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Abstract

Applying machine learning and data mining to novel ap-
plications is cumbersome. This observation is the prime
motivation for the interest in languages for learning
and mining. This note provides a gentle introduction
to three types of languages that support machine learn-
ing and data mining: inductive query languages, which
extend database query languages with primitives for
mining and learning, modelling languages, which allow
to declaratively specify and solve mining and learning
problems, and programming languages, that support the
learning of functions and subroutines. It uses an exam-
ple of each type of language to introduce the underlying
ideas and puts them into a common perspective. This
then forms the basis for a short analysis of the state-of-
the-art.

Introduction
Machine learning and data mining are popular subfields of
artificial intelligence. However, it is well-known that apply-
ing machine learning and data mining to novel data sets is
challenging because each application imposes its own re-
quirements and constraints that often require the develop-
ment of new algorithms and systems. While there are soft-
ware packages and tools such as Scikit for machine learning
and Weka, Orange or Knime for data mining, adapting them
to novel tasks is not easy, which explains why one often re-
sorts to implementing new algorithms and variations from
scratch.

This observation is not new and it forms also the key mo-
tivation for different proposals for languages for learning
and mining. For instance, (Imielinski and Mannila 1996) ar-
gue for the development of inductive query languages for
data mining with “a focus on increasing programmer pro-
ductivity for KDD applications.” The ultimate goal of in-
ductive databases and querying is to put data mining on the
same methodological grounds as databases and to derive the
equivalent of Codd’s relational database model for data min-
ing, that is, to find the primitives underlying data mining.
(Imielinski and Mannila 1996) argue that patterns should be
first class citizens that can be queried and manipulated just
like data, and they used the slogan
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From the user point of view, there is no such thing as
real discovery, just a matter of the expressive power of
the available query language.
Coming more from a machine learning perspective, Tom

Mitchell (2006) in his essay on The Discipline of Machine
Learning asks a similar question but using programming
languages rather than query languages and focussing on
learning instead of mining:

Can we design programming languages containing
machine learning primitives? Can a new generation
of computer programming languages directly support
writing programs that learn? ... Why not design a new
computer programming language that supports writing
programs in which some subroutines are hand-coded
while others are specified as to be learned? Such a pro-
gramming language could allow the programmer to de-
clare the inputs and outputs of each to be learned sub-
routine, then select a learning algorithm from the prim-
itives provided by the programming language.
Finally, inspired by the field of constraint programming,

(Guns et al. 2013) aim at developing declarative modeling
languages for specifying a wide range of mining problems.
Such languages should support

the high-level and natural modeling of pattern mining
tasks; that is, the models should closely correspond to
the definitions of data mining problems found in the
literature; should support user-defined constraints and
criteria such that existing problem formulations can be
extended and modified and novel mining tasks can be
specified.
Although query, modelling and programming languages

are quite different types of language, the motivation for in-
corporating machine learning and data mining primitives in
these languages is essentially the same: it is to bring added
power and expressiveness to the programmer who is devel-
oping machine learning and data mining software or appli-
cations. Furthermore, also the means with which they want
to realize this goal are essentially the same: it is to provide
the programmer with a formalism for declaratively specify-
ing the patterns or models of interest. This should facilitate
the task of the developer as providing a specification of the
problem is much easier than implementing a full algorithm
in some programming language.
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Beer Brand Color Alcohol%
1 Westmalle Tripel Blonde 9.5
2 Orval Dark 6.2
3 Straffe Hendrik Gold 9
4 Straffe Hendrik Dark 11
.... ... ... ...

Table 1: The Beer table.

Cid Brand Color Alcohol%
c1 Westmalle Tripel ? ?
c2 Westmalle Tripel Blonde ?
c3 ? Blonde ?
c4 ? Blonde 9.5
c5 Straffe Hendrik ? ?
.... ... ... ...

Table 2: The BeerConcept table.

This note will provide a gentle introduction to these three
types of languages and will put them into a common per-
spective. This will allow us to clarify the state-of-the-art and
to identify some remaining challenges. But first, we shall
introduce these three types of languages using an example.

Inductive Query Languages
Since the seminal paper by (Imielinski and Mannila 1996)
many different inductive query languages have been devel-
oped, e.g. (Meo, Psaila, and Ceri 1998; Imielinski and Vir-
mani 1999; Blockeel et al. 2012). Most of these languages
extend relational database languages (such as SQL) with
primitives for mining. While some query languages merely
invoke an extra primitive to call a particular data mining
algorithm, such as a decision tree learner, others aim for
a tighter integration between the database and data mining
components. An interesting perspective in this regard is that
of the virtual mining views of (Blockeel et al. 2012), who
claim that inductive querying can be realized by adding a
number of ‘virtual views’ to the database and querying these
as any other relation in a database. A virtual mining view is
a relation that virtually contains the output of a data mining
component. It is virtual in that it need not be fully material-
ized as this would lead to combinatorial problems.

