are not equivalent in 
terms of user performance. For low-level tasks, interaction 
effects were found between task type and each of: 
visualization expertise, PS, visWM, and verbWM. Once 
again, no effect was found for locus of control. Users with 
lower visualization expertise are significantly slower in 
more complex low-level tasks, suggesting that 
personalized support should be available to non-experts for 
such tasks. In general, as we found for the Intervention 
study, lower levels of user PS and verbWM negatively 
impacted performance on specific task types. However, for 
all low-level tasks, users with lower visWM were 
significantly faster than users with higher visWM when 
they worked with a horizontal layout, contrary to previous 
findings showing that lower visWM users are at a 
disadvantage. This result is important because it indicates 
that giving users the appropriate visual artifacts for their 
cognitive abilities (e.g., a horizontal layout for low 
visWM) can compensate for limitations in these abilities. 
 For high-level tasks, users with low self-rated frequency 
of using visualizations to make preferential choices spent 
significantly less time making decisions with the vertical 
layout than with the horizontal layout, while maintaining 
similar levels of decision confidence or decision 

                                                
2 Figure 3 shows the horizontal layout. The vertical layout corresponds to 
the horizontal one rotated counter clockwise by 90 degrees. 
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satisfaction as with the horizontal layout. This suggests 
that personalization based on layouts could increase 
efficacy on high-level decision making tasks.  
 Table 1 summarizes all the main significant effects of 
user characteristics found in our analyses. 

Table 1. Features on which each user characteristic has a 
significant impact per experiment. 

Analysis of eye-tracking data 
We investigated (i) if user characteristics impact gaze 
behavior during visualization processing tasks, and (ii) 
which gaze features are the most influenced by user 
characteristics (Objective 2). We summarize here some of 
the results that can be leveraged to understand how to 
provide user-adaptive interventions. 
 In the Bar/Radar study (Toker et al. 2013) we found that 
PS significantly impacted gaze behavior, influencing 
fixation rate and gaze measures relating to the legend, 
labels and graph regions (Areas of Interests, or AOI, from 
now on). For instance, users with low PS spent more time 
and transitioned more often to the labels AOI and legend 
AOI regions of the visualization. This effect was more 
pronounced when performing difficult tasks. This finding 
suggests supporting users with low PS (e.g., older adults 
and people with autism) in terms of legend/label  
processing, especially for more difficult tasks, given that 
these users have lower performance, as discussed in the 
previous section (Toker et al. 2012). Similar results and 
conclusions for label processing were found in the 
Intervention study, i.e., users with low PS had lower 
performance and spent more time processing the labels 
AOI region of the visualization with complex tasks (Toker 
et al. 2014). 
 The Intervention study, in addition, uncovered 
analogous finding for visVW and verbWM. Users with 
lower levels of these measures tended to have worse task 
performance, as discussed above, which can be explained 
by the impact that these measures were found to have on 
different elements of the Intervention study visualizations. 
For instance, users with low visWM spent more time and 
transitioned more often to the answer input AOI region of 

the visualization on complex tasks, suggesting that these 
users likely have difficulty connecting the answer options 
in the input area with the information in the graph. This, in 
turn causes them to go back and forth between the input 
and the other graph areas more often than high visWM 
users do. This behavior can explain why in this study low 
visWM users were found to be slower at solving the tasks 
than their high visWM counterparts. This combination of 
findings suggest that we may want to experiment with 
designing adaptive support for low visWM users that 
focuses on facilitating processing of the input options in 
relation to the task (e.g., experiment with different input 
methods or visual representations of radio buttons). 
Similarly, users with low verbWM spend more of their 
time reading the textual elements of the visualization 
(legend, labels, and question AOIs). This effect can explain 
the increase in task response time that we found for low 
verbWM users, indicating that it is worthwhile to 
investigate adaptive interventions that aid the processing of 
a visualization’s textual components for these users. All 
the above results provide evidence that users with lower 
cognitive abilities could benefit from adaptive 
interventions that can help them process visualizations 
components that may affect their task performance, and 
that eye gaze analysis can help identify these components.    

Classification experiments based on gaze data 
We investigated if user characteristics, task complexity, 
and user performance can be predicted solely based on eye 
tracking data (Objective 3) for both the Bar/Radar and 
Intervention studies (Steichen et al. 2103, 2014; Gingerich 
and Conati 2015). 
 For both datasets, we were able to build classifiers that 
predict each of the above measures with accuracy 
significantly better than majority baseline classifiers, 
relatively early on from the start of a target visualization 
task. Classification accuracy for predicting task type 
reaches 79-81% after observing only 10% of the gaze data 
for that task. This result has direct implications for a 
system's ability to provide useful adaptive support to users, 
given the strong influence that task type/complexity has on 
user performance, as discussed above.  For instance, using 
gaze data, a user-adaptive module built for these two 
visualizations (i.e., bar and radar graphs) would be able to 
distinguish whether a user is engaged in an easier or more 
complex task, and then consider suitable adaptations 
accordingly. User performance classification (i.e., 
predicting if a user will finish a task quickly/slowly) 
complements task type classification by identifying 
occasions in which users are most in need of support, and 
in our experiments it reaches accuracies in the range of 78-
85% after seeing 10% of the gaze data. Classification of 
user cognitive abilities, which can be useful for the fine-

 Perceptual 
Speed VerbalWM  VisualWM Visualization 

Expertise 

Bar /Radar 
study 

Task  
performance 

Ease-of-use  
ratings 

Bar vs. 
Radar 
preference 
ratings 

- 

Intervention 
study 

Task 
performance 

Task 
performance  

Task 
performance  
 
Ease-of-use 
ratings of 
interventions 

- 

VC study Task 
performance 

Task 
performance 

Task 
performance 

Task 
performance 
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grained tailoring of visualization support, has lower 
accuracies in the 60-64% range, indicating that task type 
and user performance have a stronger impact on user gaze 
behaviors than these cognitive measures. Still, it should be 
noted that these accuracies are achieved after seeing user 
gaze for only one task, and tasks in these two studies are 
basic short ones (on average less than one minute). As 
users completed multiple tasks in each study, higher 
classification accuracies could likely be achievable by 
allowing the system to track user gaze across many tasks. 

Discussion and Conclusions 
The long-term goal of the research discussed in this paper 
is to devise intelligent user-adaptive visualizations that can 
adapt in real time to the specific needs and abilities of each 
individual user. Based on the results found in the three user 
studies overviewed in this paper, we can identify two broad 
categories of adaptive support. 

 The first category consists of delivering adaptive 
interventions that can help the user process a given 
visualization. For instance, findings from the Intervention 
study suggest that in the presence of complex tasks: 
x Users with low perceptual speed may benefit from 

interventions that help them process the labels in the 
visualization 

x Users with low visual working memory should be given 
support with how their answers are submitted (e.g., 
using radio buttons vs. drop-down menus) 

x Users with low verbal working memory can be helped 
by adaptive interventions that emphasize any or all 
textual elements of the visualization. 

 The second category of adaptive support consists of 
selecting the best visualization or visualization layout 
among a set of alternatives. For instance, findings in the 
Bar/Radar study suggest that: 
x Users with low perceptual speed should be given bar 

graphs instead of radar graphs when working with 
information seeking tasks, because they are faster with 
them.  

x Users with high visual working memory or expertise 
with radar graphs should be given this type of 
visualization because they are likely to prefer it to bar 
graphs.  

Similarly, the VC study findings suggest that: 
x When performing low-level visualization tasks with 

ValueChart users with lower visual working memory 
should be given a horizontal layout, which allows these 
users to compensate for their visual working memory 
limitations.  

x When performing high-level decision-making tasks with 
ValueChart, users with limited expertise in using 
visualizations for decision making should be given a 
vertical layout, as they spent less time making their 

decision with this layout at no cost of decision 
confidence and satisfaction. 

 In order to provide adaptive support as described above, 
an adaptive visualization needs to be able to assess in real 
time when interventions are needed and why. We have 
presented promising results with two different datasets 
(from the Bar/Radar study and from the Intervention study) 
showing that classifiers based solely on tracking gaze data 
can predict early on during a task whether the user may 
need help because they are showing low performance with 
the current visualization set up. We also showed early 
accurate prediction of type/complexity of the visualization 
task a user is working on, which affects the type of support 
the user may need. Accurate information on the user’s 
cognitive abilities that can further qualify the type of 
adaptive support to be provided is harder to obtain using 
solely gaze data on the current user task, although our 
classifiers still perform significantly better than majority 
class baseline classifiers. One of our threads for future 
work involves investigating ways to increase prediction 
accuracy for a user’s cognitive abilities, for instance by (i) 
classifying over more than one task; (ii) looking at 
additional features for classification such as pupil-based 
measures and action-based features when available (e.g. in 
the ValueChart dataset). A second thread involves 
designing some of the different adaptation strategies 
identified in this paper, and evaluate their effectiveness 
first via Wizard of Oz studies and then by implementing 
the actual adaptive cycle. Finally, we are looking at 
practical applications of our approaches. For instance, we 
are looking at using existing corpora of multimodal 
documents (e.g., articles from the Economist) which 
contain graphs, text that describes different aspects of the 
graphs, and explicit links between related sentences and 
graph elements. Our goal is to build mechanisms that track 
when a user is reading sentences that require attention to 
the graph and solicit attention to the relevant graphical 
elements in an adaptive manner. 
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