Let us illustrate this idea on a simple example (adapted
from (Blockeel et al. 2012)). Assume we have a dataset
about Belgian beers, cf. Table 1.

Two mining views could then be created for this relation,
cf. Tables 2 and 3. The BeerConcept table lists all possi-
ble tuples using the values of the attributes that occur in the
original table, but also allows for the special don’t care value

cid frequency size
c5 2 1
... ... ...

Table 3: The BeerSet table.

“?”. The idea is that this virtual view contains the set of all
possible patterns, where a pattern can be regarded as a con-
junction of attribute-value pairs. The BeerSet table contains
the corresponding patterns (through their concept identifier
cid) as well as information about the number of occurences,
i.e. the frequency, of these patterns in the original dataset.
Once these tables are in place, one can mine for patterns
using SQL on the resulting tables. For instance, the query
below asks for all patterns (concepts) that occur at least 10
times in the data or have an area of at least 60 such as c5.

SELECT C.*, S.supp, S.sz,
S.supp * S.sz AS area
FROM BeerConcepts C, BeerSets S
WHERE (C.cid = S.cid AND (S.freq * S.sz > 60))
OR (S.freq > 10)

The concept of virtual mining views has been applied to
richer types of patterns such as rules and decision trees, and
it has been successfully integrated in a database system. Its
integration in database systems is typical for inductive query
languages. It involves processing the SQL query to split it in
three parts corresponding to 1) pre-processing, 2) data min-
ing, and 3) post-processing. The pre-processing query will
retrieve the data from the database and put it in the right for-
mat so that it can be processed by a data mining system. The
data mining system will then process the data and pass on
the result to the post-processing step, which will query the
data mining result to obtain the final answer.

Inductive querying is elegant and quite flexible, though
many challenges remain. First, the integration of various
types of patterns and models in a database management sys-
tem remains cumbersome as it typically requires coupling
with external data mining algorithms and there is only little
support for this as deep integrations of the mining primi-
tives in the underlying database management and query op-
timization system are still missing. Secondly, current induc-
tive querying systems offer only little support to the user for
defining new types of constraints and optimization criteria.
Thirdly, despite the fact that inductive query languages are
typically integrated in a (relational) database system, they
often do not support the querying of relational or structured
data. Finally, and most importantly, the ‘equivalent’ of the
relational algebra for data mining has not yet been identified,
and so the quest for inductive query languages continues.

Modeling Languages
In artificial intelligence there has been a shift from program-
ming to solving as argued by (Geffner 2014). The idea is
to model the artificial intelligence problem and then call a
solver rather than to produce a program that implements a
particular algorithm for computing the solutions to the prob-
lem. Numerous solvers have been developed for important
classes of problems such as SAT, maxSAT, weighted model
counting, Markov Decision Processes, constraint satisfac-
tion problems and linear programming. Furthermore, these
solvers enabled the development of high-level modeling lan-
guages in the knowledge representation and constraint pro-
gramming communities such as Essence (Frisch et al. 2008)
and Zinc (Marriott et al. 2008). It has been argued that this
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type of approach represents (using the words of Eugene
Freuder)

... one of the closest approaches computer science has
yet made to the Holy Grail of programming: the user
states the problem, the computer solves it.

and the slogan ‘constraint programming = model +
solver(s)’ has been used.

Although solvers for convex optimization and mathe-
matical programming are very popular in machine learn-
ing, the use of solvers for combinatorial optimization is
less common in data mining and machine learning. More
importantly, there are today only few high-level modeling
approaches to machine learning or data mining (but see
(Bruynooghe et al. 2014; Guns et al. 2013; De Raedt et al.
2011)) although the topic is enjoying more and more atten-
tion (cf. Dagstuhl Seminar 14411).

Let us now illustrate the idea underlying the modeling
methodology. Figure 1 contains an example model written
in MiningZinc (Guns et al. 2013), which is essentially a li-
brary that supports pattern mining for MiniZinc (Marriott et
al. 2008), a popular modeling language for constraint pro-
gramming. The model looks for discriminative patterns and
it is specified in a form that closely resembles definitions
of the discriminative pattern mining problem that one may
find in the literature. It assumes that we are given a set of
items {1, ..., N}, and two sets of transactions, D fraud and
D ok, where each transaction (tid, I) consists of a transac-
tion identifier tid and a subset I of the items {1, ..., N}. The
goal then is to find an Itemset (i.e., a pattern) that 1) cov-
ers at least 5 transactions in D fraud and 2) that scores best
w.r.t. accuracy. An Itemset covers a transaction (tid, I) if
Itemset ⊆ I and the cover of an itemset is simply the
set of transactions tid it covers. The constraint then uses the
cardinality function card to represent the frequency con-
straint 1). The scoring function corresponds to the accuracy
of the pattern (the difference between the frequencies in the
two transaction sets) and the goal is to find the best pattern
according to this scoring function.

The example illustrates the power of the modeling ap-
proach: by varying the constraints and the (scoring) func-
tions in the model, one can easily specify a wide range of
mining problems. To find solutions for any given model, one
can either rely on general purpose solvers that are available
for the underlying modeling language (MiniZinc), or auto-
matically analyse the model in order to determine which data
mining algorithm to use for solving particular subtasks of the
problem following an approach that is analogous to that de-
scribed for the virtual mining views. In the above example,
one might, for instance, invoke a frequent pattern miner on
D fraud as one step in the solution process. MiningZinc
provides support for incorporating such data mining solvers
and for reasoning over possible executions of the solution
methods. This is realized by defining each specific data min-
ing solver as a conjunction of constraints.

Modeling languages allow to elegantly specify many
problems. The modeled problems can – in theory – always
be solved by resorting to one of the standard solvers, these
solvers are usually not efficient enough and are certainly not

var set of 1..N: Itemset;
array[int] of set of 1..N: D_fraud;
array[int] of set of 1..N: D_ok;
constraint card(cover(Itemset,D_fraud)) > 5 ;
% Optimisation function
var int: Score = card(cover(Items, D_fraud)) -

card(cover(Items, D_ok));
solve maximize Score :: itemset_search(Items);

Figure 1: Discriminative itemset mining model

meant for dealing with the large datasets (and constraints) of
data mining. The modeling languages can also be coupled to
specific data mining algorithms but this requires extra effort.
As for inductive query languages, there is not yet a deep
integration in the underlying solvers (but see (Nijssen and
Guns 2010) for a special purpose constraint programming
solver for data mining). So, one of the most important chal-
lenges for the modeling approach to data mining is to devise
solvers that are more efficient and scalable even though these
more general approaches may never reach the performance
of highy specialized solvers due to their greater expressivity.
Another ongoing challenge is concerned with extending this
type of modeling approach to a much wider spectrum of data
mining tasks. A final one is, as for the inductive query lan-
guages, to support structured data such as sequences, graphs
and relational data.

Probabilistic Programming Languages
Several extensions of programming languages exist that sup-
port learning from examples. Most popular amongst these
are the so-called probabilistic programming languages (Sato
and Kameya 2001; Goodman et al. 2008; Fierens et al. 2013;
Milch et al. 2007; De Raedt and Kimmig 2013; McCal-
lum, Schultz, and Singh 2009), which essentially define a
probability distribution over possible executions and out-
comes of the underlying program and then provide algo-
rithms for estimating the parameters of the underlying dis-
tributions from samples of the desired behaviour of the pro-
gram. This is very similar in spirit to the learning of graph-
ical models from data, and indeed similar algorithms, such
as EM and Bayesian methods, are employed. Most proba-
bilistic programming languages extend existing functional
or logic programming languages such as Scheme and Pro-
log with probabilistic primitives. Probabilistic programming
languages have been applied to several challenging applica-
tions, and their key advantage is that it is easy to write down
the model and then apply a learning engine. This is perfectly
in line with the goal of supporting the programmer to write
machine learning software.

Probabilistic programming has strong links to statistical
relational learning (Getoor and Taskar 2007), though statis-
tical relational learning approaches such as Markov Logic
(Richardson and Domingos 2006) and Probabilistic Rela-
tional Models (Getoor et al. 2001) are not programming lan-
guages. While they possess many properties of the model-
ing approach described earlier they are also somewhat more
limited in that they do not allow the user to model the learn-
ing task (e.g., the scoring function, the learning setting and
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0.1::burglary.
0.2::earthquake.
0.7::hears_alarm(mary).
0.4::hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(x) :- alarm, hears_alarm(x).
call :- calls(x).

Figure 2: ProbLog program

learning algorithm are typically fixed and built-in).
Let us illustrate probabilistic programming using a

ProbLog example (Fierens et al. 2013). ProbLog is a prob-
abilistic extension of Prolog that allows for facts to be an-
notated with probability values. Each (ground) probabilis-
tic fact p :: f is viewed as an independent random variable
f that is true with probability p and false with probability
1 − p. Thus a ProbLog program defines a distribution over
total choices, i.e., truth-assignments to the set of all (ground
instances of the) probabilistic facts. In the example in Fig-
ure 2, these are the variables burglary, earthquake,
hears alarm(mary), hears alarm(john). For in-
stance, the probability that all of them except earthquake
are true is 0.1 × (1 − 0.2) × 0.7 × 0.4. Each total choice
then induces a (deterministic) Prolog program, and the set of
all its consequences yields one possible world. The possible
world corresponding to the above total choice includes also
the facts alarm, calls(john), calls(mary), call.
The probability of a query is defined as the probability that it
is true in a randomly sampled possible world. For instance,
the query calls(mary) has probability 0.196 as 0.196 is
the sum of the probabilities of all the possibles worlds that
contain calls(mary).

The parameters of the probabilistic program could then
be learned from samples of the target program, which could
take the form of (partial) possible worlds or queries.

The key challenge for probabilistic programming is – not
surprisingly – to perform efficient inference and learning and
to scale up to large datasets. But there are also other open
challenges. For instance, from a software engineering per-
spective one should be able to give guarantees on the perfor-
mance of the learned programs. Will the answers they com-
pute be approximately correct with high probability?

Further Languages for Learning
In addition to the three types of languages illustrated above,
there exist several types of languages for mining and learn-
ing that have not been mentioned yet.

First, in addition to probabilistic programming languages,
there exist also other types of programming languages that
support learning. For instance, Learning Based Java (Riz-
zolo and Roth 2010) is an extension of Java that is very much
in the spirit of Mitchell’s vision as it allows to specify that
certain procedures are to be learned from data. LBJ specifies
and solves these problems using constraint conditional mod-
els. The way of realizing this in LBJ bears some resemblance
to the modeling approach descibed in MiningZinc. It is only

that the tasks are more machine learning oriented, related to
predictive learning, and that the problems are cast as con-
straint conditional models instead of as constraint programs.
Another example is Dyna (Eisner and Filardo 2011), which
extends Datalog with semi-rings and learning, which makes
it related to ProbLog though unlike ProbLog it associates
weights to ground atoms rather than probabilities. This al-
lows it to represent grammar-like structures but also neural
networks, and it provides a gradient-based approach to pa-
rameter estimation. Finally, the kLog language and frame-
work (Frasconi et al. 2014) integrates kernel-based learning
with logic programs. It first turns the input data (represented
as a logic program as in inductive logic programming) into
a graph and then employs a graph-kernel on the resulting
graphicalization to derive a set of features that are then used
in an SVM. All of these languages have been used in natural
language processing applications.

Another class of languages for learning has been devel-
oped with agent programming and reinforcement learning in
mind. The language is used to specify the action and world
model of the agent and reinforcement learning is used to de-
termine the policies that the agent will execute. In this way,
it combines elements of planning and Markov Decision Pro-
cesses in a declarative modeling way. Example languages
include ALISP (Andre and Russell 2002) and Golog (Beck
and Lakemeyer 2012).

Discussion
This note has introduced three types of languages that sup-
port learning and mining. Although these types of languages
are based on quite different principles (querying, modeling,
and programming), these differences are not always as clear
cut when looking at particular languages and there really
seems to be a continuum. This is clear when looking, for
instance, at some probabilistic programming languages, like
ProbLog and Church (Goodman et al. 2008), whose pro-
grams could also be viewed as models.

What is more important than these differences is that they
share a common goal: support the programmer to produce
learning and mining software by writing queries, models or
declarative programs and calling solvers rather than having
to implement complex mining and learning algorithms. This
is more convenient and more economical. For the machine
learning and data mining scientists, these languages also re-
alize rapid prototyping and in case the performance needs
improvement, one can always implement a specialized algo-
rithm implementing the model afterwards. Furthermore, de-
veloping machine learning and data mining systems within
such a framework may also lead towards libraries of com-
mon problems and reuse of solutions.

Many of these languages have been used to solve real-life
applications already. Furthermore, the several streams of re-
search and the number of results in these area show that there
is an increasing interest and an increasing need for such lan-
guages. However, they are also still limited in that they are
typically based on a single paradigm or task, that they are
not always tightly integrated into the inference engine of the
underlying language, that they often need to be coupled to
an external data mining or learning system, and that it is
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not easy to scale up the inference and learning mechanisms
to cope with realistic data sets. Thus the quest for the un-
derlying primitives, the general principles and the universal
solvers for learning and mining remains open.

Acknowledgments
The author is grateful to his collaborators, especially to Tias
Guns, Siegfried Nijssen, and Angelika Kimmig, and also to
Hendrik Blockeel and the reviewers for feedback on this
note. This work was also supported by the EU ICON FP7
Project and by the BOF GOA project on Declarative Model-
ing for Learning and Mining.

References
Andre, D., and Russell, S. J. 2002. State abstraction for pro-
grammable reinforcement learning agents. In Proceedings
18th National Conference on Artificial Intelligence, 119–
125.
Beck, D., and Lakemeyer, G. 2012. Reinforcement learning
for golog programs with first-order state-abstraction. Logic
Journal of IGPL 20(5):909–942.

Blockeel, H.; Calders, T.; Fromont, É.; Goethals, B.; Prado,
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